

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

ABOUT A RMM INEQUALITY-XIX

By Marin Chirciu-Romania

Edited by Florică Anastase-Romania

1) If $a, b, c > 0$ such that $a + b + c = 3$ then

$$\frac{a^3 + b^3}{ab} + \frac{b^3 + c^3}{bc} + \frac{c^3 + a^3}{ca} \geq 6$$

Proposed by Carmen Chirfot-Romania

Solution. Lemma. 2) If $a, b > 0$ then $\frac{a^3 + b^3}{ab} \geq a + b$.

Proof. We have: $\frac{a^3 + b^3}{ab} \geq a + b \Leftrightarrow (a + b)(a - b)^2 \geq 0$. Equality holds for $a = b$.

Solution 1. Let's get back to the main problem. Using Lemma, we get:

$$LHS = \sum_{cyc} \frac{b^3 + c^3}{bc} \stackrel{\text{Lemma}}{\geq} \sum_{cyc} (b + c) = 2 \sum_{cyc} a = 2 \cdot 3 = 6.$$

Equality holds for $a = b = c = 1$.

Solution 2. Using Holder Inequality, we have:

$$\begin{aligned} LHS &= \sum_{cyc} \frac{b^3 + c^3}{bc} = \sum_{cyc} \frac{b^2}{c} + \sum_{cyc} \frac{c^2}{b} \stackrel{\text{Holder}}{\geq} \frac{(\sum a)^2}{\sum a} + \frac{(\sum a)^2}{\sum a} = \sum_{cyc} a + \sum_{cyc} a = \\ &= 2 \sum_{cyc} a = 2 \cdot 3 = 6 \end{aligned}$$

Equality holds for $a = b = c = 1$.

Remark. The problem can be developed.

3) If $a, b, c > 0$ such that $a + b + c = 3$ and $\lambda \geq 0$ then

$$\frac{a^3 + \lambda b^3}{ab} + \frac{b^3 + \lambda c^3}{bc} + \frac{c^3 + \lambda a^3}{ca} \geq 3(\lambda + 1)$$

Marin Chirciu

Solution. Using Holder Inequality, we have:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$\begin{aligned}
 LHS &= \sum_{cyc} \frac{b^3 + \lambda c^3}{bc} = \sum_{cyc} \frac{b^2}{c} + \lambda \sum_{cyc} \frac{c^2}{b} \stackrel{\text{Holder}}{\geq} \frac{(\sum a)^2}{\sum a} + \lambda \frac{(\sum a)^2}{\sum a} = \sum_{cyc} a + \lambda \sum_{cyc} a = \\
 &= (\lambda + 1) \sum_{cyc} a = (\lambda + 1) \cdot 3 = 3(\lambda + 1)
 \end{aligned}$$

Equality holds for $a = b = c = 1$.

Note. For $\lambda = 1$, we get Problem VIII.27, pag. 53, proposed by Carmen Chirfot, Romania in R.M.M. no.22.

Remark. The problem can be developed.

4) If $a, b, c > 0$ such that $a + b + c = 3$ and $\lambda \geq 0, n \in \mathbb{N}, n \geq 2$ then

$$\frac{a^n + \lambda b^n}{ab} + \frac{b^n + \lambda c^n}{bc} + \frac{c^n + \lambda a^n}{ca} \geq 3(\lambda + 1)$$

Marin Chirciu

Solution. Using Holder Inequality, we get:

$$\begin{aligned}
 LHS &= \sum_{cyc} \frac{b^n + \lambda c^n}{bc} = \sum_{cyc} \frac{b^{n-1}}{c} + \lambda \sum_{cyc} \frac{c^{n-1}}{b} \stackrel{\text{Holder}}{\geq} \frac{(\sum a)^{n-2}}{3^{n-3} \sum a} + \lambda \frac{(\sum a)^{n-2}}{3^{n-3} \sum a} = \\
 &= (1 + \lambda) \frac{(\sum a)^{n-2}}{3^{n-3} \sum a} = \frac{(\lambda + 1)}{3^{n-1}} \cdot 3^{n-2} = 3(\lambda + 1)
 \end{aligned}$$

Equality holds for $a = b = c = 1$.

Note. For $n = 3$ and $\lambda = 1$, we get Problem VIII.27, pag. 53, proposed by Carmen Chirfot, Romania in R.M.M. no.22.

REFERENCE:

ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro