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Abstract

In this paper we consider the infinite series pertaining to the binomial coeffi-
cients

(
4n
2n

)
where we make study on the several classes of generating functions

containing the coefficients,
(

4n
2n

)
, it’s squared

(
4n
2n

)2
and it’s reciprocal

(
4n
2n

)−1

by utilizing the generating function and integral representation of central
binomial coefficients. Also we make discussions on generating functions of
variants form of main results and we make an attempt to give closed forms
for the respective hypergeometric forms.

Key words: central binomial coefficients, generating function, dilogarithm
function, hypergeometric function.

1 Introduction

Central binomial coefficients are the particular type of positive integers of
binomial coefficients that appear exactly in the middle of the even numbered
rows of the Pascal triangle which we define them by(

2n

n

)
=

(2n)!

(n!)2
, ∀n ≥ 0
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Interestingly, with the binomial series expansion of the function (1− 4x)−1/2

for |x| < 1/4, the coefficients show up their presence providing us with gen-
erating function as

1√
1− 4x

=
∞∑
n=0

(
2n

n

)
xn = 1 + 2x+ 6x2 + 20x3 + 70x4 + · · ·

The proof of the last result can easily be obtained in classical combinatorial
books and a classical proof is discussed in [1] (see page 2, Lemma 1.1).

Since long time the study of central binomial coefficients is being made
resulting intriguing identities and theorems in the field of number theory,
combinatoric and calculus in the study of infinite series and integrals. Many
intriguing results/power series were studied and discussed by Lehmer [2].

This paper is meant to be studying the coefficients of central binomial coef-
ficients that appear at the even position namely, 1, 6, 70, 924, 12870, · · ·, ie;
the coefficient defined by(

4n

2n

)
=

(4n)!

((2n)!)2
, ∀n ≥ 0

As we have the generating function of central binomial coefficients and with
the aid of it, it is easy to deduce the generating function for the evened
central binomial coefficients,

(
4n
2n

)
. In other words

∞∑
n=0

(
4n

2n

)
xn =

1√
2

√
1 +
√

1− 16x

1− 16x
, |x| < 1/16 (1)

A proof is discussed in the article [1] (see page 4, Lemma 2.1).

2 Generating function

Now we consider five sequences pertaining to even central binomial coeffi-
cients with it’s reciprocal and squared version for which we shall be deriving
generating function and we define them as

An =

(
4n

2n

)
, Bn =

1

n

(
4n

2n

)
, Cn =

1

n2

(
4n

2n

)
, Dn =

(
4n

2n

)2

, En =

(
4n

2n

)−1
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Since we already know that for |x| < 1/16,
∞∑
n=0

Anxn =
1√
2

√
1 +
√

1− 16x

1− 16x
,

on dividing by x and integrating from 0 to z for |z| ≤ 1/16 we get

∞∑
n=1

Bnzn = 4 ln 2− ln
(
1 +
√

1− 16z
)
− 2 ln

(√
2 +

√
1 +
√

1− 16z

)
(2)

which is the strategy used in my article [1] (page 6) however, we shall find
a different approach for (2) also the central notion of the paper for gener-
ating functions is heavily based on differention and integration method of
the resulted power series. As the infinite sums are expressed in terms of
hypergeometric function for which on actual solving became cumbersome to
get the closed form in terms of elementary functions. So the auxiliary fo-
cus of the paper is too give possible elementry results to their respective
hypergeometrics expression.

3 Theorems and Proofs

Theorem 3.1.(First main result) If Bn =

{
1

n

(
4n

2n

)}
n≥1

, then for |z| ≤ 1

16
the following equality holds.

∞∑
n=1

Bnzn = 4 ln 2− ln
(
1 +
√

1− 16z
)
− 2 ln

(√
2 +

√
1 +
√

1− 16z

)
(3)

Before we construct the proof of the theorem we need the Lemma required
for the proof.
Lemma 3.1.1. For all a, b > 0, the following equality holds∫ π

2

0

ln
(
a2 cos2 x+ b2 sin2 x

)
dx = π ln

(
a+ b

2

)
Proof: The proof of lemma is mentioned in [1](see page no 3) which is based
on the logarithmic series manipulation.

Proof of theorem 3.1. We make the use of Wallis integral [4], namely

W2n =

∫ π
2

0

sin2n xdx =
π

2

(
2n

n

)
1

4n
W4n =

∫ π
2

0

sin4n xdx =
π

2

(
4n

2n

)
1

16n
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rearranging the latter identity gives us

(
4n

2n

)
=

2

π

∫ π
2

0

16n sin4n xdx and plug-

ging the value of
(

4n
2n

)
in (3) we get

∞∑
n=1

Bnzn =
2

π

∫ π
2

0

(
∞∑
n=1

(16z sin4 x)n

n

)
dx = − 2

π

∫ π
2

0

log
(
1− 16z sin4 x

)
dx

by factoring we observe that 1− 16z sin4 x = (1 + 4
√
z sin2 x)(1− 4

√
z sin2 x)

∞∑
n=1

Bnzn = − 2

π

∫ π
2

0

log(1 + 4
√
z sin2 x)dx− 2

π

∫ π
2

0

log(1− 4
√
z sin2 x)dx

we can write 1 ± 4
√
z sin2 x = cos2 x + sin2 x

√(
1± 4

√
z
)2

and by Lemma
3.1.1 it follows that

∞∑
n=1

Bnzn = 4 ln 2− 2

(
ln

(
1 +

√
1 + 4

√
z

)
+ ln

(
1 +

√
1− 4

√
z

))
︸ ︷︷ ︸

Q

(4)

We further simply Q by simple mean of algebraic work and by rationalizing
the expression gives

Q = 2 log

(
1 +
√

1− 16x+
2(1 +

√
1− 16z)√

1− 4
√
z +

√
1 + 4

√
z

)

by logarithmic properties it follows that

Q = 2 log
(
1 +
√

1− 16z
)

+ 2 log

1 +

 4(√
1− 4

√
z +

√
1 + 4

√
z
)2


1/2


= log(1 +
√

1− 16z) + 2 log

(
(
√

2)2 +
√

2

√
1 +
√

1− 16z

)
− ln 2 =

ln
(
1 +
√

1− 16z
)

+2 ln

(√
2 +

√
1 +
√

1− 16z

)
and hence combining 4 ln 2−

Q gives us the desired equality (3) and hence completes the proof.
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Corollaries:
If y = sgn(z) is the signum function for real value of |z| ≤ 1/16, then

∞∑
n=1

(y)n Bnzn = 4 ln 2−ln
(

1 +
√

1− y16z
)
−2 ln

(√
2 +

√
1 +

√
1− y16z

)

Proof : The proof is trivial as it is nothing but just the replacing of x by −x
and vice-versa in (3) and at x = 0 we have 0 = 3 ln(2) − 2 ln

√
8 = 0 which

is true.

Similarly,using (1) for |x| < 1 it is straightforward to deduce the following
power series equalities

∞∑
n=0

yn

16n

(
4n

2n

)
xn

n+ 1
=

8− 23/2
(
1 +
√

1− xy
)3/2

3xy
(5)

∞∑
n=0

yn

16n

(
4n

2n

)
xn

2n+ 1
=

√
2
(
1 +
√

1− xy
)

√
yx

=

√
2√

1 +
√

1− xy
(6)

Proof: To prove (5) and (6), first we integrate (1) giving us (5) and fur-
ther replacing x by x2 and followed by integration of (1) yields the required
equality (6).

Also subtracting twice of (6) from (5) give rise to generating function

∞∑
n=0

yn
(

4n
2n

)
xn

16n(2n+ 1)(n+ 1)
=

6
√

2yx−
(

8− 23/2
(
1 +
√

1− yx
)3/2
)√

1 +
√

1− yx

3yx
√

1 +
√

1− yx

For (3) we now evaluate at some values of z, when z = ± 1
16
√

5
we can observe

the appearance of golden ratio(φ) and it’s reciprocal in the final closed form
with the alternation of sign ie;

∞∑
n=1

1

n

(
4n

2n

)(
±1

16
√

5

)n
= 4 ln 2−ln

(
1 +

√
2φ∓1

√
5

)
−2 ln

√2 +

√√√√1 +

√
2φ∓1

√
5
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Also for z = − 1
64

in (3) we get and identity in the form of golden ratio

∞∑
n=1

1

n

(
4n

2n

)
1

64n
= 6 ln 2− ln (1 + 2φ)− 2 ln

(
2 +

√
1 + 2φ

)
Since the sum

∞∑
n=1

Bnzn = 64F3

(
1, 1,

5

4
,
7

4
;
3

2
, 2, 2; 16z

)
z for which its corre-

sponding simpler form is equal to (3) which in other words simplifies complex
look it into simple result.

In the next section, we investigating the power series for 1
n2

(
4n
2n

)
. The work

for desired power series is completely based on (3). Here Li2(x) denotes the
dilogarithm function which we will be encountering in course of the work.

Theorem 3.2.(Second main result) If Cn =

{
1

n2

(
4n

2n

)}
n≥1

and for |v| ≤ 1
16

δ(v) =
√

1 +
√

1− 16z, then the following equality holds for
∞∑
n=1

Cnvn

=M+2Li2

(
1

2
− δ(v)

2
√

2

)
+Li2

(
1− δ2(v)

2

)
+4Li2

(
−δ(v)√

2

)
−ln2

(√
2 + δ(v)

)
+

4 ln 2 ln |v|− ln2 (δ2(v))

2
−3 ln 2 ln

(
|
√

2− δ(v)|
)
−ln 2 ln

(
|2− δ2(v)|

)
−ln 2 ln δ2(v)

where M is constant which is 2ζ(2) +
45

4
ln2(2).

Proof of theorem 3.2: The proof can be proceed in the same way like that of

theorem 3.1 however, we encountered integral
2

π

∫ π
2

0

Li2(16v sin4 x)dx which

become more complicated to solve and to develop the proof of it in an easy
way we make use of the result (3).

Now dividing the power series obtained in (3) by z and on integrating from
0 to v gives us I(v)

∞∑
n=1

Cnvn =

∫ v

0

4 ln 2− ln
(
1 +
√

1− 16z
)
− 2 ln

(√
2 +

√
1 +
√

1− 16z
)

z
dz
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It is easy to see that the integral has primitive in terms of dilogarithm and
logarithmic functions and by applying the linearity of integral we see that
primitive of it blows up at it’s lower limit so we treat I(v) an an improper
integral ie;

lim
ε→0+

∫ v

ε

f(z)dz = F (v)− lim
ε→0+

F (ε) = F (v)−M

where f(z) is the integrand and F (v) is an antiderivative. Now by linearity
we see that

I(v) = 4 ln 2 ln z−
∫

ln(1 +
√

1− 16z)

z
dz︸ ︷︷ ︸

J1

−2

∫
ln(
√

2 +
√

1 +
√

1− 16z)

z
dz︸ ︷︷ ︸

J2

We evaluate J1 by making substitution u =
√

1− 16z and by partial fractions
decomposition we have then

J1 = 2

∫
u ln(1 + u)

u2 − 1
du

PFD
=

ln2(1 + u)

2
+

∫
ln(1 + u)

u− 1
du

Now we set u− 1 = w giving us∫
ln(2 + w)

w
dw =

∫
ln 2dw

w
+

∫
ln
(
1 + w

2

)
w

dw = ln 2 lnw − Li2

(
−w

2

)
and hence combining the last two obtained primitive and making undo of
each substitution we get J1 equal to

Li2

(
1−
√

1− 16z

2

)
−

ln2
(
1 +
√

1− 16z
)

2
− ln(2) ln

(
1−
√

1− 16z
)

+ C1

In similar fashion, to evaluate J2 we substitute

√
1 +
√

1− 16z = s and by
making partial fraction of obtained result after substitution it yields J2∫

4(s2 − 1) ln
(√

2 + s
)

s(s2 − 2)
ds

PFD
=

∫
ln
(
s+
√

2
)

s2 − 2
ds+ 2

∫
ln
(
s+
√

2
)

s
ds

as last three integrals are trivial with primitives

∫
ln
(√

2 + s
)

s+
√

2
ds =

ln2
(
s+
√

2
)

2
and with further substitution of −s +

√
2 = t and undoing the substitution
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we have ∫
ln
(
2
√

2− t
)

t
dt = −3

2
ln 2 ln

(√
2− s

)
+ Li2

(
2−
√

2s

4

)

and 2

∫
ln
(
s+
√

2
)

s
ds = ln 2 ln(s) − 2Li2

(
− s√

2

)
. Undoing the each sub-

stitution made gives us J2 equal to

− ln 2 ln
(
δ2(v)

)
+2Li2

(
2−
√

2
√

1 +
√

1− 16z

4

)
+4Li2

(
−
√

1 +
√

1− 16z√
2

)

− ln2

(√
2 +

√
1 +
√

1− 16z

)
− 3 ln 2 ln

(√
2−

√
1 +
√

1− 16z

)
+ C2

Thus on combining the results 4 ln 2 ln(z) − J1 − J2 and by fundamental
theorem of calculus

I(v) = F (v)− lim
ε→0+

(
4Li2 (−1)− ln2

(
2
√

2
)
− 3 ln2(2)

2
− F (ε)

)

where F (ε) = 4 ln 2 ln ε−3 ln 2 ln

(√
2−

√
1 +
√

1− 16ε

)
−ln 2 ln

(
1−
√

1− 16ε
)

Now it enough to show that

lim
ε→0+

F (ε) = − lim
ε→0+

ln


(√

2−
√

1 +
√

1− 16ε
)3 (

1−
√

1 + 16ε
)

ε4

 ln 2

and with rationalization of the numerator and simplification gives us

− lim
ε→0+

ln

 164(
1 +

√
1 +
√

16ε
)4 (√

2 +
√

1 +
√

1 + 16ε
)
 ln 2 = −15

2
ln2 2

So

I(v) = F (v) + 2ζ(2) +
9

4
ln2 2 +

1

2
ln2 2 +

15

2
ln2 2 = F (v) + 2ζ(2) +

45

4
ln2 2︸ ︷︷ ︸

M
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where F (v) is

Li2

(
1

2
−
√

1− 16v

2

)
− 1

2
ln2
(
1 +
√

1− 16v
)
− ln 2 ln

(∣∣∣∣∣1−√1− 16v

∣∣∣∣∣
)

+4 ln 2 ln |v|+ 2Li2

(
1

2
−
√

1 +
√

1− 16v

2
√

2

)
− ln2

(√
2 +

√
1 +
√

1− 16v

)

+4Li2

(
−
√

1 +
√

1− 16v√
2

)
− 3 ln 2 ln

(∣∣∣∣∣√2−
√

1 +
√

1− 16v

∣∣∣∣∣
)

and for convenience we write δ(v) =
√

1 +
√

1− 16v for |v| ≤ 1/16 and com-
bining F (v) andM we get the desired result with the completion of proof of
the theorem.

For the alternating version we replace v by −v and the sum due to Wolfram

alpha generates hypergeometric expression 65F4

(
1, 1, 1,

5

4
,
7

4
;
3

2
, 2, 2, 2; 16v

)
v

which doesn’t seems easy to be reducing to the second main result. How-
ever,the strategy above works effectively to provide elementary answer to it.

Corollaries:
Due to the theorem 3.2, we get some crazy results which are quite straight-
forward to show that following identities holds.

∞∑
n=1

1

n2

(
4n

2n

)
1

16n
=

7π2

12
−25

4
ln2 2−4Li2

(
1√
2

)
+2Li2

(
2−
√

2

4

)
−ln2

(
1 +
√

2
)

+3 ln 2 ln
(

1 +
√

2
)
≈ 0.5081222068 · · · (7)

∞∑
n=1

(−1)n

n2

(
4n

2n

)
1

16n
= Li2

(
1−
√

2

2

)
+ 4Li2

−
√

1 +
√

2

2

+
π2

3
− 19

4
ln2 2

+2Li2

(√
2−

√
1 +
√

2

2
√

2

)
− ln2(1 +

√
2)

2
− ln2

(√
1 +
√

2 +
√

2

)

−3 ln 2 ln

(√
1 +
√

2−
√

2

)
≈ −0.32379214 · · · . (8)
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As the main result boils down to the integral (see highlighted aforementioned
result in red) and last two corollaries too provide the closed form for the
integral in particular for v = 1/16 and v = −1/16 ie;

∞∑
n=1

1

n2

(
4n

2n

)(
± 1

16

)n
=

2

π

∫ π
2

0

Li2
(
± sin4 x

)
dx =

{
(7) if + sign

(8) if − sign

And similarly, for any |v| ≤ 1/16 we can now easily deduce the closed from
for hypergeometric forms as well as for the aforementioned integral in red.

Since we discussed above on the generating function for 1
n2

(
4n
2n

)
and following

next section highlights it’s light on the power series for squared of coefficients(
4n
2n

)
or
(

4n
2n

)2
in which work is accompanied by Elliptical integrals of first and

second kind with their usual notations K(x) and E(x) respectively along
with some intriguing identities.

Theorem 3.3. ( third main result) If Dn =

{(
4n

2n

)2
}
n≥0

and for all

|w| < 1/256, then the following equality holds.

∞∑
n=0

Dn
(
w2

256

)n
=

√
2

π

∫ π
2

0

√
1 +

√
1− w sin4 y

1− w sin4 y
dy =

K (
√
w)−K (−

√
w)

π

where K(x) is complete elliptical integral of the first kind.

Proof of theorem 3.3: The proof is constructed in a such way where we
avoid the evaluation the integral appearing in the main result. To do so
we now exploit the power series of An and integral representation of

(
4n
2n

)
to

obtained the desired integral.

∞∑
n=0

(
4n

2n

)2 ( w

256

)n
=

2

π

∫ π
2

0

∞∑
n=0

1

16n

(
4n

2n

)
(w sin4 y)ndy

and due to result (1) it follows that

∞∑
n=0

(
4n

2n

)2 ( w

256

)n
=

√
2

π

∫ π
2

0

√
1 +

√
1− w sin4 y

1− w sin4 y
dy (9)
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And by the definition of complete elliptical integral of the first kind

K(w) =

∫ π
2

0

dθ√
1− w2 sin2 θ

=
π

2

∞∑
n=0

1

16n

(
2n

n

)2

w2n, (10)

Replacing w by
√
w and w → −

√
w. Adding series (9) at

√
w and −

√
w

gives
∞∑
n=0

(
4n

2n

)2(
w2

256

)n
=
K(
√
w) +K(−

√
w)

π
(11)

and from (9) and (11) we get the required result.
The last relation (11) corresponds to the hypergeometric expression∑

n≥0

Dn
(
w2

256

)n
= 4F3

(
1

4
,
1

4
,
3

4
,
3

4
;
1

2
,
1

2
, 1;w

)
=
K(
√
w) +K(−

√
w)

π

reducing the unpleasant and complex look of hypergeometric expression into
simpler form of Elliptical integrals. Equation (11) now for any |w| < 1/256
makes it possible to find the closed form in terms of elliptical form which are
not nicer in look. So, we give some beautiful identities by the utility of (11).

Some intriguing identities and integral representation

In this section, we mention some intriguing identities on series and their
corresponding integral representations involving the squared even central bi-

nomial coefficients
(

4n
2n

)2
by the explicit use of the theorem 3.3 and generating

functions (5) and (6) respectively.

∞∑
n=0

(
4n
2n

)2

256n(2n+ 1)
=

∫ 1

0

K(
√
w) +K(−

√
x)

π
dw =

2

π
− 2
√

2π

Γ2
(

1
4

)+
Γ2
(

1
4

)
2π
√

2π
(12)

Proof : As we have already established the relation in (11) and we merely do
integrate (11) within the interval of w ∈ [0, 1] yielding.

∞∑
n=0

(
4n
2n

)2

256n(2n+ 1)
=

∫ 1

0

K(
√
w) +K(−

√
w)

π
dw (13)

Equation (11) breaks down to the integral appearing in (14) and (15) respec-
tively and by definition of complete elliptical integrals of first kind∫ 1

0

dθ

π

∫ π
2

0

(
1√

1− w sin2 θ
+

1√
1 + w sin2 θ

)
dw =

2

π
+

1

π

∫ π
2

0

dθ

1 +
√

1 + sin2 θ
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For the fun purpose we handle (13) by the series manipulation, so by (10)
and integrating we obtained the following series

π

2

∞∑
n=0

(±1)n

16n(n+ 1)

(
2n

n

)2

=

∫ π
2

0

[
∞∑
n=0

(±1)n

4n

(
2n

n

)
sin2n θ

n+ 1

]
dθ (14)

Using the generating function of central binomial coefficients (14) is easily
deducible to∫ π

2

0

[
∞∑
n=0

(±1)n

4n

(
2n

n

)
sin2n θ

(n+ 1)

]
dθ =

∫ π
2

0

dθ

sin2 θ

∫ sin2 θ

0

dj√
1± j

(15)

Further with respective sign in (15),on integration it got reduced to two
different integrals and adding them;∫ π

2

0

2− 2 cos θ

sin2 θ
− 2

∫ π
2

0

1−
√

1 + sin2w

sin2w
dθ = 2 +

∫ π
2

0

2dθ

1 +
√

1 + sin2 θ
(16)

Due integration by part it is easy to see∫ π
2

0

2dθ

1 +
√

1 + sin2 θ
= −2

∫ π
2

0

1−
√

1 + sin2 θ

sin2 θ
θ

PFD
= 2

∫ π
2

0

1− sin2 θ√
1 + sin2 θ

dθ

=

∫ π
2

0

4dθ√
1 + sin2 θ

− 2

∫ π
2

0

√
1 + sin2 θdθ = 4K(−1)− 2E(−1)

with E(m) being complete Elliptical integral of second kind.
By standard definition of Elliptical integrals 4K(−1)− 2E(−1) equates to∫ 1

0

2− 2u2

√
1− u4

du =
1

2
B

(
1

4
,
1

2

)
− 1

2
B

(
3

4
,
1

2

)
=

Γ2
(

1
4

)
2
√

2π
− (2π)3/2

Γ2
(

1
4

)
Dividing (16) by π and combining with last gives the required result.
From the above conclusion we also draw the following integral equality∫ √2

1

udu

(1 + u)
√

(2− u2)(u2 − 1)
=
π

2

(
Γ4
(

1
4

)
− 8π2

(2π)3/2Γ2
(

1
4

)) =
Gπ

2
− 1

Gπ

for the integral in (16) and we express the last identity in terms of constant
called Gauss Constant,G.

12



Following the techniques used for (13) it is quite trivial to deduce the follow-
ing elegant identities.

∞∑
n=0

(
4n
2n

)2

256n(n+ 1)
=

20

9π
+

Γ2
(

1
4

)
9π
√

2π
+

4
√

2π

3Γ2
(

1
4

) (17)

∞∑
n=0

(
4n
2n

)2

256n(2n+ 1)(n+ 1)
=

16

9π
− 16

√
2π

3Γ2
(

1
4

) +
4
√

2Γ2
(

1
4

)
9π3/2

(18)

Relation (18) directly follows from (13) and (17). Interestingly, author noted
the dazzling identities which the author mentioned as

∞∑
n=0

(
4n
2n

)2

28n+3(2n+ 1)2
=

1

2

∞∑
n=0

(1 + (−1)n)

16n(n+ 1)2

(
2n

n

)2

=
1

π
−
√

2π

Γ2
(

1
4

) (19)

∞∑
n=0

1

16n+1

( (
4n
2n

)2

16n(n+ 1)2
−

(
2n
2n

)2

2−1(n+ 2)2

)
=

2
√

2π

3Γ2
(

1
4

) − 2

9
+

√
2Γ2

(
1
4

)
27π3/2

(20)

The validity and accuracy of the closed form has been confirmed by use of
computer algebra system which are expressed in hypergeometric form.
Now employing (5) and (6) we give the some bewitching integrals form for
(17) and (12) respectively.

∞∑
n=0

(
4n
2n

)2

256n(2n+ 1)
=

2

π

∫ π
2

0

∞∑
n=0

(
4n
2n

)
sin4n θ

16n(2n+ 1)
dθ

(6)
=

2
√

2

π

∫ π
2

0

dθ√
1 +

√
1− sin4 θ

∞∑
n=0

(
4n
2n

)2

256n(n+ 1)

(5)
=

4

3π

∫ π
2

0

√
2
(

1 + cos θ
√

1 + sin2 θ
)√

1 +
√

1− sin4 x− 4

cos2 θ(1 + sin2 θ)− 1
dθ

These integrals are in agreement with (12) and (17) indeed via computer
check.

Also for (18) we conclude an offbeat integral form

2

π

∫ π
2

0

6
√

2 sin4 θ −
(

8− 23/2
(

1 +
√

1− sin4 θ
)3/2

)√
1 + cos θ

√
1 + sin2 θ

3
√

1 + cos θ
√

1 + sin2 θ
dθ

13



which is merely the combination of last two integrals or generating function

of sum in (18) with an output of
16

9π
− 16

√
2π

3Γ2
(

1
4

) +
4
√

2πΓ2
(

1
4

)
9π3/2

.

With the generating function of binomial coefficients
(

4n
2n

)2
our last focus will

be on the generating function for the coefficient in reciprocal form which is
now we make shed light on it in next section.

Theorem 3.4. (fourth main result) If En =

(
4n

2n

)−1

and for all |u| < 2

the following equality holds

∞∑
n=0

Enu4n =
16

16− u4
+ 2u

(
arcsin

(
u
2

)
(4− u2)3/2

−
arcsinh

(
u
2

)
(4 + u2)3/2

)
Proof of theorem 3.4: The notion of proof for the theorem has been provided
in [3] but no closed form mentioned so we now be proving the result in general
with an alternative way in which the idea of beta integral form of binomial
coefficients is exploited. By beta integral form of binomial coefficients we
have(
n

k

)−1

= (n+ 1)

∫ 1

0

yn(1− y)ndy ⇒
(

4n

2n

)−1

= (4n+ 1)

∫ 1

0

y2n(1− x)2ndy

we multiply both sides by u4n(4n+ 1) and followed by summation

∞∑
n=0

(
4n
2n

)−1
u4n

4n+ 1
=
∞∑
n=0

∫ 1

0

u4ny2n(1− y)2ndy =

∫ 1

0

(
∞∑
n=0

u4ny2n(1− y)2n

)
dy

we observed the elementary geometric series for all |y| < 1 in the latter result
and hence by partial fraction decomposition (PFD) it follows∫ 1

0

dy

1− u4y2(1− y)2

PFD
=

1

2

∫ 1

0

(
dy

1 + u2y(1− y)
+

dy

1− u2y(1− y)

)
Last two integrals are standard arctangent intergrals which are trivial to
show ∫ 1

0

dy

1− u2y2(1− y2)
=

2 tan−1
(

u√
4−u2

)
u
√

4− u2
+

2 tanh−1
(

u√
4+u2

)
u
√
u2 + 4

14



and since tan−1 y = sin−1

(
y√

1−y2

)
and with x 7→ ix we get sinh−1 y =

tanh−1

(
y√

1+y2

)
where i =

√
−1 that implies

∞∑
n=0

(
4n

2n

)−1
u4n

4n+ 1
= 2

(
sin−1

(
u
2

)
u
√

4− u2
+

sinh−1
(
u
2

)
u
√

4 + u2

)
(21)

We multiple by u and on differentaiting with respect to u gives us

∞∑
n=0

(
4n

2n

)−1

u4n =
2

4− u2
+

2u sin−1
(
u
2

)
(4− u2)3/2

+
2

4 + u2
−

2u sinh−1
(
u
2

)
(4 + u2)3/2

adding the results we obtained the desired equality and hence completes the
proof.
The right hand expression of the theorem also suggests that the alternating
series possess bizzare appearance of final result due to the involvement of
complex numbers where the extraction of real part is complex to do however,
for non alternating case it is pretty straightforward. Also we can observe that
the hypergeometric form of the summation∑

n≥0

Enu4n = 3F2

(
1

2
, 1, 1;

1

4
,
3

4
;
u4

16

)
, |u| < 2

which is equal to the expression of right hand side of the theorem.

Corollaries: For u = 1 the following equality holds

∞∑
n=0

(
4n

2n

)−1

=
16

15
+

π

9
√

3
− 2 log φ

5
√

5

For the case of alternating series we perform x 7→
√
x and then x =

√
−1

which gives ugly result in terms of complex numbers however, the outstanding
simplified result is mentioned in [3] which agrees with the actual answer of
the sum. Also we can obtained a squared power series of inverse sine and
inverse hyperbolic sine.

4
∞∑
n=0

16nu4n+2(
4n
2n

)
(4n+ 1)(4n+ 2)

= arcsin2 u+ arcsinh2u (22)

15



The proof of the identity in (22) is easy to sketch as we merely need to
transpose u to the left hand side of (21), hence on integrating and simplifying
leads us the desired result.

Similarly, integrating (22) we further obtained the following taylor series
for

4
∞∑
n=0

16nu4n+3(
4n
2n

)
(4n+ 1)(4n+ 2)(4n+ 3)

= 2
(√

1− u2 arcsinu−
√

1 + u2arcsinhu
)

+ u
(
arcsin2 u+ arcsinh2u

)
(23)

u = 1 the sum attains the closed form

4
∑
n≥0

16n(
4n
2n

)
(4n+ 1)(4n+ 2)(4n+ 3)

=
π2

4
+ ln2

(
1 +
√

2
)
− 2
√

2 ln(1 +
√

2)

which also leads to have simple closed form the complex hypergeometric

2

34
F3

(
1

2
,
1

2
, 1, 1;

5

4
,
3

2
,
7

4
, 1

)
≈ 0.7513

which is numerically equals to the last result we obtained.

4 Theorems and proofs for some special cases

We present some exciting three identities deduced from (22) and (23).

Theorems: The following two identities hold.

4
∞∑
n=0

16n(
4n
2n

)
(4n+ 1)2(4n+ 2)

= 4G+ 2Li2

(
− 1√

2

)
− 2Li2

(
−1−

√
2
)
− π2

12

+
ln2(2)

4
− ln2

(
1 +
√

2
)
− 2 ln

(
1 +
√

2
)

ln
(

2 +
√

2
)

where G is Catalan constant.

4
∞∑
n=0

16n(
4n
2n

)
(4n+ 1)(4n+ 2)2

=
π2

4
ln 2− 3

8
ζ(3)− ln2

(
1 +
√

2
)

ln
(

2 + 2
√

2
)
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+
2

3
ln3
(

1 +
√

2
)

+ ln 2 ln2
(

1 +
√

2
)

+
Li2
(
3 + 2

√
2
)

ln
(
3 + 2

√
2
)

2

−
Li3
(
3 + 2

√
2
)

2
+
iπ ln2

(
3 + 2

√
2
)

4
+

ln2
(
3 + 2

√
2
)

ln
(
2 + 2

√
2
)

4

Proofs of theorems: For the first identity we make use of (22) in which we
divide both sides by u2 and then integrating from 0 to 1 gives us

4
∞∑
n=0

16n(
4n
2n

)
(4n+ 1)2(4n+ 2)

=

∫ 1

0

arcsin2 u+ arcsinh2u

u2
du

Applying the integration by parts in the latter expression we get

−π
2

4
− ln2

(
1 +
√

2
)

+ 2

∫ 1

0

arcsinu

u
√

1− u2
du+ 2

∫ 1

0

arcsinhu

u
√

1 + u2
du

Subbing u by sin y and sinhu in former and latter intergral respectively.

2

∫ π
2

0

y

sin y
dy + 2

∫ ln(1+
√

2)

0

y

sinh y
dy = 4G+ 4

∫ ln(1+
√

2)

0

yey

e2y − 1
dy

as the highlighted integral in red is well known result of Catalan constant,G
and by substituting y = log t in the last integral then by partial fraction
decomposition we obtained

4

∫ 1+
√

2

0

ln t

t2 − 1
dt

PFD
= 2

[
− Li2(1− t)− Li2(−t)− ln t ln(t− 1)

]1+
√

2

1

Definite integral
= 2Li2

(
− 1√

2

)
− 2Li2

(
−1−

√
2
)

+
π2

12
− ln(1 +

√
2) ln(2 +

√
2)

where we employ the dilogarithm identity Li2(−z) + Li2(−z−1) = −ζ(2) −
ln2(z)

2
for z = −

√
2. Combining the obtained results gives the desired closed

form.

For the second theorem we again explicitly make use of (22) where we divide
both sides by u and carrying the integration from 0 to 1 yields∫ 1

0

arcsin2 u+ arcsinh2u

u
du

IBP
= −2

∫ 1

0

arcsinu lnu√
1− u2

du−2

∫ 1

0

arcsinhu lnu√
1 + u2

du

17



further by making substitution of u as sin y and sinh y in the aforementioned
two integrals respectively gives rise to

−2

∫ π
2

0

y ln(sin y)dy − 2

∫ ln(1+
√

2)

0

y ln (sinh y) dy =
π2

4
ln 2− 7

8
ζ(3) + I

The red integral is straightforward by Fourier series of ln(sin y) and I being
the last integral which is our main focus of evaluation.

−2

∫ ln(1+
√

2)

0

(
y ln

(
e2y − 1

)
− y ln(2ey)

)
dy = −2

∫ ln(1+
√

2)

0

y ln
(
e2y − 1

)
dy+V

where V = 2
3
arcsinh3(1) + ln 2arcsinh2(1) and for blue integral we perform

IBP giving us

−arcsinh2(1) ln
(

2 + 2
√

2
)

+2

∫ ln(1+
√

2)

0

y2e2y

−1 + e2y
dy = P+

1

4

∫ 3+2
√

2

1

ln2 t

t− 1
dt

in fact the latter integral is easy to deduce by the magic of IBP.

1

4

[
ln(1− t) ln2 t+ 2Li2(t) ln t− 2Li3(t)

]3+2
√

2

1

=
ζ(3)

2
−

Li3
(
3 + 2

√
2
)

2

+
ln2
(
3 + 2

√
2
)

ln
(
−2− 2

√
2
)

4
−

Li2
(
3 + 2

√
2
)

ln
(
3 + 2

√
2
)

2

since ln(−2− 2
√

2) = iπ + ln(2 + 2
√

2) and collecting the values of P and V
for I we acquire the required closed form.

Theorem: The following equality holds.

4
∞∑
n=0

16n(
4n
2n

)
(4n+ 1)(4n+ 2)(4n+ 3)2

= 4G−arcsinh(1)
(

4
√

2 + log
(

3− 2
√

2
))

where G being Catalan constant and this result is acquired from (23). The
integrals to be evaluated are trivial and in the final closed answer we come
across a dilogarithm expression Li2(1 −

√
2) − Li2(−1 +

√
2) which is equal

to −π2

8
+ 1

2
ln2(
√

2− 1), evaluated by author himself in MSE (here).
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The first identity on performaning partial fraction can be written into two
series whose equivalent hypergeometric expression turns out to be

44F3

(
1

4
,
1

2
, 1, 1;

3

4
,
5

4
,
5

4
; 1

)
− 24F3

(
1

2
,
1

2
, 1, 1;

3

4
,
5

4
,
3

2
; 1

)
≈ 2.11022

which attains the closed form derived for the aforementioned first identity.
Similarly, second and third identity shows the heavy weight of hypergeometric
expressions whose closed we have deduced easily by the mean of generating
functions.

5F4

(
1

2
,
1

2
,
1

2
, 1, 1;

3

4
,
5

4
,
3

2
,
3

2
; 1

)
≈ 1.09551

2

3
4F3

(
1

2
,
1

2
, 1, 1;

5

4
,
3

2
,
7

4
; 1

)
− 4

9
4F3

(
1

2
,
3

4
, 1, 1;

5

4
,
7

4
,
7

4
; 1

)
≈ 0.2317

For the justification of the results we make the use of CAS and the outputs
are found be correct.

5 Conclusion

From the above study we give possible closed forms to the hypergeometric
expression of heavy weight by introducing the powerful notion of generating
function producing their correspondening interesting and useful results.
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