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Abstract. In this paper we present some new inequalities using famous Popovi-

ciu’s inequality.

Theorem 1.
If a, b, c are positive real numbers, then a+ b+ c+ 3 · 3
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Proof. It is well-known Popoviciu’s inequality:
If f : I → R, I ⊂ R is an interval and f is a continue and convex function on I,
then:
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,∀x, y, z ∈ I

For I = R and f(x) = ex, then f ′(x) = f ′′(x) = ex > 0,∀x ∈ R, so we can apply
Popoviciu’s inequality.
Then:

ex + ey + ez

3
+ e

x+y+z
3 ≥ 2

3

(
e

x+y
2 + e

y+z
2 + e

z+x
2

)
where we put x = ln a, y = ln b, z = ln c, and we obtain the desired inequality. �

Theorem 2.
If a, b, c ∈ R∗+, then:

a2 + b2 + c2 + 3 · 3
√
a2b2c2 ≥ 2(ab+ bc+ ca)

Proof. If I = R and f(x) = e2x, then by Popoviciu’s inequality f ′(x) = 2e2x,
f ′′(x) = 4e2x > 0,∀x ∈ R+, we have:
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where we take x = ln a, y = ln b, z = ln c �

Theorem 3.
If f : R∗+ → R∗+ is a convex function on R∗+, then:

3(f2(x)+f2(y)+f2(z))−9f2
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)
≥ (f(x)−f(y))2+(f(y)−f(z))2+(f(z)−f(x))2

Proof. We have f ′′(x) > 0,∀x ∈ R∗+. We consider the function g : R∗+ → R∗+,
g = f2. So, g′(x) = 2f(x)f ′(x),∀x ∈ R∗+ and
g′′(x) = 2(f ′(x))2 + 2f(x)f ′′(x) > 0,∀x ∈ R∗+.
So, g is convex on R∗+. By Jensen’s inequality we have:

(1) f(x) + f(y) + f(z) ≥ 3f
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and

(2) g(x)+g(y)+g(z) ≥ 3g
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By (1) we deduce that:
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By (2) and (3) we deduce that:
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[(f(x)− f(y))2 + (f(y)− f(z))2 + (f(z)− f(x))2]

and we are done. �
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[10] Daniel Sitaru, Math Phenomenon Reloaded, Studis Publishing House, Iaşi, 2020.
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