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Abstract. In this paper it is developed a method for calculus of sequences’

limits using Riemann’s sums.

Main result:
If α, β ∈ R;β 6= 0;α < β; f : [α, α+ β]→ R, f continuous then:
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Corollary 1:
If α, β ∈ R;β 6= 0;α < β then:
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Proof. We take in (1) : f(x) = x. �

Corollary 2:
If α, β ∈ R;β 6= 0;α < β then:
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Proof. We take in (1) : f(x) = cosx. �

Corollary 3:
If 0 < α < β then:
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Proof. We take in (1) : f(x) = 1
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Corollary 4:
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Proof. We take in (1) : f(x) = x, α = 0, β = 1. �
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Proof. We take in (1) : f(x) = x2;α = 0;β = 1. �

Corrolary 6:
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We take in (2) : α = 0;β = 1.
Proposed problems:
1. If 0 < α < β then find:
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2. If α, β ∈ R;β 6= 0;α < β then find:
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3. If 0 < α < β then find:
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