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Abstract

In this article, we will show an approach to prove the elegant results:

∞∑
n=1

1

n3 sin
(√

2πn
) = − 13π3

360
√
2
≈ −0.791727...

∞∑
n=1

1

n3 sin (ϕπn)
= − 17π3

1440
√
5
− π3

32
≈ −1.132647..., ϕ =

1 +
√
5

2

through the use of a powerful identity perhaps presented by S. Ramanujan in
[1] in any of your papers, which will be proved in this paper only by using the
expansion to cot(πz) and csc(πz) recalled in [4], and double sum symmetry.

1 Introdution

The current paper deals with the evaluation of two apparently complicated
results to prove, however we are presenting a subtle approach without using
contour integration, or complex numbers. We will explore a curious result
and relationships with the ϕ golden ratio, where it will drive our development
and certainly culminate in connections with alternating double series.

2 A key result

Let's start the approach by presenting a key result that will allow us to
�ow with the purpose of our work, so consider the following theorem:
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Theorem 1 Let α be a irrational number such that µ(α) = 21, then

∞∑
n=1

cot (αnπ)

n3
+ α2

∞∑
n=1

cot
(
πn
α

)
n3

=
π3

90α

(
α4 − 5α2 + 1

)
. (2.0)

Proof: By the article in [4], we know that:

∞∑
n=0

1

n2 − x2
= −π cot(πx)

2x
− 1

2x2
. (2.1)

Then making the sum starting from n = 1 and changing n 7→ k, then
rearranging the terms and highlighting the term cot(πx) at (2.1) we get:

cot(πx) = − 1

π

∞∑
k=1

2x

k2 − x2
+

1

πx
(2.2)

Now, set x = αn and connecting (2.2) on LHS of (2.0) follows that:

=
∞∑
n=1

1

n3

(
− 1

π

∞∑
k=1

2αn

k2 − α2n2
+

1

παn

)
+ α2

∞∑
n=1

1

n3

(
− 1

πα

∞∑
k=1

2n

k2 − n2/α2
+

α

πn

)

=
ζ(4)

πα
− 2α

π

∑
n,k∈N1

1

n2 (k2 − α2n2)
+
α3

π
ζ(4)− 2α

π

∑
n,k∈N1

1

n2 (k2 − n2/α2)

=
1

πα

((
1 + α4

)
ζ(4)− 2α2

∑
n,k∈N1

(
1

n2 (k2 − α2n2)
+

1

n2 (k2 − n2/α2)

))

=
1

πα

((
1 + α4

)
ζ(4) + 2α2Tnk(α)

)
, (2.3)

where, we use [3]. Let's to evaluate Tnk(α). First, note that by symmetry
Tnk(α) = Tkn(α), then taking 2T (n, k), we have:

Tnk(α) =
1

2

∑
n,k∈N1

(
1

n2 (k2 − α2n2)
+

1

n2 (k2 − n2/α2)
+

1

k2 (n2 − α2k2)
+

1

k2 (n2 − k2/α2)

)
=

1

2

∑
n,k∈N1

(
1

k2 − α2n2

(
1

n2
− α2

k2

)
+

1

n2 − α2k2

(
1

k2
− α2

n2

))
=

1

2

∑
n,k∈N1

(
1

k2 − α2n2

(
k2 − α2n2

k2n2

)
+

1

n2 − α2k2

(
n2 − α2k2

n2k2

))
=

1

2
· 2

∑
n,k∈N1

1

n2k2
= ζ2(2) =

5

2
ζ(4)

1See [5] (www.mathworld.wolfram.com/IrrationalityMeasure.html)
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∴ Tnk(α) =
5

2
ζ(4). (2.4)

Therefore, leading (2.4) to (2.3), follows that:

=
1

πα

((
1 + α4

)
ζ(4)− 2α2 · 5

2
ζ(4)

)
=
ζ(4)

πα

(
α4 − 5α2 + 1

)
=

π3

90α

(
α4 − 5α2 + 1

)
.

where we used ζ(4) =
π4

90
([3]). Thus, the proof forTheorem 1 is complete. �

3 First main result

From now on, we will address our goal for this article. First of all, let's
assign a more compact notation to Theorem 1, as follows:

F(α) + α2F
(
1

α

)
=

π3

90α

(
α4 − 5α2 + 1

)
, (3.0)

here F(α) =
∞∑
n=1

cot(απn)

n3
. Now, we want to prove:

Theorem 2 (Main Result 1) The following equality holds:

∞∑
n=1

1

n3 sin
(√

2πn
) = − 13π3

360
√
2
. (3.1)

Proof: Notice that:

1

sin(z)
+

cos(z)

sin(z)
=

1 + cos(z)

sin(z)
=

2 cos2
(
z
2

)
2 sin

(
z
2

)
cos
(
z
2

) = cot
(z
2

)
∴ csc(z) + cot(z) = cot

(z
2

)
. (3.2)

Applying (3.2) with z =
√
2πn in LHS of (3.1), we have:

∞∑
n=1

1

n3 sin
(√

2πn
) =

∞∑
n=1

1

n3

(
cot

(√
2πn

2

)
− cot

(√
2πn

))

=
∞∑
n=1

cot
(
πn√
2

)
n3

−
∞∑
n=1

cot
(√

2πn
)

n3

= F
(

1√
2

)
−F

(√
2
)
. (3.3)
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From here we must �nd a linear system that allows us to discover the
two terms on the right side of (3.3). For this, it is interesting to note that
F(α) = F(α + p), such that p is an integer number. Therefore, consider at
(3.0) α =

√
2 + 1, therefore Theorem 1 tells us that:

F
(√

2 + 1
)
+
(
3 + 2

√
2
)
F
(

1√
2 + 1

)
=
π3

90

(
1 +
√
2
)
,

conjugating the argument of the second function on the left side of the equal-
ity above, we have brie�y the �rst equation of the linear system:

F
(√

2 + 1
)
+
(
3 + 2

√
2
)
F
(√

2− 1
)
=
π3

90

(
1 +
√
2
)
. (3.4)

For the second equation, just make α =
√
2 in (3.0) and then the second

equation follows immediately:

F
(√

2
)
+ 2F

(
1√
2

)
= − π3

18
√
2
. (3.5)

With (3.4) and (3.5) we compose the linear system:
F
(√

2 + 1
)
+
(
3 + 2

√
2
)
F
(√

2− 1
)

=
π3

90

(
1 +
√
2
)

F
(√

2
)
+ 2F

(
1√
2

)
= − π3

18
√
2

,

using the periodicity of F , the system is reduced to:
F
(√

2
)
+
(
3 + 2

√
2
)
F
(√

2
)

=
π3

90

(
1 +
√
2
)

F
(√

2
)
+ 2F

(
1√
2

)
= − π3

18
√
2

,

whose solution is:

∴ F
(√

2
)
=

π3

180
√
2
, F

(
1√
2

)
= − 11π3

360
√
2
.

Applying the system solution in (3.3):

∞∑
n=1

1

n3 sin
(√

2πn
) = − 11π3

360
√
2
− π3

180
√
2
= − π

3

√
2

(
11

360
+

1

180

)
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∴
∞∑
n=1

1

n3 sin
(√

2πn
) = − 13π3

360
√
2
≈ −0.791727....

(Q.E.D.)

Therefore, the proof of our �rst main result is complete.

4 Second main result

We are now evaluating our second main result. The strategy here follows
similar to the previous section. Therefore, we want to prove that:

Theorem 3 (Main result 2) The following equaity holds:

∞∑
n=1

1

n3 sin (ϕπn)
= − 17π3

1440
√
5
− π3

32
, (4.0)

where ϕ =
1 +
√
5

2
is the Golden Ratio.

Proof: Using equality (3.2) again, we have brie�y that the left side of (4.0)
takes the form:

∞∑
n=1

1

n3 sin (ϕπn)
= F

(ϕ
2

)
−F (ϕ) . (4.1)

Our next step is to �nd the equivalent linear system, such as provide us

the result of F
(ϕ
2

)
and F (ϕ). Therefore, note that when we take α = 2ϕ−1

in (3.0) this gives us the �rst system:

F (2ϕ− 2) +

(
4

ϕ2

)
F
(ϕ
2

)
=
π3

90

(
8

ϕ3
− 10

ϕ
+
ϕ

2

)
. (4.2)

where we used the manipulation
1

ϕ
= ϕ− 1.

To �nd the second equation, just take α = 2ϕ+1 then apply Theorem 1

again, this produces:

F (2ϕ+ 1) + ϕ6F (2ϕ− 3) =
π3

90

(
ϕ9 − 5ϕ3 +

1

ϕ3

)
, (4.3)

where we used the manipulation ϕ2 − ϕ− 1 = 0, 2ϕ+ 1 = ϕ3 and
1

2ϕ+ 1
=

2ϕ− 3 (see [2]).
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(4.2) and (4.3) are necessary to �nd the term F
(ϕ
2

)
, however we need

to insert a new equation to obtain the term F (ϕ). Therefore, taking α = ϕ
and by using the ϕ manipulations, from Theorem 1 it follows that:

F (ϕ) + ϕ2F (ϕ− 1) =
π3

90

(
ϕ3 − 5ϕ+

1

ϕ

)
. (4.4)

(4.2), (4.3) and (4.4) make up the following system:

F (2ϕ− 2) +

(
4

ϕ2

)
F
(ϕ
2

)
=
π3

90

(
8

ϕ3
− 10

ϕ
+
ϕ

2

)

F (2ϕ+ 1) + ϕ6F (2ϕ− 3) =
π3

90

(
ϕ9 − 5ϕ3 +

1

ϕ3

)

F (ϕ) + ϕ2F (ϕ− 1) =
π3

90

(
ϕ3 − 5ϕ+

1

ϕ

)
Again, with the use of F periodicity, we recon�gure the above system in:

F (2ϕ) +

(
4

ϕ2

)
F
(ϕ
2

)
=
π3

90

(
8

ϕ3
− 10

ϕ
+
ϕ

2

)

F (2ϕ) + ϕ6F (2ϕ) =
π3

90

(
ϕ9 − 5ϕ3 +

1

ϕ3

)

F (ϕ) + ϕ2F (ϕ) =
π3

90

(
ϕ3 − 5ϕ+

1

ϕ

)
.

Note that the second and third equations of the linear equation system, re-
spectively, contain only one variable to be obtained. Therefore, by obtaining
the term F (2ϕ) and plugging into the �rst equation we obtain the solutions:

∴ F (ϕ) =
π3

450

(
−ϕ4 + 3ϕ3 + 5ϕ2 − 15ϕ− 1 +

3

ϕ

)
(4.5)

F (2ϕ) =
π3

900

(
−4ϕ10 + 7ϕ9 + 20ϕ4 − 35ϕ3 − 4

ϕ2
+

7

ϕ3

)
F
(ϕ
2

)
=

π3

3600

(
4ϕ12 − 7ϕ11 − 20ϕ6 + 35ϕ5 + 5ϕ3 − 100ϕ+ 4 +

73

ϕ

)
.

(4.6)
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Doing (4.6) - (4.5) and taking this to (4.1), we get:

∞∑
n=1

1

n3 sin (ϕπn)
=

π3

3600

(
4ϕ12 − 7ϕ11 − 20ϕ6 + 35ϕ5 + 8ϕ4 − 19ϕ3 + 20ϕ+ 12 +

49

ϕ

)
,

(4.7)
where, with the aid of the Fibonacci Recurrence Formula ϕn+1 = ϕn + ϕn−1

and ϕ =
1 +
√
5

2
, the term:(

4ϕ12 − 7ϕ11 − 20ϕ6 + 35ϕ5 ++8ϕ4 − 19ϕ3 + 20ϕ+ 12 +
49

ϕ

)
= − 85

2
√
5
−225

2
.

Connecting this to (4.7), we �nally get the desired result:

∴
∞∑
n=1

1

n3 sin (ϕπn)
= − 17π3

1440
√
5
− π3

32
≈ −1.132647....

(Q.E.D.)

5 A possible connection with alternate double

series

To �nd such a connection, we will use the third boxed result on pg. 7 of
[4]:

∴
∞∑
n=0

(−1)n

n2 − x2
= −πcsc(πx)

2x
− 1

2x2
. (5.0)

So, putting in evidence csc(πx), changing n → k and then making k start
from 1, we get brie�y, that:

1

sin (πx)
=

2x

π

∞∑
k=1

(−1)k−1

k2 − x2
+

1

πx
. (5.1)

Now, doing x =
√
2n and taking this to the sum in (3.1), we have:

∞∑
n=1

1

n3 sin
(√

2πn
) =

2
√
2

π

∞∑
n=1

∞∑
k=1

(−1)k−1

n2 (k2 − 2n2)
+

π3

90
√
2
,

by equating with the right side of (3.1), we won the following:

2
√
2

π

∞∑
n=1

∞∑
k=1

(−1)k−1

n2 (k2 − 2n2)
+

π3

90
√
2
= − 13π3

360
√
2
, (5.2)
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solving this, we get the �rst result:

∴
∞∑
n=1

∞∑
k=1

(−1)k−1

n2 (k2 − 2n2)
= −17π4

1440
. (5.3)

On the other hand, by applying partial fractions in the double series in (5.3),
it produces:

∞∑
n=1

∞∑
k=1

(−1)k−1

n2 (k2 − 2n2)
=

5π4

360
+ 2

∞∑
k=1

∞∑
n=1

(−1)k−1

k2 (k2 − 2n2)
,

applying (5.3) and solving for the double series, we come to the second result:

∴
∞∑
k=1

∞∑
n=1

(−1)k−1

k2 (k2 − 2n2)
= −37π4

2880
. (5.4)

Therefore, we have the sums (5.3) and (5.4) via main result 1:

∴
∞∑
n=1

∞∑
k=1

(−1)k−1

n2 (k2 − 2n2)
= −17π4

1440
,

∞∑
k=1

∞∑
n=1

(−1)k−1

k2 (k2 − 2n2)
= −37π4

2880
.

It is convenient for us to also �nd the alternating double series associated
with the main result 2. Therefore, we continue making the same steps:

⇒
∞∑
n=1

1

n3 sin (ϕπn)
=

(
1 +
√
5
)

π

∞∑
n=1

∞∑
k=1

(−1)k−1

n2 (k2 − ϕn2 − n2)
+

π3

36
√
5
− π3

180
,

where we again use the properties of the Golden Ratio found in [2]. Thus,
equating with (4.0), we get:

∴
∞∑
n=1

∞∑
k=1

(−1)k−1

n2 (k2 − ϕn2 − n2)
= − π4

288
− π4

45
√
5
. (5.5)

On the other hand, applying partial fractions in (5.5) we have:

∞∑
n=1

∞∑
k=1

(−1)k−1

n2 (k2 − ϕn2 − n2)
= −(ϕ+ 1)

∞∑
n=1

∞∑
k=1

(−1)k−1

n2k2
+ (ϕ+ 1)

∞∑
n=1

∞∑
k=1

(−1)k−1

k2(k2 − ϕn2 − n2)

− π4

288
− π4

45
√
5
= −(ϕ+ 1)

π4

72
+ (ϕ+ 1)

∞∑
n=1

∞∑
k=1

(−1)k−1

k2(k2 − ϕn2 − n2)
.

(5.6)
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Solving (5.6) for the double series and, again, using the properties of
Golden Ratio, we won:

∴
∞∑
n=1

∞∑
k=1

(−1)k−1

k2(k2 − ϕn2 − n2)
=

19π4

960
− 71π4

2880
√
5
. (5.7)

Therefore, we obtain the following results via main result 2:

∴
∞∑
n=1

∞∑
k=1

(−1)k−1

n2 (k2 − ϕn2 − n2)
= − π4

288
− π4

45
√
5
,

∞∑
n=1

∞∑
k=1

(−1)k−1

k2(k2 − ϕn2 − n2)
=

19π4

960
− 71π4

2880
√
5
.

6 Discussion of results

With this approach, in the �rst instance we can assume the hypothesis

(subject to veri�cation) that, when α is of the form p+
q√
r
suh that

√
r ∈ I,

where I denote the set of irrational numbers and p, q ∈ Q, then the result for

F
(α
2

)
−F (α) can be of the form

(
k · p+ a · q√

r

)
π3, for a, k ∈ Q. That is ,

the existence of a term that does not depend on
√
r.

Another curiosity concerns the continuous fractions. Note that in the
presentation of the calculations to prove the two main results, the use of linear
systems to obtain the F(α) functions was characterized, where in both we
solve linear systems of 2× 2. This evidence can be justi�ed by observing the
decomposition into continuous fractions of the

√
2 and ϕ values, as follows:

ϕ = 1 +
1

1 +
1

1 +
1

1 +
. . .

= [1; 1],
√
2 = 1 +

1

2 +
1

2 +
1

2 +
. . .

= [1; 2] (5.0)

The relationship to be observed between the number of equations and the
decomposition coe�cients of α, is between the periodicity of the coe�cients
when applied to the functional equation of Theorem 1, this allowed us to
compose a 2 × 2 linear system already that the sum of the amount of non-
periodic coe�cients with the periodicals is equal to 2. In short, this applies to
the most generalized case in which, from α =

[
a0; a1, a2, ..., ai, b1, b2, b3, ..., bj

]
9



, we can write the generalized system:

1 α2
0 0 · · · 0

1 α2
1 0 · · · 0

1 α2
2 0 · · · 0

...
...

...
. . .

...
1 α2

i+j 0 · · · 0
1 α2

i+j+1 0 · · · 0


·



F (α1)
F (α0)
F (α2)
F (α3)

...
F (αi+j+1)


=



r (α1)
r (α2)
r (α3)
r (α4)

...
r (αi+j+1)


, (5.1)

such that αi+j+1 = αi+1, where α0 = α, α1 = [a1; a2, ...], αi+j+1 = [ai+j+1,

ai+j+2, ...] and r(αp) =
π3

90

(
α4
p − 5α2

p + 1
)
. This implies a repetition of val-

ues αi, such that from a previous equation, it is possible to determine the
subsequent equation thus making the system of equations with (i+ j + 1)×
(i+ j + 1) possible and determined.

7 Conclusion

We can conclude that it is possible to determine, through the method

discussed in this paper, a family of in�nite series of
∞∑
n=1

1

n3 sin(απn)
nature

varying α and calculating the equivalent systems with a preview of the behav-
ior of the decomposition coe�cients in continuous fractions of the observed
parameter. Surprising results can jump in front of us with the right choice
of the values of α. Grateful for the attention and dedication to this reading.
we receive good reviews with good feelings.

To my wife and my son. God be praised!
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