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1) Let ���� be the orthic triangle of acute ����, � −orthocenter.  

        Prove that: 
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Proposed by Eldeniz Hesenov-Georgia 

Solution. Lemma. 2) Let ���� be the orthic triangle of acute 

����, � −orthocenter. In these conditions: 
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Proof. Using �� = 2� ⋅ cos � , �� = � ⋅ cos � and �� =
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Let’s get back to the main problem, using Lemma inequality becomes 
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⇔ 3�� ≤ (4� + �)� (������). Equality holds if and only if triangle is equilateral. 
Remark. Let’s find an opposite inequality. 

2) Let ���� be the orthic triangle of acute ����, � −orthocenter.  

Prove that 
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Solution.  Lemma. 4) Let ���� be the orthic triangle of acute 

����, � −orthocenter. Prove that 
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Proof. Using �� = 2� ⋅ cos � , �� = � ⋅ cos � and �� =
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 we get: 
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Let’s get back to the main problem, using Lemma inequality becomes 
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⇔ 3�� ≤ (4� + �)� (������). Equality holds if and only if triangle is equilateral. 

5) Let ���� be the orthic triangle of acute ����, � −orthocenter.  

Prove that 
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Solution. See inequalities 1) and 3). Equality holds if and only if triangle is equilateral. 

Remark. Let’s replace �� with ℎ�. 

6) Let ���� be the orthic triangle of acute ����, � −orthocenter. 

 Prove that 
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Solution. Lemma  7) Let ���� be the orthic triangle of an acute 

����, � −orthocenter. Prove that: 
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Proof. Using �� = 2� ⋅ cos � , �� = � ⋅ cos � and ℎ� =
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Let’s get back to the main problem, using Lemma inequality becomes: 
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For LHS, using Lemma,  we have: 
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Distinguish the following cases: 

Case 1) If (�� + 2�� − 16��) ≥ 0, inequality is obviously true. 

Case 2) If (�� + 2�� − 16��) < 0 inequality can be written as:  
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��(4� + �)� ≥ ��(16�� − 2�� − ��), which follows from Gerretsen inequality 
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Remains to prove that ��(4� + �)� ≥
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� ≥ 2�(�����). Equality holds if and only if triangle is equilateral.  

8) Let ���� be the orthic triangle of acute ����, � −orthocenter.  

               Prove that: 
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Solution. Using Lammas we have: 
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Remains to prove that 
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2�� − 5�� + 2�� ≥ 0 ⇔ (� − 2�)(2� − �) ≥ 0 true from � ≥ 2� (�����). 

Equality holds if and only if triangle is equilateral. 

Remark. It can be write the following identity: 

9) Let ���� be the orthic triangle of acute ����, � −orthocenter. 

              Prove that: 
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Solution. Lemma. 10) Let ���� be the orthic triangle of an acute 

����, � −orthocenter. Prove that: 
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