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201. If ࡮,࡭ ∈ ࡮࡭))࢚ࢋࢊ,૜(ℝ)ࡹ − ૛(࡭࡮ + −࡮࡭ ࡭࡮ + (૜ࡵ = ૙ then find: 

Ω = ࡮࡭)࢚ࢋࢊ −  (࡭࡮

Proposed by Marian Ursărescu-Romania 

Solution by Ravi Prakash-New Delhi-India 

Let ࡯ = ࡮࡭ ,࡭࡮− (࡯)࢚࢘ = ૙.  

We are given ࡯)࢚ࢋࢊ૛ + ࡯ + (૜ࡵ = ૙ hence, 

−࡯)ൣ࢚ࢋࢊ +࡯)(૜ࡵ࣓ ૜)തതതതതതതതതതതതത൧ࡵ࣓ = ૙ 

−࡯)࢚ࢋࢊ| ૜)|૛ࡵ࣓ = ૙ ⇒ ࡯)࢚ࢋࢊ (૜ࡵ࣓− = ૙; 		(૚) 

Let ࡯)࢚ࢋࢊ− (૜ࡵ࢚ = −࢚૜ + ૛࢚(࡯)࢚࢘ − ࢚ࢻ + (࡯)࢚ࢋࢊ = −࢚૜ − +࢚ࢻ  (࡯)࢚ࢋࢊ

∴ (૚) gives: −࣓૜ ࣓ࢻ− + (࡯)࢚ࢋࢊ = ૙ ⇒ (࡯)࢚ࢋࢊ − ૚ + ࢻ
૛

= ૙ and  

√૜
૛ ࢻ = ૙ ⇒ ࢻ = ૙ ⇒ (࡯)࢚ࢋࢊ = ૚ 

 

202. Let ࢞૛૙૛૙ + ૛૙૚ૢ࢞૛૙૚ૢࢇ + ૛૙૚ૡ࢞૛૙૚ૡࢇ + ⋯+ ૙ࢇ ∈ ℤ[࢞]	and all roots of 

this polynomials are positive real numbers. 

Find the smallest possible value of coefficient ࢇ૚૙૚૙. 

Proposed by Gantumur Choijilsuren-Mongolia 

Solution by Abdul Hannan-Tezpur-India 

Let ࢞૝࢔ + ૚ି࢔૚࢞૝ି࢔૝ࢇ + ⋯+ ૚࢞ࢇ + ૙ࢇ ∈ ℤ[࢞]	 and all roots of this polynomial are positive 

real numbers. Find the smallest possible value of coefficient ࢇ૛࢔. 

Here is a small observation that we will need later: 

൫૝ି࢔૚૛ି࢔૚൯
൫૝࢔૛࢔൯

=
(૝࢔ − ૚)!

(૛࢔)! (૛࢔ − ૚)! ∙
(૛࢔)! (૛࢔)!

(૝࢔)! =
૛࢔
૝࢔ =

૚
૛ 

Let ࢼ૚,ࢼ૛,ࢼ૜, … ૙ࢇ be the (positive real) roots. Then ࢔૝ࢼ,૚ି࢔૝ࢼ, = ૛ࢼ૚ࢼ ∙ … ∙ ࢔૝ࢼ > 0. 

Being an integer, we must have, ࢇ૙ ≥ ૚. Also, we have 

࢔૛ࢇ = ෍ ૛࢏ࢼ૚࢏ࢼ ࢔૛࢏ࢼ…
૚ஸ࢏૚ஸ࢏૛ஸ⋯ஸ࢏૛࢔ஸ૝࢔

≥
ࡹࡳ࡭
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≥
ࡹࡳ࡭

൬
૝࢔
૛࢔൰

ቌ ෑ ૛࢏ࢼ૚࢏ࢼ ࢔૛࢏ࢼ…
૚ஸ࢏૚ஸ࢏૛ஸ⋯ஸ࢏૛࢔ஸ૝࢔

ቍ

૚
൫૝࢔૛࢔൯

= 

= ൬
૝࢔
૛࢔൰ ൫࢏ࢼ૚࢏ࢼ૛ ൯࢔૛࢏ࢼ…

൫૝࢔ష૚૛࢔ష૚൯
൫૝࢔૛࢔൯ = ൬

૝࢔
૛࢔൰ට࢏ࢼ૚࢏ࢼ૛ ࢔૛࢏ࢼ… = ൬

૝࢔
૛࢔൰ඥࢇ૙ ≥ ൬

૝࢔
૛࢔൰ ૙ࢇ; ≥ ૚ 

If we put ࢼ૚ = ૛ࢼ = ⋯ = ࢔૝ࢼ = ૚, then we see that 

࢔૛ࢇ = ෍ ૚
૚ஸ࢏૚ஸ࢏૛ஸ⋯ஸ࢏૛࢔ஸ૝࢔

= ൬
૝࢔
૛࢔൰ 

Since ൫૝࢔૛࢔൯ is achieved, it is indeed the minimum value of ࢇ૛࢔. 

 

203. If ࡭ ∈ ૛࡭)࢚ࢋࢊ,૜(ℝ)ࡹ − ૜࡭ + ૜ࡵ૜) = ૙ then: 

૛࡭)࢚ࢋࢊ૛ + ૜ࡵ૜) ≥ ૜൫૜√૜+ ൯࡭࢚ࢋࢊ
૛

 

Proposed by Marian Ursărescu-Romania 

Solution 1 by George Florin Şerban-Romania 

(ࣅ)ࡼ = ૜ࣅ − ૛ࣅ(࡭࢚࢘) + ࣅ(∗࡭࢚࢘) − ࡭࢚ࢋࢊ = −࡭)࢚ࢋࢊ−  (૜ࡵࣅ

࢞૛ − ૜࢞ + ૛ = ૙, ࢞૚,૛ =
૜ ± ૜√࢏

૛ ,࢞૚૛ =
૜ + ૜࢏√૜

૛ , ࢞૚૜ = ૜࢏√૜ 

૛࡭)࢚ࢋࢊ − ૜࡭ + ૜ࡵ૜) = −࡭)࢚ࢋࢊ ࢞૚ࡵ૜)࡭)࢚ࢋࢊ − ࢞૛ࡵ૜) = (૛࢞)ࡼ(૚࢞)ࡼ = ૙ 

⇒ (૚࢞)ࡼ = ૙ or ࡼ(࢞૛) = ૙ 

(૚࢞)ࡼ = ࢞૚૜ − ૚૛࢞(࡭࢚࢘) + ૚࢞(∗࡭࢚࢘) −  ࡭࢚ࢋࢊ

= ૜࢏√૜ −
૜ + ૜࢏√૜

૛
(࡭࢚࢘) +

૜ + ૜࢏√૜
૛

(∗࡭࢚࢘) − ࡭࢚ࢋࢊ = ૙ ⇒ 

൜−૜࢚࢘࡭ + ૜࢚࢘࡭∗ − ૛࡭࢚ࢋࢊ = ૙
૟√૜ − ૜√૜࢚࢘࡭ + √૜࢚࢘࡭∗ = ૙

⇒ ቄ−૜࢚࢘࡭+ ૜࢚࢘࡭∗ − ૛࡭࢚ࢋࢊ = ૙
∗࡭࢚࢘ = ૜࢚࢘࡭ − ૟ ⇒ 

࡭࢚ࢋࢊ = ૜࢚࢘࡭ − ૢ 

૛࡭)࢚ࢋࢊ૛ + ૜ࡵ૜) = ૛࢚ࢋࢊ൫࡭ + ࡭൫࢚ࢋࢊ૜൯ࡵ૜√࢏ − ૜൯ࡵ૜√࢏ = 

= ૛ࡼ൫࢏√૜൯ࡼ൫−࢏√૜൯ = ૛ ቂ(૜࢚࢘࡭ − ૛(࡭࢚ࢋࢊ − ൫૜√૜࢏ − ૜൯√࢏∗࡭࢚࢘
૛
ቃ = 
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= ૛ ∙ ૜(࢚ࢋࢊ૛࡭+ ૛ૠ) ≥ ૢ൫࡭࢚ࢋࢊ + ૜√૜൯
૛

 

⇒ ૛࡭)࢚ࢋࢊ૛ + ૜ࡵ૜) ≥ ૜൫૜√૜ + ൯࡭࢚ࢋࢊ
૛

 

Solution 2 by Ravi Prakash-New Delhi-India 

૛࡭)࢚ࢋࢊ − ૜࡭ + ૜ࡵ૜) = ૙ ⇒ ૜ࡵࢻ)൫࢚ࢋࢊ − ૜ࡵഥࢻ)(࡭ − ൯(࡭ = ૙,ࢻ =
૚
૛ ൫૜ + √૜࢏൯ 

⇒ ૜ࡵࢻ)࢚ࢋࢊ − ૜ࡵࢻ)࢚ࢋࢊ(࡭ − (തതതതതതതതതത࡭ = ૙ ⇒ ૜ࡵࢻ)࢚ࢋࢊ| − ૛|(࡭ = ૙ ⇒ ૜ࡵࢻ)࢚ࢋࢊ − (࡭ = ૙ 

Similarly, ࢻ)࢚ࢋࢊഥࡵ૜ − (࡭ = ૙,ࢻ,ࢻഥ −eigen values of ࡭. 

Let ࣅ be the third eigen value of ࡭. Characteristic equation of ࡭ is: 

૜ࡵ࢚)࢚ࢋࢊ − (࡭ = (࢚)ࡼ = ࢚૜ − +ࢻ) ഥࢻ + ૛࢚(ࣅ + ࢻ)ࣅ) + (ഥࢻ + ࢚(ഥࢻࢻ − ࣅഥࢻࢻ = ૙ 

(࢚)ࡼ = ࢚૜ − (૜ + ૛࢚(ࣅ + (૜ࣅ+ ૜)࢚ − ૜ࣅ = ૙. Now, 

૛࡭)࢚ࢋࢊ + ૜ࡵ૜) = ห࢚ࢋࢊ൫√૜ࡵ࢏૜ − ൯ห࡭
૛

= หࡼ൫√૜࢏൯ห
૛

. We have: 

൯࢏൫√૜ࡼ = ૢ + ૜√૜࢏ࣅ ⇒ หࡼ൫√૜࢏൯ห
૛

= ૜(૛ૠ+ ;(૛(࡭࢚ࢋࢊ) ࡭࢚ࢋࢊ) = ૜ࣅ) 

૛࡭)࢚ࢋࢊ૛ + ૜ࡵ૜) = ૟(૛ૠ + (૛(࡭࢚ࢋࢊ) = ૜ ቀ൫૜√૜ + ൯࡭࢚ࢋࢊ
૛

+ ൫૜√૜ − ൯࡭࢚ࢋࢊ
૛
ቁ

≥ ૜൫૜√૜ + ൯࡭࢚ࢋࢊ
૛

 

 

204. If ࢞,࢟, ࢠ ∈ ℝ − ቄ(૛࢑ + ૚) ࣊
૛
∣ ࢑ ∈ ℤቅ then prove: 

૛ෑ࢙࢞࢕ࢉ
ࢉ࢟ࢉ

∙෍࢙࢔࢏࢙࢞࢔࢏(࢟ − ࢞࢔ࢇ࢚(ࢠ
ࢉ࢟ࢉ

+ ෍࢙࢔࢏࢙࢞࢔࢏(࢟ − ࢟)࢔࢏࢙(ࢠ + ࢠ − ࢞)
ࢉ࢟ࢉ

= ૙ 

Proposed by Florică Anastase-Romania 

Solution by Adrian Popa-Romania 

෍࢙࢔࢏࢙࢞࢔࢏(࢟ − ࢞࢔ࢇ࢚(ࢠ
ࢉ࢟ࢉ

= ෍
࢟)࢔࢏࢙ − (ࢠ
࢙࢞࢕ࢉ

ࢉ࢟ࢉ

−෍࢔࢏࢙࢙࢞࢕ࢉ(࢟ − (ࢠ
ࢉ࢟ࢉ

 

But 

෍࢔࢏࢙࢙࢞࢕ࢉ(࢟ − (ࢠ
ࢉ࢟ࢉ

= ૙ 

Hence, 
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෍
−࢟)࢔࢏࢙ (ࢠ

࢙࢞࢕ࢉ
ࢉ࢟ࢉ

=
૚

࢙࢞࢕ࢉ∏ ∙෍࢔࢏࢙ࢠ࢙࢕ࢉ࢙࢟࢕ࢉ(࢟ − (ࢠ
ࢉ࢟ࢉ

= 

=
૚

૛∏࢙࢞࢕ࢉ ∙
቎෍࢙࢕ࢉ(࢟+ ࢟)࢔࢏࢙(ࢠ − (ࢠ
ࢉ࢟ࢉ

+
૚
૛෍࢙࢔࢏૛(࢟− (ࢠ
ࢉ࢟ࢉ

቏ ; 		(૚) 

Now, 

૚
૛෍࢙࢔࢏૛(࢟ − (ࢠ
ࢉ࢟ࢉ

= −૛࢙࢔࢏(࢞ − ࢟)࢔࢏࢙(࢟ − −ࢠ)࢔࢏࢙(ࢠ ࢞) 

Then, 

෍࢙࢔࢏࢙࢞࢔࢏(࢟ − ࢞࢔ࢇ࢚(ࢠ
ࢉ࢟ࢉ

+
࢞)࢔࢏࢙ − ࢟)࢔࢏࢙(࢟ − ࢠ)࢔࢏࢙)(ࢠ − ࢞)

࢙࢞࢕ࢉ∏ = ૙; 		(૛) 

On the other hand, we have: 

࢟)࢔࢏࢙࢞࢔࢏࢙ − +࢟)࢔࢏࢙(ࢠ ࢠ − ࢞) = ࢟)࢔࢏࢙ − (ࢠ ∙
૛࢙࢔࢏࢙࢞࢔࢏(࢟ + ࢠ − ࢞)

૛ = 

= ࢟)࢔࢏࢙ − (ࢠ ∙
࢟)࢙࢕ࢉ + ࢠ − ૛࢞) − ࢟)࢙࢕ࢉ + (ࢠ

૛ = 

=
૚
૛ ࢔࢏࢙

(࢟ − ࢟)࢙࢕ࢉ(ࢠ + ࢠ − ૛࢞) −
૚
૛ ࢔࢏࢙

(࢟ − ࢟)࢙࢕ࢉ(ࢠ + (ࢠ = 

=
૚
૝

࢟)૛࢔࢏࢙] − ࢞) + −࢞)૛࢔࢏࢙ [(ࢠ −
૚
૝

૛࢟࢔࢏࢙) −  (ࢠ૛࢔࢏࢙

Hence, 

෍࢙࢔࢏࢙࢞࢔࢏(࢟ − ࢟)࢔࢏࢙(ࢠ + ࢠ − ࢞)
ࢉ࢟ࢉ

= −
૚
૛෍࢙࢔࢏૛(࢟ − (ࢠ
ࢉ࢟ࢉ

= 

= −
࢟)૛࢔࢏࢙ − (ࢠ + ࢠ)૛࢔࢏࢙ − ࢞) + ࢞)૛࢔࢏࢙ − ࢟)

૛ = 

= ࢟)࢔࢏࢙− − ࢞)࢙࢕ࢉ(࢞ + ࢟ − ૛ࢠ) − ࢞)࢔࢏࢙ − ࢞)࢙࢕ࢉ(࢟ − ࢟) = 

= −࢞)࢔࢏࢙ ࢞)࢙࢕ࢉ](࢟ + ࢟ − ૛ࢠ)− ࢞)࢙࢕ࢉ − ࢟)] = 

= ૛࢙࢔࢏(࢞ − ࢟)࢔࢏࢙(࢟ − ࢠ)࢔࢏࢙(ࢠ − ࢞); 		(૜) 

From (૚), (૛), (૜) we get: 

૛ෑ࢙࢞࢕ࢉ
ࢉ࢟ࢉ

∙෍࢙࢔࢏࢙࢞࢔࢏(࢟ − ࢞࢔ࢇ࢚(ࢠ
ࢉ࢟ࢉ

+ ෍࢙࢔࢏࢙࢞࢔࢏(࢟ − ࢟)࢔࢏࢙(ࢠ + ࢠ − ࢞)
ࢉ࢟ࢉ

= ૙ 
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205. Prove that the number: 

ඥ૜√૛૜ + ૜
૝

− ඥ√૛૜ − ૚
૝

ඥ૜√૛૜ + ૜૝ − ૛ඥ√૛૜ − ૚૝
 

is a solution of the equation: ࢞૜ − ૟࢞૛ + ૟࢞ − ૛ = ૙.  

Proposed by Vasile Mircea Popa-Romania 
Solution by Abdul Hannan-Tezpur-India 

Let: ࢞ =
ට૜ √૛૜ ା૜
૝

ି ට √૛૜ ି૚
૝

ට૜ √૛૜ ା૜
૝

ି૛ ට √૛૜ ି૚
૝

 and ࢛ = ට૜ା૜ √૛૜

√૛૜ ି૚

૝
 

Let ࢇ = √૛૜ . Then ࢛૝ = ૜(ࢇା૚)
૚ିࢇ

= ૜(ࢇା૚)૝

(૚ିࢇ)૜(ା૚ࢇ)
= ૜(ࢇା૚)૝

൫ࢇ૜ା૜ࢇ૛ା૜ࢇା૚൯(ିࢇ૚)
= 

ࢇ=
૜ୀ૛ ૜(ࢇ+ ૚)૝

(૜ࢇ૛ + ૜ࢇ+ ૜)(ࢇ− ૚) =
+ࢇ) ૚)૝

૛ࢇ) + ࢇ + ૚)(ࢇ− ૚) =
ࢇ) + ૚)૝

૜ࢇ − ૚  

ࢇ=
૜ୀ૛ +ࢇ) ૚)૝ 

Since ࢛ > 0, we must have: ࢛ = +ࢇ ૚ = √૛૜ + ૚ 

Now, ࢞ = ࢛ି૚
࢛ି૛

⇒ ૛࢞ି૚
࢞ି૚

= ࢛ = √૛૜ + ૚ ⇒ ࢞
࢞ି૚

= √૛૜  

⇒ ૛(࢞ − ૚)૜ = ࢞૜ ⇒ ࢞૜ − ૟࢞૛ + ૟࢞ − ૛ = ૙	 

 

,࢈,ࢇ,(ࢉ)࡯,(࢈)࡮,(ࢇ)࡭ .206 ࢉ ∈ ℂ∗ −different pairs, |ࢇ| = |࢈| = |ࢉ| = ૚. Prove 

that: 

෍|૛ࢇ + ࢈ + ૛|ࢉ

ࢉ࢟ࢉ

= ૜ ⇒ ࡮࡭ = ࡯࡮ =  ࡭࡯

Proposed by Marian Ursărescu-Romania 
Solution by Ravi Prakash-New Delhi-India 

Let ࢠ = +ࢇ +࢈  ࢉ

|૛ࢇ+ ࢈ + ૛|ࢉ = ࢇ| + ૛|ࢠ = ૛|ࢇ| + ࢠഥࢇ + തࢠࢇ +  ૛|ࢠ|

ࢇ| + ૛࢈ + ૛|ࢉ = +࢈| ૛|ࢠ = ૛|࢈| + ࢠഥ࢈ + തࢠ࢈ +  ૛|ࢠ|

+ࢇ| ࢈ + ૛ࢉ|૛ = ࢉ| + ૛|ࢠ = ૛|ࢉ| + +ࢠതࢉ തࢠࢉ +  ૛|ࢠ|

Adding, we get: 
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૜ = ෍|૛ࢇ+ ࢈ + ૛|ࢉ
ࢉ࢟ࢉ

= ૜ + ൫ࢇഥ + ഥ࢈ + ࢠത൯ࢉ + +ࢇ) ࢈ + തࢠ(ࢉ + ૜|ࢠ|૛ 

૙ = ࢠതࢠ + തࢠࢠ + ૜|ࢠ|૛ = ૞|ࢠ|૛ ⇒ ࢠ = ૙. 

Now, 

࢈| − ૛|ࢇ + ࢈| = ૛|ࢇ = ૛|ࢇ|૛ + ૛|࢈|૛ = ૙ ⇒ ࢈| − ૛|ࢇ + ૛|ࢉ−| = ૝ 

⇒ −࢈| ૛|ࢇ = ૜ or ࡮࡭ = √૜. Similarly: ࡭࡯ = ࡯࡮ = √૜. Therefore, ࡮࡭ = ࡯࡮ =  .࡭࡯

 

,࢈,ࢇ,(ࢉ)࡯,(࢈)࡮,(ࢇ)࡭ .207 ࢉ ∈ ℂ∗ −different in pairs, |ࢇ| = |࢈| = |ࢉ| = ૚. 

 Prove that: 

෍൫หࢇ૛ + ࢈ࢇ + ࢉ࢈ + หࢇࢉ + ࢇ| − ૛൯|࢈
ࢉ࢟ࢉ

= ૚૛ ⇒ ࡮࡭ = ࡯࡮ =  ࡭࡯

Proposed by Marian Ursărescu-Romania 
Solution by Iulian Cristi-Romania 

Applying the real product of complex number ࡾ = ૚ ⇒ 

૛ࢇ = ࢇ ∙ ࢇ = ૛|ࢇ| = ૚;࢈ࢇ = ૚ −
૚
૛

ࢇ| − ࢉ࢈;૛|࢈ = ૚ −
૚
૛

࢈| − ࢇࢉ;૛|ࢉ = ૚ −
૚
૛

ࢉ| −  	૛|ࢇ
Let ࢻ = ࢇ| − ࢼ,|࢈ = ࢈| − ࢽ,|ࢉ = ࢉ| −  .|ࢇ

Having the circumcenter ࡻ of the triangle as the origin of the complex plane, hence 

૟ ቤ૝ −
૛ࢻ + ૛ࢼ + ૛ࢽ

૛ ቤ + ૛ࢻ + ૛ࢼ + ૛ࢽ = ૚૛ 

We know that ࢻ૛ + ૛ࢼ + ૛ࢽ = ૢ(૚ −  (૛ࡳࡻ

૟ ฬ૝ −
ૢ
૛

(૚− +૛)ฬࡳࡻ ૢ(૚ − (૛ࡳࡻ = ૚૛, 

૟ ൬
ૢ
૛

(૚ − (૛ࡳࡻ − ૝൰ + ૢ(૚ − (૛ࡳࡻ = ૚૛ 

૜૟ = ૢ(૚ − (૛ࡳࡻ + ૛ૠ(૚ − (૛ࡳࡻ = ૚૛ 
(૚ − ૛)૜૟ࡳࡻ = ૜૟ ⇔ ࡳ = ࡻ ⇔ ࡮࡭ = ࡯࡮ =  	.࡭࡯

,࢈,ࢇ .208 ࢉ ∈ ℂ∗ −different pairs, |ࢇ| = |࢈| = |ࢉ| = ૚,(ࢉ)࡯,(࢈)࡮,(ࢇ)࡭. 

Prove that: 

෍|ࢇ + ࢈ − ૛ࢉ|
ࢉ࢟ࢉ

= ෍หࢇ૛ − ࢈ࢇ − ࢉࢇ + หࢉ࢈
ࢉ࢟ࢉ

⇒ ࡮࡭ = ࡯࡮ =  ࡭࡯

Proposed by Marian Ursărescu-Romania 
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Solution by Florentin Vişescu-Romania 
 

෍|ࢇ + ࢈ − ૛ࢉ|
ࢉ࢟ࢉ

= ෍|ࢇ + ࢈ + ࢉ − ૜ࢉ|
ࢉ࢟ࢉ

= ෍|ࢇ)ࢇ − −(࢈ ࢇ)ࢉ − |(ࢉ
ࢉ࢟ࢉ

 

⇔ ૜෍ฬ
ࢇ + ࢈ + ࢉ

૜ − ฬࢉ
ࢉ࢟ࢉ

= ෍|ࢇ − |࢈ ∙ ࢇ| − |ࢉ
ࢉ࢟ࢉ

⇔ ૜෍ࡳ࡭
ࢉ࢟ࢉ

= ෍࡮࡭ ∙ ࡯࡭
ࢉ࢟ࢉ

 

⇔ ૜෍
૛
૜ࢇ࢓

ࢉ࢟ࢉ

= ෍ࢉ࢈
ࢉ࢟ࢉ

⇔ ૛(ࢇ࢓ + ࢈࢓ + (ࢉ࢓ = ࢈ࢇ + ࢉ࢈ +  ࢇࢉ

We know that: ࢇ࢓ ≥
૛ࢉ૛ା࢈

૝ࡾ
⇒ ࢇ࢓ + ࢈࢓ + ࢉ࢓ ≥

૛ࢉ૛ା࢈૛ାࢇ

૛ࡾ
	 

⇔ ૛(ࢇ࢓ + ࢈࢓ + (ࢉ࢓ ≥
૛ࢇ + ૛࢈ + ૛ࢉ

ࡾ  

But ࡾ = ૚ ⇒ ૛(ࢇ࢓ + ࢈࢓ + (ࢉ࢓ ≥ ૛ࢇ + ૛࢈ +  ૛ࢉ

⇒ ࢈ࢇ + ࢉ࢈ + ࢇࢉ ≥ ૛ࢇ + ૛࢈ +  ૛ࢉ

⇔ ૛ࢇ૛ + ૛࢈૛ + ૛ࢉ૛ − ૛࢈ࢇ− ૛ࢉ࢈ − ૛ࢇࢉ ≤ ૙ 

⇔ ࢇ) − ૛(࢈ + −࢈) ૛(ࢉ + ࢉ) − ૛(ࢇ ≤ ૙ ⇔ ࢇ = ࢈ = ࢉ ⇒ ࡮࡭ = ࡯࡮ =  .࡭࡯

209. Let be ࢠ૚, ,૛ࢠ ૜ࢠ ∈ ℂ∗ different in pairs, such that |ࢠ૚| = |૛ࢠ| =  ૜|. Ifࢠ|

෍
૛ࢠ| − |૜ࢠ

૛ࢠ| + ૜ࢠ − ૛ࢠ૚| = √૜ 

then ࢠ૚ , ,૛ࢠ  .૜ are the affixes of an equilateral triangleࢠ

Proposed by Marian Ursărescu-Romania 

Solution by proposer  

Let be ࡭(ࢠ૚),࡮(ࢠ૛),࡯(ࢠ૜),∆࡯࡮࡭ ⊂  (ࡾ,ࡻ)࡯

෍
૛ࢠ| − |૜ࢠ

૛ ቚࢠ૚ −
૛ࢠ + ૜ࢠ

૛ ቚ
= √૜ ⇔෍

૛ࢠ| − |૜ࢠ

ቚࢠ૚ −
૛ࢠ + ૜ࢠ

૛ ቚ
= ૛√૜ ⇔ 

෍
ࢇ
ࢇ࢓

= ૛√૜; 		(૚) 

But ∑ ࢇ
ࢇ࢓

≥ ૛√૜; 		(૛) 

From (૚)&(૛) ⇒ ࡯࡮࡭∆ −equilqteral. 
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(૛) ࢇ࢓⇔ ≤
૛ࢇ + ૛࢈ + ૛ࢉ

૛√૜ࢇ
 

 

210. Let be ࢠ૚, ,૛ࢠ ૜ࢠ ∈ ℂ∗ different in pairs, such that |ࢠ૚| = |૛ࢠ| =   ૜|. Ifࢠ|

෍ቤ
૚ࢠ) − ૚ࢠ|(૛ࢠ − |૜ࢠ + ૚ࢠ) − ૚ࢠ|(૜ࢠ − |૛ࢠ

૛ࢠ + ૜ࢠ − ૛ࢠ૚
ቤ
૛

=
૚ࢠ|) − |૛ࢠ + ૛ࢠ| − |૜ࢠ + ૜ࢠ| − ૚|)૛ࢠ

૜  

then ࢠ૚ , ,૛ࢠ  .૜ are the affixes of an equilateral triangleࢠ

Proposed by Marian Ursărescu-Romania 

Solution by proposer 

Let be ࡭(ࢠ૚),࡮(ࢠ૛),࡯(ࢠ૜) ⇒ ࡯࡮࡭∆ ⊂ ,(ࡾ,ࡻ)࡯ |૚ࢠ| = |૛ࢠ| = |૜ࢠ| =  ࡾ

૚ࢠ| − |૛ࢠ = ࡮࡭ = ,ࢉ ૛ࢠ| − |૜ࢠ = ࡯࡮ = ,ࢇ ૜ࢠ| − |૚ࢠ = ࡯࡭ =  ࢈

෍ቮ
૚ࢠ)࢈ − (૜ࢠ + ૚ࢠ)ࢉ − (૜ࢠ

ࢇ + +࢈ ࢉ
૛ࢠ + ૜ࢠ − ૛ࢠ૚

૜
ቮ

૛

= ૜ ⇔෍ቮ
࢈) + ૚ࢠ(ࢉ − ૛ࢠ࢈ − ૜ࢠࢉ

ࢇ + ࢈ + ࢉ
૚ࢠ + ૛ࢠ + ૜ࢠ − ૜ࢠ૚

૜
ቮ

૛

= ૜ 

⇔෍ቮ
ࢇ) + ࢈ + ૚ࢠ(ࢉ − ૚ࢠࢇ − ૛ࢠ࢈ − ૜ࢠࢉ

ࢇ + +࢈ ࢉ
૚ࢠ + ૜ࢠ૛ାࢠ

૜ − ૚ࢠ
ቮ

૛

= ૜ ⇔෍ቮ
૚ࢠ −

૚ࢠࢇ + ૛ࢠ࢈ + ૜ࢠࢉ
ࢇ + ࢈ + ࢉ

૚ࢠ + ૛ࢠ + ૜ࢠ
૜ − ૚ࢠ

ቮ

૛

= ૜ 

⇔෍
૛ࡵ࡭

૛࡭ࡳ = ૜; 		(૚) 

But in any ∆࡯࡮࡭:	 ∑ ૛ࡵ࡭

૛࡭ࡳ
≤ ૜; (૛) 

Equality holds if and only if triangle is equilateral. 

From (૚)&(૛) ⇒ ࡯࡮࡭∆ −equilateral. 

(૛) ⇔	෍
૛ࡵ࡭
૝
ࢇ࢓ૢ

૛
≤ ૜ ⇔෍

૛ࡵ࡭

ࢇ࢓
૛ ≤

૝
૜ ࢇ࢓	ܜܝ܊, ≥ ඥ࢙(࢙ − (ࢇ ⇒ 

෍
૛ࡵ࡭

࢙(࢙ − (ࢇ ≤
૝
૜ ⇔

࢙૛ + ࢘૛ + ૝࢘ࡾ
࢙૛ ≤

૝
૜ ⇔ ࢙૛ ≥ ૚૛࢘ࡾ + ૜࢘૛ 

which is true from ࢙૛ ≥ ૚૟࢘ࡾ − ૞࢘૛(࢔ࢋ࢙࢚ࢋ࢘࢘ࢋࡳ)  
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211. Let ࢠ૚, ,૛ࢠ ૜ࢠ ∈ ℂ∗ different in pairs, such that |ࢠ૚| = |૛ࢠ| =  ૜|, Ifࢠ|

෍|(૛ࢠ૚ − ૛ࢠ − ૛ࢠ૜)(૛ࢠ − ૚ࢠ − ૚ࢠ)(૜ࢠ − |(૛ࢠ = ૚ࢠ)|ૢ − ૛ࢠ)(૛ࢠ − ૜ࢠ)(૜ࢠ −  |(૚ࢠ

Then ࢠ૚, ૛ࢠ  .૜ are the affixes of an equilateral triangleࢠ,

Proposed by Marian Ursărescu-Romania 

Solution 1 by proposer 

Let be ࡭(ࢠ૚),࡮(ࢠ૛),࡯(ࢠ૜),∆࡯࡮࡭ ⊂ ,(ࡾ,ࡻ)࡯ |૚ࢠ| = |૛ࢠ| = |૜ࢠ| =  ࡾ

෍૝ฬࢠ૚ −
૛ࢠ + ૜ࢠ

૛ ฬ ∙ ฬࢠ૛ −
૚ࢠ + 	૜ࢠ

૛ ฬ ∙ ૚ࢠ| − |૛ࢠ = ૚ࢠ)|ૢ − ૛ࢠ)(૛ࢠ − ૜ࢠ)(૜ࢠ −  |(૚ࢠ

⇔෍࢈࢓ࢇ࢓ ∙ ࢉ =
ૢ
૝
ࢉ࢈ࢇ ⇔෍

࢈࢓ࢇ࢓

࢈ࢇ
=
ૢ
૝

; (૚) 

But in any ∆࢈࢓ࢇ࢓:࡯࡮࡭
࢈ࢇ

+ ࢉ࢓࢈࢓
ࢉ࢈

+ ࢇ࢓ࢉ࢓
ࢉࢇ

≥ ૢ
૝

; (૛) 

From (૚)&(2) equality holds if and only if triangle is equilateral. 
࢈࢓ࢇ࢓
࢈ࢇ

+ ࢉ࢓࢈࢓
ࢉ࢈

+ ࢇ࢓ࢉ࢓
ࢉࢇ

≥ ૢ
૝

; (૛) follows from 

ࢇ ∙ ࡮ࡼ ∙ ࡯ࡼ + ࢈ ∙ ࡯ࡼ ∙ ࡭ࡼ + ࢉ ∙ ࡭ࡼ ∙ ࡮ࡼ ≥  ࢉ࢈ࢇ

Equality holds if and only if triangle is equilateral. 

Solution 2 by Florentin Vişescu-Romania 

෍|૜ࢠ૚ − ૚ࢠ) + ૛ࢠ + |(૜ࢠ ∙ |૜ࢠ૛ − ૚ࢠ) + ૛ࢠ + |(૜ࢠ ∙ ૚ࢠ| − |૛ࢠ
ࢉ࢟ࢉ

= ૢෑ|ࢠ૚ − |૛ࢠ
ࢉ࢟ࢉ

 

ૢ෍ቤࢠ૚ −
૚ࢠ) + ૛ࢠ + (૜ࢠ

૜ ቤ ∙ ቤࢠ૛ −
૚ࢠ) + ૛ࢠ + (૜ࢠ

૜ ቤ ∙ ૚ࢠ| − |૛ࢠ
ࢉ࢟ࢉ

= ૢෑ|ࢠ૚ − |૛ࢠ
ࢉ࢟ࢉ

 

ૢ෍ࡳ࡭ ∙ ࡳ࡮ ∙ ࡮࡭
ࢉ࢟ࢉ

= ૢෑ࡮࡭
ࢉ࢟ࢉ

⇔ 

ૢ ∙
૝
ૢ෍࢈࢓ࢇ࢓ ∙ ࢉ
ࢉ࢟ࢉ

= ૢෑࢉ
ࢉ࢟ࢉ

⇔෍࢈࢓ࢇ࢓ ∙ ࢉ
ࢉ࢟ࢉ

= ෑࢉ
ࢉ࢟ࢉ

⇔ 

෍
࢈࢓ࢇ࢓

࢈ࢇ
ࢉ࢟ࢉ

=
ૢ
૝ 

But in any ∆࡯࡮࡭:∑ ࢈࢓ࢇ࢓
ࢉ࢟ࢉ࢈ࢇ ≥ ૢ

૝
; 
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Equality holds if and only if ࢇ = ࢈ = ࢉ ⇒ ࡮࡭ = ࡯࡮ =  .࡭࡯

Solution 3 by George Florin Şerban-Romania 

Lemma. Let ࢠ૚, ,૛ࢠ ૜ࢠ ∈ ℂ∗ different in pairs, then: 

෍
ቀࢠ૛ −

૚ࢠ + ૜ࢠ
૛ ቁቀࢠ૜ −

૚ࢠ + ૛ࢠ
૛ ቁ

૚ࢠ) − ૚ࢠ)(૛ࢠ − (૜ࢠ
ࢉ࢟ࢉ

=
ૢ
૝ 

Proof.  

෍
൫૛ࢠ૛ − ૚ࢠ) + ૜ࢠ૜)൯൫૛ࢠ − ૚ࢠ) + ૛)൯ࢠ

૝(ࢠ૚ − ૚ࢠ)(૛ࢠ − (૜ࢠ
ࢉ࢟ࢉ

=
ૢ
૝ ⇔ 

෍൫૝ࢠ૛ࢠ૜ − ૛ࢠ૚ࢠ૛ − ૛ࢠ૛૛ − ૛ࢠ૚ࢠ૜ + ૚૛ࢠ + ૛ࢠ૚ࢠ − ૜ࢠ૚ࢠ + ૜ࢠ)૜൯ࢠ૛ࢠ − (૛ࢠ
ࢉ࢟ࢉ

= ૚ࢠ)ૢ − ૛ࢠ)(૛ࢠ − ૜ࢠ)(૜ࢠ − (૚ࢠ −  .܍ܝܚܜ

ૢ
૝ = ෍

ቀࢠ૛ −
૚ࢠ + ૜ࢠ

૛ ቁ ቀࢠ૜ −
૚ࢠ + ૛ࢠ

૛ ቁ
૚ࢠ) − ૚ࢠ)(૛ࢠ − (૜ࢠ

ࢉ࢟ࢉ

≤෍
ቚࢠ૛ −

૚ࢠ + ૜ࢠ
૛ ቚ ∙ ቚࢠ૜ −

૚ࢠ + ૛ࢠ
૛ ቚ

૚ࢠ| − |૛ࢠ ∙ ૚ࢠ| − |૜ࢠ
ࢉ࢟ࢉ

= 

= ෍
ᇲࢉ࢓ᇲ࢈࢓

ᇱࢉᇱ࢈
ࢉ࢟ࢉ

⇒෍
ᇲࢉ࢓ᇲ࢈࢓

ᇱࢉᇱ࢈
ࢉ࢟ࢉ

≥
ૢ
૝ 

where ࡭(ࢠ૚) = (૛ࢠ)࡮,(ࢇ)࡭ = (૜ࢠ)࡯,(࢈)࡮ =   	(ࢉ)࡯

Equality holds if and only if ࢇᇱ = ᇱ࢈ =  ᇱࢉ

࡮࡭ ,equilateral ࡯࡮࡭∆ = ࡯࡮,ᇱࢉ = ࡮࡭,ᇱ࢈ =  ᇱࢉ

ࡹ ∈ ࡺ,(࡯࡮) ∈ ⇒ midpoints−,(࡭࡯) ࢉା࢈ቀࡹ
૛
ቁ ࢉାࢇቀࡺ,

૛
ቁ then 

ࡹ࡭ = ฬࢇ −
࢈ + ࢉ
૛ ฬ =

|૛ࢇ− ࢈ − |ࢉ
૛ = ࢇ࢓ ⇒ |૛ࢇ − ࢈ − |ࢉ = ૛ࢇ࢓ 

ࡺ࡮ = ฬ࢈ −
ࢇ + ࢉ
૛ ฬ =

|૛࢈ − ࢇ − |ࢉ
૛ = ࢈࢓ ⇒ |૛࢈ − ࢇ − |ࢉ = ૛࢈࢓ 

෍|(૛ࢇ − ࢈ − −࢈૛)(ࢉ ࢉ − −ࢇ)(ࢇ |(࢈
ࢉ࢟ࢉ

= ૝෍ࢇ࢓ᇲ࢈࢓ᇲ ∙ ᇱࢉ
ࢉ࢟ࢉ

= 

= ૝ࢇᇱ࢈ᇱࢉᇱ෍
ᇲࢇ࢓

ᇱࢇ ∙
ᇲ࢈࢓

ᇱ࢈
ࢉ࢟ࢉ

= ૢ ቮෑ(ࢇ − (࢈
ࢉ࢟ࢉ

ቮ = ᇱࢉᇱ࢈ᇱࢇૢ ⇒ 



 
www.ssmrmh.ro 

13 RMM-ABSTRACT ALGEBRA MARATHON 201-300 
 

෍
ᇲࢇ࢓

ᇱࢇ ∙
ᇲ࢈࢓

ᇱ࢈
ࢉ࢟ࢉ

=
ૢ
૝ ⇒ ᇱࢇ = ᇱ࢈ = ᇱࢉ ⇒ ࡮࡭ = ࡯࡮ =  ࡭࡯

Note by editor: Bager’s inequality-1971: 

෍
࢈࢓ࢇ࢓

࢈ࢇ
ࢉ࢟ࢉ

≥
ૢ
૝ 

http://www.ssmrmh.ro/2016/08/29/bagers-inequality-1/ 

  

,࢈,ࢇ .212 ࢉ ∈ ℂ∗ −different in pairs, |ࢇ| = |࢈| = |ࢉ| = ૚, 

ࢇ + ࢈ + ࢉ ∈ {±૚, Find: Ω .{࢏± = ૛૙૛૚ିࢇ + ૛૙૛૚ି࢈ +  ૛૙૛૚ିࢉ

Proposed by Marian Ursărescu-Romania 
Solution by Ravi Prakash-New Delhi-India 
 

+ࢇ ࢈ +  ࡯࡮࡭∆ represents orthocentre of ࢉ

+ࢇ ࢈ + ࢉ ∈ {±૚, {࢏± ⇒ +ࢇ ࢈ + ࡯࡮࡭∆ lies on the circumcircle of ࢉ ⇒  is right ࡯࡮࡭∆

triangle. 

If ࢇ + ࢈ + ࢉ = ±૚, then one of the vertices is	૚ or −૚ and other two ࢏−,࢏ 

Ω = ૛૙૛૚ିࢇ + ૛૙૛૚ି࢈ + ૛૙૛૚ିࢉ = ૛૙૛૚ି࢏ + ૛૙૛૚ି(࢏−) + ૛૙૛૚(࢏±) =  ࢏±

If ࢇ + ࢈ + ࢉ = – or ࢏ then one of  the vertices is ,࢏±  .and other two are ૚,−૚ ࢏

Ω = ૛૙૛૚ିࢇ + ૛૙૛૚ି࢈ + ૛૙૛૚ିࢉ = ૚ି૛૙૛૚ + (−૚)૛૙૛૚ + ૛૙૛૚ି(࢏±) =  ࢏±

Therefore, 

Ω = ૛૙૛૚ିࢇ + ૛૙૛૚ି࢈ + ૛૙૛૚ିࢉ ∈ {±૚,   .{࢏±

 

,࢈,ࢇ .213 ࢉ ∈ ℂ∗ −different in pairs, |ࢇ| = |࢈| =  Prove .(ࢉ)࡯,(࢈)࡮,(ࢇ)࡭,|ࢉ|

that: 

෍
ࢇ)| − ࢇ)(࢈ − |(ࢉ

ࢇ)| − ࢇ|(࢈ − |ࢉ + ࢇ) − ࢇ|(ࢉ − ૛||࢈
ࢉ࢟ࢉ

= ૢቌ෍ ࢇ| − |࢈
ࢉ࢟ࢉ

ቍ

ି૛

⇔ ࡮࡭ = ࡯࡮ =  ࡭࡯

Proposed by Marian Ursărescu-Romania 
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Solution by proposer 
(ࢉ)࡯,(࢈)࡮,(ࢇ)࡭ ⇒ ࡯࡮࡭∆ ⊂ ,(ࡾ,ࡻ)࡯ |ࢇ| =  ࡾ

ࢇ| − |࢈ = ࡮࡭ = ,ᇱࢉ ࢇ| − |ࢉ = ࡯࡭ = ,ᇱ࢈ −࢈| |ࢉ = ࡯࡮ = ′ࢇ ⇒ 

෍
࡮࡭ ∙ ࡯࡭

−ࢇ)| ࡯࡭(࢈ + ࢇ) − ૛|࡮࡭(ࢉ
ࢉ࢟ࢉ

=
ૢ

࡮࡭) + ࡯࡮ + ૛(࡭࡯ ⇔ 

෍
ࢉ࢈

ฬ(ࢇ − ᇱࢇ(࢈ + ࢇ) − ′ࢉ(ࢉ
ࢇ + +࢈ ࢉ ฬ

૛
ࢉ࢟ࢉ

= ૢ ⇔෍
ࢉ࢈

ฬ(࢈+ ᇱࢇ(ࢉ − ᇱ࢈࢈ − ′ࢉࢉ
ࢇ + ࢈ + ࢉ ฬ

૛
ࢉ࢟ࢉ

= ૢ ⇔ 

෍
ࢉ࢈

ฬ(ࢇ+ ࢈ + ᇱࢇ(ࢉ − ′ࢇࢇ − ᇱ࢈࢈ − ′ࢉࢉ
+ࢇ ࢈ + ࢉ ฬ

૛
ࢉ࢟ࢉ

= ૢ ⇔෍
ࢉ࢈

ฬࢇᇱ − ᇱࢇࢇ + ᇱ࢈࢈ + ′ࢉࢉ
ࢇ + ࢈ + ࢉ ฬ

૛
ࢉ࢟ࢉ

= ૢ 

⇒෍
ࢉ࢈
૛ࡵ࡭

ࢉ࢟ࢉ

= ૢ; (૚) 

But ∑ ࢉ࢈
ࢉ࢟ࢉ૛ࡵ࡭ = ૝ࡾା࢘

࢘
≥ ૢ ⇔ ૝ࡾ + ࢘ ≥ ૢ࢘ ⇔ ࡾ ≥ ૛࢘; (૛) 

From (૚)&(2) we have equality, then ∆࡯࡮࡭ equilateral. 

,࢈,ࢇ .214 ࢉ ∈ ℂ∗ −different in pairs, |ࢇ| = |࢈| =  Prove .(ࢉ)࡯,(࢈)࡮,(ࢇ)࡭,|ࢉ|

that: 

෍ቤ
ࢇ) + ࢇ)(࢈ + (ࢉ
ࢇ) − ࢇ)(࢈ − ቤ(ࢉ

ࢉ࢟ࢉ

= ૚ ⇔ ࡮࡭ = ࡯࡮ =  ࡭࡯

Proposed by Marian Ursărescu-Romania 

Solution by proposer 

෍ቤ
+ࢇ) +ࢇ)(࢈ (ࢉ
ࢇ) − −ࢇ)(࢈ ቤ(ࢉ

ࢉ࢟ࢉ

= ૚ ⇔෍
ࡴ࡮ ∙ ࡴ࡯
࡮࡭ ∙ ࡯࡭

ࢉ࢟ࢉ

= ૚ ⇔෍
ࡴ࡮ ∙ ࡴ࡯
࡯࡮

ࢉ࢟ࢉ

= ૚ ⇔ 

෍ࡴ࡮ࢇ ∙ ࡴ࡯
ࢉ࢟ࢉ

= ;ࢉ࢈ࢇ (૚) 

But ∑ ࡴ࡮ࢇ ∙ ࢉ࢟ࢉࡴ࡯ ≥ ;ࢉ࢈ࢇ (૛) true from  

࡮ࡼࢇ ∙ ࡯ࡼ + ࡯ࡼ࢈ ∙ ࡭ࡼ + ࡭ࡼࢉ ∙ ࡮ࡼ ≥ ࡼ∀,ࢉ࢈ࢇ ∈ च 

From (૚)&(2) it following that ∆࡯࡮࡭ is equilateral. 
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215. 

 

,࢈,ࢇ ࢋ,ࢊ,ࢉ ∈ ℂ∗ −different in pairs, ࢇ + ࢈ + ࢉ + ࢊ + ࢋ = ૙, 

 ,(ࢋ)ࡱ,(ࢊ)ࡰ,(ࢉ)࡯,(࢈)࡮,(ࢇ)࡭	

૛ࢇ + ૛࢈ + ૛ࢉ + ૛ࢊ + ૛ࢋ = ૙, |ࢇ| = |࢈| = |ࢉ| = |ࢊ| = |ࢋ| = ૝. Find: 

Ω =
[ࡱࡰ࡯࡮࡭]

࡮࡭ + ࡯࡮ + ࡰ࡯ ࡱࡰ+ + ࡭ࡱ
 

Proposed by Daniel Sitaru-Romania 

Solution by Ravi Prakash-New Delhi-India 

+ࢇ ࢈ + ࢉ + +ࢊ ࢋ = ૙ ⇒෍ࢇ
ࢉ࢟ࢉ

= ૙ ⇒෍ࢇഥ
ࢉ࢟ࢉ

= ૙ ⇒෍
૚૟
ࢇ

ࢉ࢟ࢉ

= ૙ 

⇒෍ࢊࢉ࢈ࢇ
ࢉ࢟ࢉ

= ૙ 

Next,ࢇ૛ + ૛࢈ + ૛ࢉ + ૛ࢊ + ૛ࢋ = ૙ and ࢇ+ ࢈ + ࢉ + ࢊ + ࢋ = ૙, thus 

૛෍࢈ࢇ
ࢉ࢟ࢉ

= ቌ෍ࢇ
ࢉ࢟ࢉ

ቍ

૛

−෍ࢇ૛
ࢉ࢟ࢉ

⇒෍࢈ࢇ
ࢉ࢟ࢉ

= ૙ ⇒෍ࢇഥ࢈ഥ
ࢉ࢟ࢉ

= ૙ ⇒ 

૛૞૟෍
૚
࢈ࢇ

ࢉ࢟ࢉ

= ૙ ⇒෍ࢉ࢈ࢇ
ࢉ࢟ࢉ

= ૙ 

Let us denote ࢋࢊࢉ࢈ࢇ =  ,ࢋ and ࢊ,ࢉ,࢈,ࢇ consider the equation whose roots are ,ࢻ

respectively. 
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૞ࢠ −ቌ෍ࢇ
ࢉ࢟ࢉ

ቍࢠ૝ + ቌ෍࢈ࢇ
ࢉ࢟ࢉ

ቍࢠ૜ −ቌ෍ࢉ࢈ࢇ
ࢉ࢟ࢉ

ቍࢠ − ࢋࢊࢉ࢈ࢇ = ૙ 

Or ࢠ૞ − ࢻ = ૙; (૚) 

Let one of the roots of (1) be ࢼ. 

Then, roots of (1) are ࣓ࢼ,࣓ࢼ,ࢼ૛,࣓ࢼ૜,࣓ࢼ૝, where ࣓ = ࢙࢕ࢉ ૛࣊
૞

+ ࢔࢏࢙࢏ ૛࣊
૞

. 

Let ࢇ = ࢈,ࢼ = ,࣓ࢼ ࢉ = ࢊ,૛࣓ࢼ = ࢋ,૜࣓ࢼ =   ,૝࣓ࢼ

[ࡱࡰ࡯࡮࡭] = ૞[࡮ࡻ࡭] = ૞ ∙ ૝૛ ∙ ࢔࢏࢙
૛࣊
૞ . 

Also, ࡮࡭ = ࡯࡮ = ࡰ࡯ = ࡱࡰ =  ࡭ࡱ

࡮࡭ = −࢈| |ࢇ = −࣓ࢼ| |ࢼ = −࣓||ࢼ| ૚| = −࣓||࣓||ࢼ| ૚| = ห࣓૛|ࢼ| − ࣓ห =  …࡯࡮

Now, by the low of cosines: 

૛࡮࡭ = ૛࡭ࡻ + ૛࡮ࡻ − ૛࡭ࡻ ∙ ࢙࢕ࢉ࡮ࡻ
૛࣊
૞ = ૚૟ + ૚૟ − ૛ ∙ ૚૟ ∙ ૚૟࢙࢕ࢉ

૛࣊
૞ = 

= ૜૛ ൤૚ − ൬࢙࢕ࢉ
૛࣊
૞ ൰൨ = ૟૝࢙࢔࢏૛ ቀ

࣊
૞
ቁ ⇒ ࡮࡭ = ૡ࢙࢔࢏ቀ

࣊
૞
ቁ 

Ω =
[ࡱࡰ࡯࡮࡭]

࡮࡭ + +࡯࡮ ࡰ࡯ + ࡱࡰ +  ࡭ࡱ

=
૞ ∙ ૚૟ ∙ ࢔࢏࢙ ቀ૛࣊૞ ቁ

૞ ∙ ૡ ∙ ࢔࢏࢙ ቀ࣊૞ቁ
=
૝ ∙ ࢔࢏࢙ ቀ૛࣊૞ ቁ

࢔࢏࢙ ቀ࣊૞ቁ
= √૞ + ૚ 

 

216. If ࢈,ࢇ, ࢉ ∈ ℂ∗ −different in pairs, |ࢇ| = |࢈| =  Prove .(ࢉ)࡯,(࢈)࡮,(ࢇ)࡭,|ࢉ|

that: 

ቌ෍൫(ࢇ − −ࢇ|(࢈ |ࢉ + ࢇ) − −ࢇ|(ࢉ ൯|࢈
ࢉ࢟ࢉ

ቍ

૛

= ቌ෍ ࢇ| − |࢈
ࢉ࢟ࢉ

ቍ

૛

∙෍|ࢇ − ૛|࢈
ࢉ࢟ࢉ

⇒ ࡮࡭ = ࡯࡮ =  ࡭࡯

Proposed by Marian Ursărescu-Romania 

Solution 1 by proposer 

ࢇ| − |࢈ = ࡮࡭ = ,૚ࢉ ࢈| − |ࢉ = ࡯࡮ = ,૚ࢇ ࢉ| − |ࢇ = ࡭࡯ =  ૚࢈
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ቌ෍൫(ࢇ − ࢇ|(࢈ − |ࢉ + ࢇ) − ࢇ|(ࢉ − ൯|࢈
ࢉ࢟ࢉ

ቍ

૛

= ቌ෍൫(ࢇ − ૚࢈(࢈ + ࢇ) − ૚൯ࢉ(ࢉ
ࢉ࢟ࢉ

ቍ

૛

= 

= ૚ࢇ) + ૚࢈ + ૚૛ࢇ)૚)૛ࢉ + ૚૛࢈ + (૚૛ࢉ ⇔ 

ቌ෍ฬ
ࢇ૚࢈ − +࢈૚࢈ ࢇ૚ࢉ − ࢉ૚ࢉ

૚ࢇ + ૚࢈ + ૚ࢉ
ฬ

ࢉ࢟ࢉ

ቍ

૛

= ૚૛ࢇ + ૚૛࢈ + ૚૛ࢉ ⇔ 

ቌ෍ฬ
૚࢈) + ࢇ(૚ࢉ − −࢈૚࢈ ࢉ૚ࢉ

૚ࢇ + ૚࢈ + ૚ࢉ
ฬ

ࢉ࢟ࢉ

ቍ

૛

= ૚૛ࢇ + ૚૛࢈ + ૚૛ࢉ ⇔ 

ቌ෍ฬࢇ −
ࢇ૚ࢇ + +࢈૚࢈ ࢉ૚ࢉ
૚ࢇ + ૚࢈ + ૚ࢉ

ฬ
ࢉ࢟ࢉ

ቍ

૛

= ૚૛ࢇ + ૚૛࢈ + ૚૛ࢉ ⇔ 

ቌ෍ࡵ࡭
ࢉ࢟ࢉ

ቍ

૛

= ૚૛ࢇ + ૚૛࢈ + ;૚૛ࢉ (૚) 

ࡵ࡭ቌ෍	ܜܝ۰
ࢉ࢟ࢉ

ቍ

૛

≤ ૚૛ࢇ + ૚૛࢈ + ;૚૛ࢉ (૛) 

From (1),(2) equality holds if and only if triangle ࡯࡮࡭ is equilateral. 

ࡵ࡭ =
࢘

૛࡭࢔࢏࢙
= ඨ࢈૚ࢉ૚

(࢙ − (૚ࢇ
࢙ ⇒ (૛) ⇔ ቌ෍ඨ࢈૚ࢉ૚

(࢙ − (૚ࢇ
࢙

ࢉ࢟ࢉ

ቍ

૛

≤ ૚૛ࢇ + ૚૛࢈ + ;૚૛ࢉ (૜) 

From BCS inequality, we have: 

ቌ෍ඨ࢈૚ࢉ૚
(࢙ − (૚ࢇ
࢙

ࢉ࢟ࢉ

ቍ

૛

≤ ቌ෍࢈૚ࢉ૚
ࢉ࢟ࢉ

ቍቌ෍
࢙− ૚ࢇ
࢙

ࢉ࢟ࢉ

ቍ = ෍࢈૚ࢉ૚
ࢉ࢟ࢉ

≤෍ࢇ૚૛
ࢉ࢟ࢉ

 

⇒ (૜) is true. 

Solution 2 by George Florin Şerban-Romania 

࡯࡮ = ࡯࡭,ᇱࢇ = ᇱ࢈ ࡮࡭, = ,ᇱࢉ ࡵ −incenter. 

ࡵ࡭ = ቤ
ᇱࢇࢇ + ᇱ࢈࢈ + ᇱࢉࢉ

ᇱࢇ + ᇱ࢈ + ᇱࢉ − ቤࢇ =
ᇱࢇࢇ| + ᇱ࢈࢈ + −ᇱࢉࢉ ᇱࢇࢇ − ᇱ࢈ࢇ − |ᇱࢉࢇ

ᇱࢇ| + ᇱ࢈ + |ᇱࢉ = 
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=
−࢈)ᇱ࢈| (ࢇ + ࢉ)ᇱࢉ − (ࢇ

૛࢙ =
ࢇ)ᇱ࢈| − (࢈ + ࢇ)ᇱࢉ − (ࢉ

૛࢙ ⇒ 

૛࢙ ∙ ࡵ࡭ = ࢇ)ᇱ࢈| − (࢈ + ࢇ)ᇱࢉ − |(ࢉ = ห(ࢇ − ࢇ|(࢈ − ࢇ)+|ࢉ − ࢇ|(ࢉ −  ห|࢈

෍ห(ࢇ − ࢇ|(࢈ − |ࢉ + −ࢇ) ࢇ}(ࢉ − ห|࢈
ࢉ࢟ࢉ

= ૛࢙෍ࡵ࡭
ࢉ࢟ࢉ

 

ቌ෍ห(ࢇ − −ࢇ|(࢈ |ࢉ + ࢇ) − ࢇ}(ࢉ − ห|࢈
ࢉ࢟ࢉ

ቍ

૛

= ૝࢙૛ቌ෍ࡵ࡭
ࢉ࢟ࢉ

ቍ

૛

= 

= ૝࢙૛ቌ෍ࡵ࡭૛
ࢉ࢟ࢉ

+ ૛෍ࡵ࡭ ∙ ࡵ࡮
ࢉ࢟ࢉ

ቍ = ૝࢙૛ቌ࢘૛෍
૚

૛࢔࢏࢙ ࢉ࢟ࢉ૛࡭

+
૛ࢉ࢈ࢇ
࢙ ෍࢙࢔࢏

࡭
૛

ࢉ࢟ࢉ

ቍ = 

= ૝࢙૛ ቎࢘૛
࢙૛ + ࢘૛ − ૡ࢘ࡾ

࢘૛ +
ૡ࢙࢘ࡾ
࢙ ෍࢙࢔࢏

࡭
૛

ࢉ࢟ࢉ

቏ = 

= ૝࢙૛ቌ࢙૛ + ࢘૛ − ૡ࢘ࡾ + ૡ࢘ࡾ෍࢙࢔࢏
࡭
૛

ࢉ࢟ࢉ

ቍ = ቌ෍|ࢇ − |࢈
ࢉ࢟ࢉ

ቍ

૛

ቌ෍|ࢇ − ૛|࢈
ࢉ࢟ࢉ

ቍ = 

= ૝࢙૛෍ࢇ′૛
ࢉ࢟ࢉ

= ૝࢙૛(૛࢙૛ − ૛࢘૛ − ૡ࢘ࡾ) = ૛࢙૛ − ૛࢘૛ − ૡ࢘ࡾ 

ૡ࢘ࡾ෍࢙࢔࢏
࡭
૛

ࢉ࢟ࢉ

= ࢙૛ − ૜࢘૛ ⇒෍࢙࢔࢏
࡭
૛

ࢉ࢟ࢉ

=
࢙૛ − ૜࢘૛

ૡ࢘ࡾ  

Let ࢌ: (૙,࣊) → ℝ,ࢌ(࢞) = ࢔࢏࢙ ࢞
૛

(࢞)ᇱᇱࢌ, = − ૚
૝
࢔࢏࢙ ࢞

૛
< 0 ⇒ ݂ −convex. 

Applying Jensen inequality, we get: 

෍࢙࢔࢏
࡭
૛

ࢉ࢟ࢉ

≤
૜
૛ ⇔

࢙૛ − ૜࢘૛

ૡ࢘ࡾ ≤
૜
૛ ⇔ ࢙૛ ≤ ૚૛࢘ࡾ+ ૜࢘૛ 

But ૚૟࢘ࡾ − ૞࢘૛ ≤ ࢙૛(࢔ࢋ࢙࢚ࢋ࢘࢘ࢋࡳ). Remains to prove that: 
૚૟࢘ࡾ − ૞࢘૛ ≤ ૚૛࢘ࡾ + ૜࢘૛ ⇔ ૝࢘ࡾ ≤ ૡ࢘૛ ⇔ ࡾ ≤ ૛࢘ but ࡾ ≥ ૛࢘(࢘ࢋ࢒࢛ࡱ) then, 

ࡾ = ૛࢘ ⇔  .equilateral ࡯࡮࡭∆
 

217.  

૚૙࢞ૡ − ૝ૡ૙࢞૟ + ૝૙૜૛࢞૝ − ૠ૟ૡ૙࢞૛ + ૛૞૟૙
૚૙૛૝
࢞૛ − ૚૚૞૛૙ + ૚૜૝૝૙࢞૛ − ૜૜૟૙࢞૝ + ૚ૡ૙࢞૟ − ࢞ૡ

=
࢞
૛ 

Proposed by Orlando Irahola Ortega-Bolivia 
Solution by Lety Sauceda-Mexico City-Mexico 
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࢞૚૙ + ૛૙࢞ૢ − ૚ૡ૙࢞ૡ − ૢ૟૙࢞ૠ + ૜૜૟૙࢞૟ + ૡ૙૟૝࢞૞ − ૚૜૝૝૙࢞૝ + ૚૞૜૟૙࢞૜

+ ૚૚૞૛૙࢞૛ + ૞૚૛૙࢞ − ૚૙૛૝ = ૙ 

૛૙࢞ૢ − ૢ૟૙࢞ૠ + ૡ૙૟૝࢞૞ − ૚૞૜૟૙࢞૜ + ૞૚૛૙࢞
૚૙૛૝ − ૚૚૞૛ૢ࢞૛ + ૚૜૝૝૙࢞૝ − ૜૜૟ૢ࢞૟ + ૚ૡ૙࢞ૡ − ࢞૚૙ = ૚ 

Dividing with 1024 and let ࢞ = ૛࢝ it follows that: 

૚૙࢝ૢ − ૚૛૙࢝ૠ + ૛૞૛࢝૞ − ૚૛૙࢝૜ + ૚૙࢝
૚ − ૝૞࢝૛ + ૛૚૙࢝૝ − ૛૚૙࢝૟ + ૝૞࢝ૡ − ࢝૚૙ = ૚ 

Let ࢝ = ࢞,(ࢇ)࢔ࢇ࢚ = ૛࢚(ࢇ)࢔ࢇ then the up rapport is equivalent to ࢚࢔ࢇ(૚૙ࢇ) = ૚. 

(ࢇ૚૙)࢔ࢇ࢚ = ૚ ⇒ ૚૙ࢇ = ࣊
૝
⇒ ࢇ = ࣊

૝૙
 ;  ࢞ = ૛࢝ = ૛࢚࢔ࢇ൬ ࣊

૝૙
(૛࢑+ ૚)൰ 

So, ࢞ = ૛࢚࢔ࢇ൬ ࣊
૝૙

(૛࢑ + ૚)൰ ,࢑ = {૙,૚,૛,૜,૝, … }	 

218. If we have the relation 

෍
ࣘ૜࢔ା૚ + (−૚)࢔(૜࢔ + ૚)

ࣘ૝࢔ା૚

ஶ

ୀ૙࢔

=
૚ + ࢑
࢑ ෍

(−૚)࢔൫ࣘ࢔+ √૞൯ + ࣘ૛࢔ା૚

ࣘ૜࢔ା૛

ஶ

ୀ૙࢔

 

then find the value of ࢑. (ࣘ −  (ܗܑܜ܉܀	ܖ܍܌ܔܗ۵

Proposed by Srinivasa Raghava-AIRMC-India 

Solution by Izumi Ainsworth-Lima-Peru 

෍
ࣘ૜࢔ା૚ + (−૚)࢔(૜࢔ + ૚)

ࣘ૝࢔ା૚

ஶ

ୀ૙࢔

=
૚ + ࢑
࢑ ෍

(−૚)࢔൫ࣘ࢔ + √૞൯ + ࣘ૛࢔ା૚

ࣘ૜࢔ା૛

ஶ

ୀ૙࢔

 

⇒
૚
ࣘ
⎣
⎢
⎢
⎡
ࣘ෍൬

૚
ࣘ൰

࢔

+ ૜෍
൬− ૚

ࣘ૝൰
࢔

૚ି࢔

ஶ

ୀ૚࢔

ஶ

ୀ૙࢔

+ ෍൬−
૚
ࣘ൰

ஶ࢔

ୀ૙࢔ ⎦
⎥
⎥
⎤

= 

=
૚ + ࢑
࢑

⎣
⎢
⎢
⎡૚
ࣘ෍

൬− ૚
ࣘ૜൰

࢔

૚ି࢔

ஶ

ୀ૚࢔

−
√૞
ࣘ૛෍൬−

૚
ࣘ૜൰

ஶ࢔

ୀ૙࢔

+
૚
ࣘ෍൬

૚
ࣘ൰

ஶ࢔

ୀ૙࢔ ⎦
⎥
⎥
⎤
 

⇒
૚
ࣘ
൦ࣘ൮

૚

૚ − ૚
ࣘ
൲+ ૜ି࢏ࡸ૚ ൬−

૚
ࣘ૝൰+

૚

૚ −−૚
ࣘ૝

൪ = 
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=
૚ + ࢑
࢑

൦
૚
૚ି࢏ࡸࣘ ൬−

૚
ࣘ૜൰ +

√૞
ࣘ૛ ൮

૚

૚ − −૚
ࣘ૜

൲ +
૚
ࣘ
൮

૚

૚ − ૚
ࣘ
൲൪ 

⇒
૚
ࣘ
⎣
⎢
⎢
⎢
⎡
ࣘ ൬

ࣘ
ࣘ − ૚൰ + ૜

⎝

⎜
⎛

−૚
ࣘ૝

൬૚ − −૚
ࣘ૝൰

૛

⎠

⎟
⎞

+
ࣘ૝

ࣘ૝ + ૚
⎦
⎥
⎥
⎥
⎤

= 

=
૚ + ࢑
࢑

⎣
⎢
⎢
⎢
⎡
૚
ࣘ

⎝

⎜
⎛ − ૚

ࣘ૜

൬૚ − −૚
ࣘ૜൰

૛

⎠

⎟
⎞

+
√૞
ࣘ૛ ቆ

ࣘ૜

ࣘ૜ + ૚ቇ +
૚
ࣘ൬

ࣘ
ࣘ − ૚൰

⎦
⎥
⎥
⎥
⎤
	 

⇒
૚
ࣘ ቈࣘ(ࣘ૛) − ૜

ࣘ૝

(ࣘ૝ + ૚)૛ +
ࣘ૝

ࣘ૝ + ૚቉ = 

=
૚ + ࢑
࢑ ቈ−

૚
ࣘቆ

ࣘ૜

(ࣘ૜ + ૚)૛ቇ+
√૞
ࣘ૛ ቆ

ࣘ૜

ࣘ૜ + ૚ቇ +
૚
ࣘ

(ࣘ૛)቉ 

⇒
૚
ࣘ ቈࣘ૜ − ૜

ࣘ૝

(૜ࣘ૛)૛ +
ࣘ૝

૜ࣘ૛቉ =
૚ + ࢑
࢑ ቈ−

૚
ࣘቆ

ࣘ૜

(૛ࣘ૛)૛ቇ +
√૞
૛ ቆ

ࣘ૜

૛ࣘ૛ቇ + ࣘ቉ 

⇒
૚
ࣘ ൤(૛ࣘ + ૚) −

૚
૜ +

ࣘ + ૚
૜ ൨ =

૚ + ࢑
࢑ ቆ−

૚
૝ࣘ૛ +

√૞
૛ࣘ −

૚
૝ቇ 

૚
૜

(ૠࣘ૛ + ૜ࣘ) =
૚ + ࢑
࢑ ቆࣘ૜ +

√૞
૛ ࣘ −

૚
૝ቇ 

૚
૜

(ૠ(ࣘ+ ૚) + ૜ࣘ) =
૚ + ࢑
࢑

൭(૛ࣘ+ ૚) +
ࣘ
૛ + ૚ −

૚
૝
൱	 

૚૙ࣘ + ૠ
૜ =

૚ + ࢑
࢑ ൬

૚૙ࣘ + ૠ
૝ ൰ ⇒

૝
૜ =

૚ + ࢑
࢑ ⇒ ࢑ = ૜. 

 
219. Solve for real numbers: 

૛࢞[࢞] + ૛ൣ࢞[࢞]൧ = ૞; [∗] −  ࡲࡵࡳ

Proposed by Jalil Hajimir-Toronto-Canada 
Solution by Bedri Hajrizi-Mitrovica-Kosovo 

࢞[࢞] + ൣ࢞[࢞]൧ = ૛,૞ ⇔ ൣ࢞[࢞]൧ = ૛,૞ − ࢞[࢞] 
૛,૞ − ࢞[࢞] ≤ ࢞[࢞] < 3,5−  [࢞]ݔ
૚,૛૞ ≤ ࢞[࢞] < 1,75 ⇒ ൣ࢞[࢞]൧ = ૚ 

࢞[࢞] + ૚ = ૛,૞ ⇒ ࢞[࢞] = ૚,૞ ⇒ [࢞] =
૚,૞
࢞  
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૚,૞
࢞ ≤ ࢞ <

૚,૞
࢞ + ૚ 

(ࡵ) −ඨ૜
૛ ≤ ࢞ <

૚ − √ૠ
૛ ⇒ ࢞ ∈ ቎−ඨ

૜
૛ ,
૚ − √ૠ
૛

ቍ ⇒ [࢞] ∈ {−૛;−૚} ⇒ 

࢞ ∈ {−૙,ૠ૞;−૚,૞}−  .ܖܗܑܜܝܔܗܛ	ܗܖ

ඨ(ࡵࡵ)
૜
૛ ≤ ࢞ <

૚ + √ૠ
૛ ⇒ [࢞] = ૚,ࡿ = {૚}	 

220.  

࡭ = ෍ න
(࢞ + ૚)࢞ࢊ

࢞૝ + ૝࢞૜ + (૝࢏ + ૛)࢞૛ + (ૡ࢏ − ૝)࢞ + ૝࢏૛ − ૝࢏	

࢑ା૛

࢑ା૚

࢔

ୀ૚࢏

 

Ω = ܕܑܔ
࢑→ஶ

 ࢑૜࡭

Solve for natural numbers: 

൬
Ω
૟
൰ = ቀ

࢔
૛૙૚૝

ቁ 

Proposed by Costel Florea-Romania 

Solution 1 by Adrian Popa-Romania 

ࡵ = න
(࢞ + ૚)࢞ࢊ

(࢞૛ + ૛࢞ + ૛࢔)൫࢞૛ + ૛࢞ + ૛(࢔− ૚)൯

࢑ା૛

࢑ା૚

= 

=
૚
૛ න

(࢞ + ૚)࢞ࢊ
࢞૛ + ૛࢞ + ૛(࢔ − ૚)

࢑ା૛

࢑ା૚

−
૚
૛ න

(࢞ + ૚)࢞ࢊ
࢞૛ + ૛࢞ + ૛࢔

࢑ା૛

࢑ା૚

= ૚ࡵ − ૛ࡵ  

૚ࡵ = 	
૚
૛ න

(࢞ + ૚)࢞ࢊ
࢞૛ + ૛࢞ + ૛(࢔− ૚)

࢑ା૛

࢑ା૚

=
࢞૛ା૛࢞ା૛(ି࢔૚)ୀ࢚ ૚

૛ න
࢚ࢊ
࢚

(࢑ା૜)૛ା૛(ି࢔૚)ି૚

(࢑ା૛)૛ା૛(ି࢔૚)ି૚

= 

=
૚
૛ ቆࢍ࢕࢒

(࢑+ ૜)૛ + ૛(࢔− ૚) − ૚
(࢑+ ૛)૛ + ૛(࢔− ૚) − ૚ቇ 

૛ࡵ =
૚
૛ න

(࢞ + ૚)࢞ࢊ
࢞૛ + ૛࢞ + ૛࢔

࢑ା૛

࢑ା૚

=࢞૛ା૛࢞ା૛࢔ୀ࢚ ૚
૛ න

࢚ࢊ
࢚

(࢑ା૜)૛ା૛ି࢔૚

(࢑ା૛)૛ା૛ି࢔૚

=
૚
૛ ቆࢍ࢕࢒

(࢑ + ૜)૛ + ૛࢔ − ૚
(࢑ + ૛)૛ + ૛࢔ − ૚ቇ	 
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Hence, 

࡭ =
૚
૝෍

൭ࢍ࢕࢒ቆ
(࢑ + ૜)૛ + ૛(࢏ − ૚) − ૚
(࢑ + ૛)૛ + ૛(࢏ − ૚) − ૚ቇ − ቆࢍ࢕࢒

(࢑+ ૜)૛ + ૛࢏ − ૚
(࢑+ ૛)૛ + ૛࢏ − ૚ቇ

൱
࢔

ୀ૚࢏

= 

=
૚
૝ ࢍ࢕࢒ ൬૚ +

૝࢑࢔ + ૚૙࢔
࢑૝ + ૚૙࢑૜ + (૛࢔ + ૜૞)࢑૛ + (ૡ࢔ + ૞૙)࢑+ ૟࢔+ ૛૝൰	 

On the other hand, 

Ω = ܕܑܔ
࢑→ஶ

࢑૜࡭ =
૚
૝ ஶ→࢑ܕܑܔ

൮૚ࢍ࢕࢒ +
૝࢑࢔ + ૚૙࢔

࢑૝ + ૚૙࢑૜ + (૛࢔ + ૜૞)࢑૛ + (ૡ࢔+ ૞૙)࢑+ ૟࢔ + ૛૝ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ࡱ

൲

࢑

 

൭ܕܑܔ
࢑→ஶ

ࡱ = ࢋ
ܕܑܔ
࢑→ಮ

(૝࢑࢔ା૚૙࢔)࢑૜

࢑૝ା૚૙࢑૜ା(૛࢔ା૜૞)࢑૛ା(ૡ࢔ା૞૙)࢑ା૟࢔ା૛૝
	

=  ൱࢔૝ࢋ

Ω =
૚
૝ ࢋࢍ࢕࢒

૝࢔ =  ࢔

Therefore, 

ቀ
࢔
૟
ቁ = ቀ

࢔
૛૙૚૝

ቁ ⇒ ቀ
࢔
૟
ቁ = ቀ

࢔
࢔ − ૛૙૚૝

ቁ ⇒ ૟ = ࢔ − ૛૙૚૝ ⇒ ࢔ = ૛૙૛૙ 

 
 Solution 2 by Ravi Prakash-New Delhi-India  

࢞૝ + ૝࢞૜ + (૝࢔ + ૛)࢞૛ + (ૡ࢔ − ૝)࢞ + ૝࢔૛ − ૝࢔ = 

= [(࢞ + ૚)૛ + ૛(࢔ − ૚)]૛ − ૚ 

࢔ࡵ ≔ න
(࢞ + ૚)࢞ࢊ

࢞૝ + ૝࢞૜ + (૝࢔+ ૛)࢞૛ + (ૡ࢔ − ૝)࢞ + ૝࢔૛ − ૝࢔

࢑ା૛

࢑ା૚

= 

= න
(࢞ + ૚)࢞ࢊ

[(࢞ + ૚)૛ + ૛(࢔− ૚)]૛ − ૚

࢑ା૛

࢑ା૚

=
(࢞ା૚)૛ା૛(ି࢔૚)ୀ࢚

 

=
૚
૛ න

࢚ࢊ
࢚૛ − ૚

(࢑ା૜)૛ା૛(ି࢔૚)

(࢑ା૛)૛ା૛(ି࢔૚)

= −
૚
૝ ቆࢍ࢕࢒

(࢑ + ૜)૛ + ૛࢔ − ૚
(࢑ + ૜)૛ + ૛࢔ − ૜ቇ +

૚
૝ ࢍ࢕࢒ ቆ

(࢑+ ૛)૛ + ૛࢔ − ૚
(࢑+ ૛)૛ + ૛࢔ − ૜ቇ 

࡭ = ෍࢘ࡵ
࢔

࢘ୀ૚

=
૚
૝෍ቈࢍ࢕࢒ቆ

(࢑ + ૜)૛ + ૛࢘ − ૚
(࢑ + ૜)૛ + ૛࢘ − ૜ቇ + ࢍ࢕࢒ ቆ

(࢑ + ૛)૛ + ૛࢘ − ૚
(࢑ + ૛)૛ + ૛࢘ − ૜ቇ቉

࢔

࢘ୀ૚

= 

= −
૚
૝ ቆࢍ࢕࢒

(࢑ + ૜)૛ + ૛࢔ − ૚
(࢑+ ૜)૛ − ૚ ቇ +

૚
૝ ቆࢍ࢕࢒

(࢑ + ૛)૛ + ૛࢔ − ૚
(࢑ + ૛)૛ − ૚ ቇ = 
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=
૚
૝ ൬૚ࢍ࢕࢒ +

૛࢔
(࢑ + ૛)૛ − ૚൰ −

૚
૝ ࢍ࢕࢒ ൬૚ +

૛࢔
(࢑ + ૜)૛ − ૚൰ = 

=
૚
૝ ቈ

૛࢔
(࢑ + ૛)૛ − ૚ −

૛࢔
(࢑ + ૜)૛ − ૚ +

૚
૛ ൬

૛࢔
(࢑+ ૛)૛ − ૚൰

૛

−
૚
૛ ൬

૛࢔
(࢑ + ૜)૛ − ૚൰

૛

+ ⋯቉ = 

=
࢔
૛ ቈ

(࢑ + ૜ + ࢑ + ૛)
((࢑ + ૛)૛ − ૚)((࢑ + ૜)૛ − ૚) + ൬࢕

૚
࢑૝൰቉ 

Hence, 

Ω = ܕܑܔ
࢑→ஶ

࢑૜࡭ =
࢔
૛ ஶ→࢑ܕܑܔ

ቆ
૛࢑૝ + ૞࢑૜

൫(࢑ + ૛) − ૚൯((࢑+ ૜)૛ − ૚)
ቇ =  ࢔

Therefore, 

ቀ
࢔
૟
ቁ = ቀ

࢔
૛૙૚૝

ቁ ⇒ ࢔ = ૛૙૛૙		 

221. Find all real numbers ࢻ ≥ ૙ such that: 

૛૙૛૙൯࢞ࢻ√૛൫࢔࢏࢙ + ૛࢙࢕ࢉ ቀ(ࢻ૛ − ૚)࢞૛૙૛૙ቁ = ૚,∀࢞ ∈ ℝ 

Proposed by Nguyen Van Canh-Ben Tre-Vietnam 

Solution by Tran Hong-Dong Thap-Vietnam 

૛૙૛૙൯࢞ࢻ√૛൫࢔࢏࢙ + ૛࢙࢕ࢉ ቀ(ࢻ૛ − ૚)࢞૛૙૛૙ቁ = ૚, ; 		(∗) true for all ࢞ ∈ ℝ if and only if: 

૛૙૛૙࢞ࢻ√ = ૛ࢻ) − ૚)࢞૛૙૛૙,∀࢞ ∈ ℝ ⇔ 

൫ࢻ૛ − −ࢻ√ ૚൯࢞૛૙૛૙ = ૙,∀࢞ ∈ ℝ ⇔ 

૛ࢻ − ࢻ√ − ૚ = ૙ ⇔ ૛ࢻ = ૚ +  		ࢻ√

So, for ࢻ ≥ ૙ such that ࢻ૛ = ૚ + ࢻ)	ࢻ√ ≈ ૚,૛૛૙ૠ) ⇒ (∗) is true for ࢞ ∈ ℝ. 

222. Solve for real numbers: 

(࢞ − [࢞])࢞ି[࢞] + (࢞ + [࢞])࢞ା[࢞] = ૝; [∗]  ࡲࡵࡳ−

Proposed by Jalil Hajimir-Toronto-Canada 

Solution by Michael Sterghiou-Greece 

(࢞ − [࢞])࢞ି[࢞] + (࢞ + [࢞])࢞ା[࢞] = ૝;  (ࢀ)		
In the below we treat on ℝ only integer powers of negative numbers. 

In general ࢈ࢇ ∈ ℂ when ࢇ < 0 and ࢈ ∉ ℤ∗ 
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Also ૙૙can be undefined or be assigned the value of 1. 
Now: 1) if ૙ < ݔ < 1 then [࢞] = ૙ and (ࢀ) ⇒ {࢞}{࢞} + ࢞࢞ = ૝ 
૙ < {࢞} = ࢞ − [࢞] < 1 so {࢞}{࢞} < 1 and ࢞࢞ < 1, no solutions. 
2) if ૚ < ࢞ then ݔ + [࢞] > 2 as both [࢞] ≥ ૚, ࢞ > 1 therefore,  

(࢞ + [࢞])(࢞ା[࢞]) > ૛૛ = ૝ and (࢞ − [࢞])(࢞ି[࢞]) > 0 No solutions. 
3) if ࢞ = ૙ then (ࢀ) is undefined or reduces to ૚ + ૚ = ૝. 

4) if ࢞ = ૚ then (ࢀ) is undefined (࢞− [࢞] = ૙) or reduces to ૚ + ૝ = ૝ (false). 
5) if ࢞ ∈ ℤି then ࢞ − [࢞] = ૙ and ࢞ + [࢞] = −૛|࢞| so (ࢀ) either undefined or reduces to 

૝ = ૚ + ૚
૝|࢞| ቀ

૚
|࢞|
ቁ
૛|࢞|

< 2 as |࢞| ≥ ૚ and ૚
૝|࢞| ቀ

૚
|࢞|
ቁ
૛|࢞|

≤ ૚
૝
, contradiction. 

Therefore, with the above assumptions set of solutions = ∅ 
223. Solve for real numbers: 

[࢞૛] + ࢞૛ = ૛࢞[࢞],			[∗]−  ࡲࡵࡳ

Proposed by Jalil Hajimir-Toronto-Canada 

Solution 1 by Bedri Hajrizi-Mitrovica-Kosovo 

Let ࢞ = ࢑ + ࢑,ࢇ ∈ ℤ,ࢇ ∈ [૙,૚) 

[࢑૛ + ૛ࢇ࢑+ [૛ࢇ + ࢑૛ + ૛ࢇ࢑ + ૛ࢇ = ૛(࢑ +  ࢑(ࢇ

૛࢑૛ + [૛ࢇ࢑+ [૛ࢇ + ૛ࢇ࢑+ ૛ࢇ = ૛ࢇ࢑+  ࢑૛ࢇ

For ࢇ = ૙, we get solution ࢞ = ࢑. 

For ࢇ ≠ ૙:		[૛ࢇ࢑ + [૛ࢇ + ૛ࢇ = ૙ 

Being that ࢇ ∈ (૙,૚) ⇒ ૛ࢇ ∈ (૙,૚), so [૛ࢇ࢑+ [૛ࢇ = ૛ࢇ− ∈ (−૚,૙) which is impossible. 

 Solution 2 by Rachid Iksi-Morocco  

[࢞૛] + ࢞૛ = ૛࢞[࢞] 

࢞ = [࢞] is a solution for the equation. 

૚)	[࢞] ≥ ૙ ⇒ [࢞]૛ ≤ ࢞૛ ⇒ [࢞]૛ ≤ [࢞૛] ⇒ 

[࢞]૛ + ࢞૛ ≤ [࢞૛] + ࢞૛ = ૛࢞[࢞] ⇒ ࢞૛ + [࢞]૛ − ૛࢞[࢞] ≤ ૙ ⇒ 

(࢞ − [࢞])૛ ≤ ૙ ⇒ ࢞ = [࢞] 

૛)	[࢞] ≤ −૚ ⇒ [࢞]૛ ≥ ࢞૛ ≥ [࢞૛] ⇒ 

[࢞]૛ + ࢞૛ ≥ ૛࢞૛ ≥ [࢞૛] + ࢞૛ = ૛࢞[࢞] 

⇒ ࢞૛ ≥ ࢞[࢞] ⇒ ࢞ ≤ [࢞]	ܛ܉	[࢞] ≤ −૚,࢞ < 0 ⇒ ݔ = [࢞] is the solution. 

So, ࢞ = [࢞] is the only solution. Set is ℤ.  
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224. Solve for real numbers: 

[࢞૛] + ࢞૛ = ૛࢞[࢞],			[∗]−  ࡲࡵࡳ

Proposed by Jalil Hajimir-Toronto-Canada 

Solution 1 by Bedri Hajrizi-Mitrovica-Kosovo 

Let ࢞ = ࢑ + ࢑,ࢇ ∈ ℤ,ࢇ ∈ [૙,૚) 

[࢑૛ + ૛ࢇ࢑+ [૛ࢇ + ࢑૛ + ૛ࢇ࢑ + ૛ࢇ = ૛(࢑ +  ࢑(ࢇ

૛࢑૛ + [૛ࢇ࢑+ [૛ࢇ + ૛ࢇ࢑+ ૛ࢇ = ૛ࢇ࢑+  ࢑૛ࢇ

For ࢇ = ૙, we get solution ࢞ = ࢑. 

For ࢇ ≠ ૙:		[૛ࢇ࢑ + [૛ࢇ + ૛ࢇ = ૙ 

Being that ࢇ ∈ (૙,૚) ⇒ ૛ࢇ ∈ (૙,૚), so [૛ࢇ࢑+ [૛ࢇ = ૛ࢇ− ∈ (−૚,૙) which is impossible. 

 Solution 2 by Rachid Iksi-Morocco  

[࢞૛] + ࢞૛ = ૛࢞[࢞] 

࢞ = [࢞] is a solution for the equation. 

૚)	[࢞] ≥ ૙ ⇒ [࢞]૛ ≤ ࢞૛ ⇒ [࢞]૛ ≤ [࢞૛] ⇒ 

[࢞]૛ + ࢞૛ ≤ [࢞૛] + ࢞૛ = ૛࢞[࢞] ⇒ ࢞૛ + [࢞]૛ − ૛࢞[࢞] ≤ ૙ ⇒ 

(࢞ − [࢞])૛ ≤ ૙ ⇒ ࢞ = [࢞] 

૛)	[࢞] ≤ −૚ ⇒ [࢞]૛ ≥ ࢞૛ ≥ [࢞૛] ⇒ [࢞]૛ + ࢞૛ ≥ ૛࢞૛ ≥ [࢞૛] + ࢞૛ = ૛࢞[࢞] 

⇒ ࢞૛ ≥ ࢞[࢞] ⇒ ࢞ ≤ [࢞]	ܛ܉	[࢞] ≤ −૚,࢞ < 0 ⇒ ݔ = [࢞] is the solution. 

So, ࢞ = [࢞] is the only solution. Set is ℤ.  

225. Solve for real numbers: 

૛ + ࢞૛ + ࢟૛ + ૛ࢠ + ࢚૛ = ࢞࢟ + ࢠ࢟ + ࢚ࢠ + ࢚࢞ + ૛|࢞ − ࢟ + ࢠ − ࢚| 

Proposed by Mihály Bencze-Romania 
Solution by Chris Kyriazis-Greece 

૝ + ૛࢞૛ + ૛࢟૛ + ૛ࢠ૛ + ૛࢚૛ = ૛(࢞ + ࢟)(ࢠ + ࢚) + ૝|(࢞ + (ࢠ − (࢟+ ࢚)| ⇔ 

(࢞ + ૛(ࢠ + (࢟ + ࢚)૛ − ૛(࢞ + ࢟)(ࢠ + ࢚)− ૝|(࢞+ (ࢠ − (࢟ + ࢚)| + ૝ + ࢞૛ + ࢟૛ + ૛ࢠ

+ ࢚૛ − ૛࢞ࢠ − ૛࢚࢟ = ૙ ⇔ 

|(࢞ + (ࢠ − (࢟ + ࢚)|૛ − ૝|(࢞+ (ࢠ − (࢟ + ࢚)| + ૝ + (࢞ − ૛)૛ + (࢟ − ࢚)૛ = ૙ ⇔ 

(|(࢞ + (ࢠ − (࢟+ ࢚)|− ૛)૛ + (࢞ − ૛(ࢠ + (࢟ − ࢚)૛ = ૙ 
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This means: 

൝
࢞ = ࢠ
࢟ = ࢚

|࢞ + ࢠ − (࢟ + ࢚)| = ૛
⇔ ൝

࢞ = ࢠ
࢟ = ࢚

࢞ − ࢟ = ૚
	ܚܗ ൝

࢞ = ࢠ
࢟ = ࢚

࢞ − ࢟ = −૚
 

Case I) If ࢞ = ૛,࢟ = ࢚,࢞ − ࢟ = ૚, we deduce that the solution is: 

{(࢞,࢞ − ૚, ࢞,࢞ − ૚) ∣ ࢞ ∈ ℝ} 

Case II) If ࢞ = ࢟,ࢠ = ࢚,࢞ − ࢟ = −૚, we deduce that the solution is: 

{(࢞,࢞ + ૚, ࢞,࢞ + ૚) ∣ ࢞ ∈ ℝ} 

226. Solve for real numbers: 

⎩
⎪
⎨

⎪
⎧ ࢞,࢟, ࢠ > 0

෍
࢞࢟

ඥ(૚ + ࢞૛)(૚ + ࢟૛)ࢉ࢟ࢉ

=
૜
૛

࢞࢟+ ࢠ࢟ + ࢞ࢠ = ૜

 

Proposed by Daniel Sitaru-Romania 

Solution by George Florin Şerban-Romania  

૜
૛ = ෍

࢞࢟
ඥ(૚ + ࢞૛)(૚+ ࢟૛)ࢉ࢟ࢉ

≤
ࡿ࡮࡯

෍
࢞࢟

࢞࢟ + ૚
ࢉ࢟ࢉ

⇒෍
࢞࢟

࢞࢟ + ૚
ࢉ࢟ࢉ

≥
૜
૛ 

⇔෍
࢞࢟− ૚ + ૚
࢞࢟ + ૚

ࢉ࢟ࢉ

≥
૜
૛ ⇔෍൬૚ −

૚
࢞࢟ + ૚൰

ࢉ࢟ࢉ

≥
૜
૛ ⇔෍

૚
࢞࢟ + ૚

ࢉ࢟ࢉ

≤
૜
૛ 

෍
૚

࢞࢟ + ૚
ࢉ࢟ࢉ

≥
࢓࢕࢚࢙࢘ࢍ࢘ࢋ࡮ ૢ

(࢞࢟ + ࢠ࢟ + ࢞ࢠ + ૜ =
૜
૛ ⇒ ࢞࢟ = ࢠ࢟ = ࢞ࢠ = ૚ 

૛(ࢠ࢟࢞) = ૚,࢞࢟ࢠ > 0 ⇒ ݖݕݔ = 1 ⇒ ݔ = ݕ = ݖ = 1. 

 

227. Solve for real numbers: 

ቐ
࢞[࢟] + [ࢠ]࢟ + [࢞]ࢠ = ૚૚
[ࢠ]࢞ + ࢟[࢞] + [࢟]ࢠ = ૚૚
࢞[࢞] + ࢟[࢟] = [ࢠ]ࢠ = ૚૝

 

[∗] −is the greatest integer part of ∗ 
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Proposed by Jalil Hajimir-Toronto-Canada 
Solution by Santos Martins Junior-Brusels-Belgium 

Adding up equations of the system yields: 

(࢞ + ࢟ + [࢞])(ࢠ + [࢟] + ([ࢠ] = ૜૟ 

([࢞] + [࢟] + [ࢠ] + {࢞} + {࢟} + [࢞])({ࢠ} + [࢟] + ([ࢠ] = ૜૟ 

([࢞] + [࢟] + ²([ࢠ] + ({࢞} + {࢟} + [࢞])({ࢠ} + [࢟] + −([ࢠ] ૜૟ = ૙ 

Quadratic in ([࢞] + [࢟] +  ([ࢠ]

whose discriminant D must be a perfect square ≥ ૙ 

	ࡰ = 	 (	{࢞} + {࢟} + ²(	{ࢠ} + ૚૝૝ 

We know that by definition ૙ ≤	 {࢘} < 	૚ for any real number ࢘ 

Hence ૙ ≤ {࢞} 	+ 	{࢟} 	+ {ࢠ}	 < 	૜ 

implying that D is a perfect square only for	{࢞} + {࢟} + {ࢠ}	 = ૙ 

⇒ {࢞} = {࢟} = {ࢠ} = ૙ ⇒ 	࢞	,࢟	,  .are all integers	ࢠ

Hencesystem becomes: ࢞࢟ + ࢠ࢟ + ࢞ࢠ = ૚૚; (1) and ࢞૛ + 	࢟² + ²ࢠ = 	૚૝ ;(2) where 

࢞,࢟,  are all integers	ࢠ

From (2) we easily get that the triplet (࢞,࢟, (ࢠ = (૚,૛,૜)	and its permutations and the 

triplet (࢞,࢟, (ࢠ = (−૚,−૛,−૜) and its permutations are solutions of the system 

 

228. Solve for real numbers: 

⎩
⎪
⎨

⎪
⎧ ඥ(࢞ + ૜)૛૜ + ૟ඥ(ࢠ − ૜)૛૜ = ૞ඥ(࢞ − ૜)(࢟ + ૜)૜

࢞,࢟, ࢠ > 0
૛࢞૛

࢟)ࢠ࢟ + (ࢠ
+

૛࢟૛

ࢠ)࢞ࢠ + ࢞)
+

૛ࢠ૛

࢞࢟(࢞ + ࢟)
=

ૢ
࢞ + ࢟ + ࢠ

 

Proposed by Daniel Sitaru-Romania 

Solution by Rahim Shahbazov-Baku-Azerbaijan 

࢞૜

ࢇ +
࢟૜

࢈ +
૜ࢠ

ࢉ ≥
(࢞ + ࢟ + ૜(ࢠ

૜(ࢇ+ ࢈ +  (࢘ࢋࢊ࢒࢕ࡴ)	(ࢉ
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෍
૛࢞૛

࢟)ࢠ࢟ + (ࢠ
ࢉ࢟ࢉ

=
૛
෍ࢠ࢟࢞

࢞૜

࢟ + ࢠ
ࢉ࢟ࢉ

≥
૛
ࢠ࢟࢞ ∙

(࢞ + ࢟ + ૜(ࢠ

૟(࢞ + ࢟ + (ࢠ = 

=
(࢞ + ࢟ + ૛(ࢠ

૜࢞࢟ࢠ ≥
ૢ

࢞ + ࢟ + ࢠ ⇒
(࢞+ ࢟ + ૜(ࢠ ≥

ࡹࡳ࡭
૛ૠ࢞࢟ࢠ ⇒ ࢞ = ࢟ = ࢠ ⇒ 

ඥ(࢞ + ૜)૛૜ + ૟ඥ(࢞ − ૜)૛૜ = ૞ඥ(࢞ − ૜)(࢞ + ૜)૜  

Let ࢚ = ට࢞ା૜
࢞ି૜

૜ ⇒ ࢚૛ − ૞࢚ + ૟ = ૙ ⇒ ࢚૚ = ૛; ࢚૛ = ૜ 

Hence, 

ඨ࢞ + ૜
࢞ − ૜

૜
= ૛ ⇒ ࢞ =

૛ૠ
ૠ , ඨ

࢞ + ૜
࢞ − ૜

૜
= ૜ ⇒ ࢞ =

૝૛
૚૜ 

Therefore  (࢞,࢟, (ࢠ = ቄቀ૛ૠ
ૠ

, ૛ૠ
ૠ

, ૛ૠ
ૠ
ቁ ;ቀ૝૛

૚૜
, ૝૛
૚૜

, ૝૛
૚૜
ቁቅ 

229. Solve for real numbers: 

⎩
⎪
⎨

⎪
⎧

࢞,࢟, ࢠ > 0
૜૛൫࢞૞ + ࢟૞ + ૚൯ = (࢞ + ࢟)૞ + (࢞ + ૚)૞ + (࢟ + ૚)૞

࢞ + ࢠ = ࢠ࢞√ +ඨ࢞
૛ + ૛ࢠ

૛

 

Proposed by Daniel Sitaru-Romania 

Solution 1 by Alex Szoros-Romania 

:ࢌ (૙,∞) → ℝ, (࢞)ࢌ = ࢞૞ ⇒ (࢞)ᇱࢌ = ૞࢞૝, (࢞)ᇱᇱࢌ = ૛૙࢞૜ ⇒
(࢞)ࢌ + (࢟)ࢌ

૛ ≥ ࢌ ൬
࢞ + ࢟
૛ ൰ 

⇒
࢞૞ + ࢟૞

૛ ≥ ൬
࢞ + ࢟
૛ ൰

૞
;
࢞૞ + ૚
૛ ≥ ൬

࢞ + ૚
૛ ൰

૞

;
࢟૞ + ૚
૛ ≥ ൬

࢟ + ૚
૛ ൰

૞

⇒	 

࢞૞ + ࢟૞

૛ +
࢞૞ + ૚
૛ +

࢟૞ + ૚
૛ ≥ ൬

࢞ + ࢟
૛ ൰

૞
+ ൬

࢞ + ૚
૛ ൰

૞

+ ൬
࢟ + ૚
૛ ൰

૞

 

૜૛൫࢞૞ + ࢟૞ + ૚൯ ≥ (࢞ + ࢟)૞ + (࢞ + ૚)૞ + (࢟ + ૚)૞;∀࢞,࢟ > 0	 

૜૛൫࢞૞ + ࢟૞ + ૚൯ = 	 (࢞ + ࢟)૞ + (࢞ + ૚)૞ + (࢟ + ૚)૞ ⇔ ࢞ = ࢟ = ૚ 

࢞ = ૚ ⇒ ૚ + ࢠ = +ࢠ√ ඨ૚ + ૛ࢠ

૛  
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૚ + ૛ࢠ+ ૛ࢠ = ࢠ + ૛ඨ
૚)ࢠ + (૛ࢠ

૛ +
૚ + ૛ࢠ

૛  

⇒
૛ࢠ + ૚
૛ + ࢠ = ૛ඨ

+૚)ࢠ (૛ࢠ
૛  

ࢠ) + ૚)૛ = ૛ඥ૛ࢠ)ࢠ૛ + ૚) ⇔ ࢠ) + ૚)૝ = ૡࢠ)ࢠ૛ + ૚) ⇔ 

૝ࢠ − ૝ࢠ૜ + ૟ࢠ૛ − ૝ࢠ + ૚ = ૙ ⇔ ࢞ = ࢟ = ࢠ = ૚ solution. 

Solution 2 by Ravi Prakash-New Delhi-India 

For ࢞,࢟ > 0 we have: 

૚૟൫࢞૞ + ࢟૞൯ ≥ (࢞ + ࢟)૞ ⇔ ૚૞൫࢞૞ + ࢟૞൯ ≥ ૞࢞૝࢟ + ૚૙࢞૜࢟ + ૚૙࢞૛࢟૜ + ૞࢞࢟૝ 

⇔ ൫࢞૞ − ࢞૝࢟൯ + ૛൫࢞૞ − ࢞૜࢟૛൯ + ૛൫࢞૞ − ࢞૛࢟૜൯ + ൫࢟૞ − ࢞࢟૝൯ ≥ ૙ 

⇔ ࢞૝(࢞ − ࢟) + ૛࢞૜(࢞૛ − ࢟૛) − ૛࢟૜(࢞૛ − ࢟૛) − ࢟૝(࢞ − ࢟) ≥ ૙ 

⇔ (࢞૝ − ࢟૝)(࢞ − ࢟) + ૛(࢞૜ − ࢟૜)(࢞૛ − ࢟૛) ≥ ૙ 

Thus, ૚૟൫࢞૞ + ࢟૞൯ ≥ (࢞ + ࢟)૞  

Equality holds when		࢞ = ࢟.		 

Now, ૜૛൫࢞૞ + ࢟૞ + ૚൯ = 	 (࢞ + ࢟)૞ + (࢞ + ૚)૞ + (࢟+ ૚)૞		 

ൣ૚૟൫࢞૞ + ࢟૞൯ − (࢞ + ࢟)૞൧ + ൣ૚૟൫࢞૞ + ૚൯ − (࢞ + ૚)૞൧ + ൣ૚૟൫࢟૞ + ૚൯ − (࢟ + ૚)૞൧ = ૙ 

⇔ ૚૟൫࢞૞ + ࢟૞൯ = (࢞ + ࢟)૞,૚૟൫࢞૞ + ૚൯ = (࢞ + ૚)૞,૚૟൫࢟૞ + ૚൯ = (࢟ + ૚)૞ 

⇔ ࢞ = ࢟ = ૚. Next, 

࢞ + ࢠ = +ࢠ࢞√
૚
√૛

ඥ࢞૛ + ;૛ࢠ 		(૛) 

Put: ࢞ = ,ࣂ࢙࢕ࢉ	࢘ ࢠ =  hence (2) becomes ,	ࣂ࢔࢏࢙	࢘

+ࣂ࢙࢕ࢉ ࣂ࢔࢏࢙ = ࣂ࢙࢕ࢉ	ࣂ࢔࢏࢙√ +
૚
√૛

⇔ √૛࢙࢔࢏ ቀࣂ +
࣊
૝
ቁ =

૚
√૛

ඥ࢙࢔࢏(૛ࣂ) +
૚
√૛

 

Put ࣂ − ࣊
૝

= ࣐ so that − ࣊
૝
≤ ࣐ ≤ ࣊

૝
, hence 

૛࣐࢙࢕ࢉ = ඥ࢙࢕ࢉ(૛࣐) + ૚ 

⇔ ૝࢙࢕ࢉ૛࣐− ૝࣐࢙࢕ࢉ+ ૚ = ૛࢙࢕ࢉ૛࣐− ૚ 

⇔ ૛࢙࢕ࢉ૛࣐− ૝࣐࢙࢕ࢉ+ ૛ = ૙ 
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⇔ −࣐࢙࢕ࢉ) ૚)૛ = ૙ ⇔ ࣐ = ૙ ⇔ ࣂ = ࣊
૝

, thus ࢠ = ࢞ = ૚. 

Therefore, ࢞ = ࢟ = ࢠ = ૚. 

Solution 3 by Abdul Hannan-Tezpur-India  

࢈,ࢇ∀ > 0, 16൫ࢇ૞ + ૞൯࢈ = ૜૛ቆ
૞ࢇ + ૞࢈

૛ ቇ ≥
࢔ࢇࢋ࢓ି࢘ࢋ࢝࢕࢖

૜૛ ൬
ࢇ + ࢈
૛ ൰

૞

= +ࢇ) ;૞(࢈ 		(∗) 

Equality holdes if and only if ࢇ =  .࢈

⇒ ૜૛൫࢞૞ + ࢟૞ + ૚൯ = ૚૟൫࢞૞ + ࢟૞൯ + ૚૟൫࢞૞ + ૚૞൯ + (࢟૞ + ૚૞) ≥
(∗)

 

≥ (࢞ + ࢟)૞ + (࢞ + ૚)૞ + (࢟ + ૚)૞ 

Since equality holds, ࢞ = ࢟,࢞ = ૚,࢟ = ૚ which implies that ࢞ = ࢟ = ૚. 

On the other hand, ࢞
૛ାࢠ૛

૛
+ ࢠ࢞ ≥

ࡹࡳ࡭
૛ට࢞ࢠ ቀ࢞

૛ାࢠ૛

૛
ቁ with equality iff ࢞

૛ାࢠ૛

૛
= ࢠ࢞ ⇔ 

(࢞− ૛(ࢠ = ૙ ⇔ ࢞ =  ࢠ

⇒ (࢞ + ૛(ࢠ =
࢞૛ + ૛ࢠ

૛ + ࢠ࢞ +
࢞૛ + ૛ࢠ

૛ + ࢠ࢞ ≥
࢞૛ + ૛ࢠ

૛ + +ࢠ࢞ ૛ඨ࢞ࢠ ቆ
࢞૛ + ૛ࢠ

૛ ቇ = 

= ቌඨ
࢞૛ + ૛ࢠ

૛ + ቍࢠ࢞√

૛

⇒ ࢞ + ࢠ ≥ ඨ࢞
૛ + ૛ࢠ

૛ +  	ࢠ࢞√

Since equality holds, ࢠ = ࢞. Therefore, ࢞ = ࢟ = ࢠ = ૚. 

230. Solve for real numbers: 

⎩
⎪
⎨

⎪
⎧࢞

૞

࢟
+ ࢞૛࢟૛ +

࢟૞

࢞
= ඥ૜(࢞ૡ + ࢟ૡ + ࢞૝࢟૝)

૜࢞࢟ + ࢟૝

૚+ ૜࢟૛
=
࢞
࣊

 

Proposed by Orlando Irahola Ortega-Tarija-Bolivia 
Solution by Rahim Shahbazov-Baku-Azerbaijan 
 

࢞૞

࢟ + ࢞૛࢟૛ +
࢟૞

࢞ =
࢞૟ + ࢞૜࢟૜ + ࢟૟

࢞࢟ ; ࢞૟ + ࢞૜࢟૜ + ࢟૟ > 0 ⇒ ݕݔ > 0	 

If ࢞,࢟ < 0 then second question is not true, so we have ࢞,࢟ > 0. 
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(࢞૟ + ࢞૜࢟૜ + ࢟૟)૛ = ૜࢞૛࢟૛(࢞ૡ + ࢞૝࢟૝ + ࢟ૡ); 		(૚) 

࡭ = ࢞૛ + ࢟૛,࡮ = ࢞࢟
(૚)
ሳሰ ૜࡭) − ૜࡮࡭૛ + ૜)૛࡮ = ૜࡮૛(࡭૝ − ૝࡭૛࡮૛ + ૜࡮૝) 

(࢚૜ − ૜࢚ + ૚)૛ = ૜(࢚૝ − ૝࢚૛ + ૜),܍ܚ܍ܐܟ	࢚ =
࡭
࡮ ≥ ૛ 

⇒ ࢚૟ − ૢ࢚૝ + ૛࢚૜ + ૛૚࢚૛ − ૟࢚ − ૡ = ૙ 

⇒ (࢚ − ૛)൫࢚૞ + ૛࢚૝ − ૞࢚૜ − ૡ࢚૛ + ૞࢚ + ૝൯ = ૙, true because 

࢚૞ + ૛࢚૝ − ૞࢚૜ − ૡ࢚૛ + ૞࢚ − ૝ = (࢚ − ૛)(࢚૝ + ૝࢚૜ + ૜࢚૛ − ૛࢚ + ૚) + ૟ > 0	 

࢚ = ૛ ⇒ ࢞૛ + ࢟૛ = ૛࢞࢟ ⇒ ࢞ = ࢟ then, we get: 

૜࢞૛ + ࢞૝

૚ + ૜࢞૛ =
࢞
࣊ ⇒

૜࢞ + ࢞૜

૚ + ૜࢞૛ =
૚
࣊ ; ࢞ ≠ ૙ 

Let ࢞ = ࢞ࢎ࢔ࢇ࢚ ⇒ (૜࢞)ࢎ࢔ࢇ࢚ = ૚
࣊
⇒ ష૜࢛ࢋ૜࢛ିࢋ

ష૜࢛ࢋ૜࢛ାࢋ
= ૚

࣊
 

⇒
૟࢛ࢋ − ૚
૟࢛ࢋ + ૚ =

૚
࣊ ⇒ ૟࢛ࢋ =

࣊+ ૚
࣊ − ૚ ⇒ ࢛ =

૚
૟ ࢍ࢕࢒ ൬

࣊ + ૚
࣊ − ૚൰ 

Therefore, 

		࢞ = ࢟ = ࢛;࢛	࢔ࢇ࢚ =
૚
૟ ൬ࢍ࢕࢒

࣊ + ૚
࣊ − ૚൰ 

231. Solve for real numbers: 

൝
࢞,࢟, ࢠ > 0

(૚૙૛૝࢞)࢔ࢇ࢚ + (૚૙૛૝࢟)࢔ࢇ࢚ + (ࢠ૚૙૛૝)࢔ࢇ࢚ = ૙
࢞ + ࢟ + ࢠ = ࣊

 

Proposed by Daniel Sitaru-Romania 

Solution by Mohammad Rostami-Kabul-Afganistan 

(૚૙૛૝࢞)࢔ࢇ࢚ + (૚૙૛૝࢟)࢔ࢇ࢚ =  (ࡵ)		;(ࢠ૚૙૛૝)࢔ࢇ࢚−

࢞ + ࢟ + ࢠ = ࣊ ⇒ ࢞ + ࢟ = ࣊ − ࢠ ⇒ ૚૙૛૝࢞+ ૚૙૛૝࢟ = ૚૙૛૝࣊ − ૚૙૛૝ࢠ 

⇒ +૚૙૛૝࢞)࢔ࢇ࢚ ૚૙૛૝࢟) = ૚૙૛૝࣊)࢔ࢇ࢚ − ૚૙૛૝ࢠ) 

⇒
૚૙૛૝࢞࢔ࢇ࢚ + ૚૙૛૝࢟࢔ࢇ࢚

૚ − ૚૙૛૝࢞࢔ࢇ࢚ ∙ ૚૙૛૝࢟࢔ࢇ࢚ =  ࢠ૚૙૛૝࢔ࢇ࢚−

૚૙૛૝࢞࢔ࢇ࢚ + ૚૙૛૝࢟࢔ࢇ࢚ = 

= ૚૙૛૝࢞࢔ࢇ࢚ + ૚૙૛૝࢟࢔ࢇ࢚ − ૚૙૛૝࢞࢔ࢇ࢚ ∙ +૚૙૛૝࢞࢔ࢇ࢚)૚૙૛૝࢟࢔ࢇ࢚  	(૚૙૛૝࢟࢔ࢇ࢚

⇔ ૚૙૛૝࢞࢔ࢇ࢚ ∙ ૚૙૛૝࢞࢔ࢇ࢚)૚૙૛૝࢟࢔ࢇ࢚ + (૚૙૛૝࢟࢔ࢇ࢚ = ૙	 
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⇒ ൜࢚࢔ࢇ૚૙૛૝࢞ ∙ ૚૙૛૝࢟࢔ࢇ࢚ = ૙; (ࡵࡵ)		
૚૙૛૝࢞࢔ࢇ࢚ + ;૚૙૛૝࢟࢔ࢇ࢚ (ࡵࡵࡵ)		 	 

૚૙૛૝࢞࢔ࢇ൜࢚	:(ࡵࡵ) = ૙
૚૙૛૝࢟࢔ࢇ࢚ = ૙ ⇒ ൞

࢞ =
࢑࣊
૚૙૛૝

࢟ =
࢑ᇱ࣊
૚૙૛૝

;࢑,࢑′ ∈ ℤ 

:(ࡵࡵࡵ)&(ࡵ) ࢠ૚૙૛૝࢔ࢇ࢚ = ૙ ⇒ ࢠ =
࢑ᇱᇱ࣊
૚૙૛૝ ;࢑′′ ∈ ℤ 

If ࢑ = ࢑ᇱ = ૙ ⇒ ࢞ = ࢟ = ૙,࢑ᇱᇱ = ૚૙૛૝ ⇒ ቄ࢞ = ࢟ = ૙
ࢠ = ࣊  

If ࢑ᇱ = ࢑ᇱᇱ = ૙ ⇒ ࢟ = ࢠ = ૙,࢞ = ࣊,࢑ = ૚૙૛૝ ⇒ ቄ࢟ = ࢠ = ૙
࢞ = ࣊  

If ࢑ = ࢑ᇱᇱ = ૙ ⇒ ࢞ = ࢠ = ૙,࢟ = ࣊,࢑ᇱ = ૚૙૛૝ ⇒ ൜࢞ = ࢠ = ૙
࢟ = ࣊  

࢞ + ࢟ + ࢠ = ࣊ ⇒
࢑࣊
૚૙૛૝ +

࢑ᇱ࣊
૚૙૛૝ +

࢑ᇱᇱ࣊
૚૙૛૝ = ࣊ ⇒

࣊
૚૙૛૝

(࢑+ ࢑ᇱ + ࢑ᇱᇱ) = ࣊ 

࢑+ ࢑ᇱ + ࢑ᇱᇱ = ૚૙૛૝ 

࢞ =
࢑࣊
૚૙૛૝ ;࢟ =

࢑ᇱ࣊
૚૙૛૝ ; ࢠ =

࢑ᇱᇱ

૚૙૛૝ ;࢞ + ࢟ + ࢠ = ࣊ᇱ࢑,࢑ᇱ ,࢑′′ ∈ ℤ 

 

232. If ࡭ ∈ ૛࡭)࢚ࢋࢊ ૜(ℝ) such thatࡹ − ૜࡭ + ૜ࡵ૜) = ૙. Prove that: 

૛࡭)࢚ࢋࢊ૛ + ૜ࡵ૜) ≥ ૜(࡭࢚ࢋࢊ + ૜)૛ 

Proposed by Marian Ursărescu-Romania 
Solution by proposer 

૛࡭)࢚ࢋࢊ − ૜࡭ + ૜ࡵ૜) = +࡭)࢚ࢋࢊ ࡭)࢚ࢋࢊ(૜ࡵࢻ − (૜ࡵࢻ = ૙; (૚), where ࢻ ∈ ℂ is root of 

equation ࢞૛ + ૜࢞ + ૜ = ૙,ࢻ = ି૜±࢏√૜
૛

ࢻ, + ഥࢻ = −૜,ࢻ ∙ ഥ	ࢻ = ૜
(૚)
ሳሰ 

࡭)࢚ࢋࢊ + (૜ࡵࢻ = ૙ or	࡭)࢚ࢋࢊ − (૜ࡵࢻ = ૙; ࡭)࢚ࢋࢊ+ (૜തതതതതതതതതതࡵࢻ = ૙; (૛) 

Let ࢌ(࢞) = ࡭)࢚ࢋࢊ + (૜ࡵ࢞ = ࡭࢚ࢋࢊ + ૚࢞ࢇ + ૛࢞૛ࢇ + ࢞૜
(૛)
ሳሰ (ࢻ)ࢌ = ૙ 

⇒ ࡭࢚ࢋࢊ + ࢻ૚ࢇ + ૛ࢻ૛ࢇ + ૜ࢻ = ૙; (૜) 

But ࢻ = −૚ + ઽ, where ࢿ૛ + ࢿ + ૚ = ૙ or ࢿ૜ = ૚; (૝). 

From (3),(4) we have: ࡭࢚ࢋࢊ + ࢿ)૚ࢇ − ૚) + ࢿ)૛ࢇ − ૚)૛ + ࢿ) − ૚)૜ = ૙ ⇒ 

࡭࢚ࢋࢊ − ૚ࢇ + ࢿ૚ࢇ − ૜ࢇࢿ૛ + ૜(૛ࢿ + ૚) = ࡭࢚ࢋࢊ − ૚ࢇ + ૜ + ૚ࢇ)ࢿ − ૜ࢇ૛ + ૟) = ૙ 
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૚ࢇ = ࡭࢚ࢋࢊ + ૜,ࢇ૛ =
૚
૜

+࡭࢚ࢋࢊ) ૢ) ⇒ 

(࢞)ࢌ = +࡭࢚ࢋࢊ (૜ + ࢞(࡭࢚ࢋࢊ +
૚
૜

(ૢ + ૛࢞(࡭࢚ࢋࢊ + ࢞૜ 

૜൯√࢏൫ࢌ = ࡭൫࢚ࢋࢊ + ૜൯√࢏ = ࡭࢚ࢋࢊ + (૜ + ૜√࢏(࡭࢚ࢋࢊ − ࡭࢚ࢋࢊ − ૢ − ૜√૜࢏ = 

= −ૢ + ࡭࢚ࢋࢊ૜√࢏ = −൫ૢ −  ൯࡭࢚ࢋࢊ૜√࢏

૜൯√࢏−൫ࢌ = ࡭൫࢚ࢋࢊ − ૜൯√࢏ = −൫ૢ +  ൯࡭࢚ࢋࢊ૜√࢏

૜൯√࢏−൫ࢌ૜൯√࢏൫ࢌ = +࡭)࢚ࢋࢊ ૜ࡵ૜) = ૡ૚+ ૜(࡭࢚ࢋࢊ)૛

= ૜(ૢ + (૛(࡭࢚ࢋࢊ) ≥
ࡿ࡯࡮ ૜

૛
࡭࢚ࢋࢊ) + ૜)૛ 

233. If ࢞૚,࢞૛, … ,࢞૛૙૛૚ are positive real numbers such that: 

૚
૚+ ࢞૚

+
૚

૚ + ࢞૛
+ ⋯+

૚
૚+ ࢞૛૙૛૚

=
૚

૛૙૛૙
 

Prove that: ࢞૚ ⋅ ࢞૛ ⋅ … ⋅ ࢔࢞ ≤
૚

૛૙૛૙૛૙૛૚
 

Proposed by Nguyen Van Canh-Ben Tre-Vietnam 

Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

෍
૚

૚ + ࢏࢞

૛૙૛૚

ୀ૚࢏

= ૛૙૛૙ ⇔ ෍
࢏࢞

૚ + ࢏࢞

૛૙૛૚

ୀ૚࢏

= ૚ ⇒ 

૚
૚ + ࢏࢞

= ૚ −
࢏࢞

૚ + ࢏࢞
= ෍

࢞࢐
૚ + ࢞࢐࢐ஷ࢏

≥
ࡹࡳିࡹ࡭

૛૙૛૙ ඨෑ
࢞࢐

૚ + ࢞࢐࢐ஷ࢏

૛૙૛૙ ⇒ 

ෑ
૚

૚ + ࢏࢞

૛૙૛૚

ୀ૚࢏

≥ ૛૙૛૙ ඩෑෑ
࢞࢐

૚ + ࢞࢐࢐ஷ࢏

૛૙૛૚

ୀ૚࢏

૛૙૛૚

= ૛૙૛૙૛૙૛૚ ⋅ (࢞૚ ⋅ ࢞૛ ⋅ … ⋅ (࢔࢞ ෑ
૚

૚ + ࢏࢞

૛૙૛૚

ୀ૚࢏

 

Therefore, 

࢞૚ ⋅ ࢞૛ ⋅… ⋅ ࢔࢞ ≤
૚

૛૙૛૙૛૙૛૚ 

Solution 2 by Marian Ursărescu-Romania 

Because 	 ૚
૚ା࢞૚

+ ૚
૚ା࢞૛

+ ⋯+ ૚
૚ା࢞૛૙૛૚

= ૚
૛૙૛૙

⇒ ,૛ࢻ,૚ࢻ∃ … ૛૙૛૚ࢻ, ∈ ℝ such that: 
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࢞૚ =
૚ࢻ

૛ࢻ + ૜ࢻ + ⋯+ ૛૙૛૚ࢻ
,࢞૛ =

૛ࢻ
૚ࢻ + ૜ࢻ + ⋯+ ૛૙૛૚ࢻ

, …, 

࢞૛૙૛૚ =
૛૙૛૚ࢻ

૚ࢻ + ૛ࢻ + ⋯+ ૛૙૛૙ࢻ
 

We must show that: 

૚ࢻ ⋅ ૛ࢻ ⋅ ૜ࢻ ⋅ … ⋅ ૛૙૛૚ࢻ
૛ࢻ) + ૜ࢻ + ⋯+ ૚ࢻ)(૛૙૛૚ࢻ + ૜ࢻ + ⋯+ (૛૙૛૚ࢻ ⋅… ⋅ ૚ࢻ) + ૛ࢻ + ⋯+ (૛૙૛૙ࢻ ≤

૚
૛૙૛૙૛૙૛૚ 

૛ࢻ) + ૜ࢻ + ⋯+ ૚ࢻ)(૛૙૛૚ࢻ + ૜ࢻ + ⋯+ (૛૙૛૚ࢻ ⋅ … ⋅ ૚ࢻ) + ૛ࢻ + ⋯+ (૛૙૛૙ࢻ ≥ 

≥ ૛૙૛૙૛૙૛૚ ⋅ ૚ࢻ ⋅ ૛ࢻ ⋅ ૜ࢻ ⋅… ⋅ ;૛૙૛૚ࢻ (૚) 

૛ࢻ + ૜ࢻ + ⋯+ ૛૙૛૚ࢻ ≥ ૛૙૛૙ ඥࢻ૛ࢻ૜ ⋅ … ⋅ ૛૙૛૚૛૙૛૙ࢻ  

⎩
⎪
⎨

⎪
૛ࢻ⎧ + ૜ࢻ + ⋯+ ૛૙૛૚ࢻ ≥ ૛૙૛૙ ඥࢻ૛ࢻ૜ ⋅… ⋅ ૛૙૛૚૛૙૛૙ࢻ

૚ࢻ + ૜ࢻ + ⋯+ ૛૙૛૚ࢻ ≥ ૛૙૛૙ ඥࢻ૚ࢻ૜ ⋅… ⋅ ૛૙૛૚૛૙૛૙ࢻ

…
૚ࢻ + ૛ࢻ + ⋯+ ૛૙૛૙ࢻ ≥ ૛૙૛૙ ඥࢻ૚ࢻ૛ ⋅… ⋅ ૛૙૛૙૛૙૛૙ࢻ

⇒ (૚) is true. Proved. 

 

࡯,࡮,࡭ .234 ∈ ࢔,(ℝ)࢔ࡹ ∈ ℕ,࢔ ≥ ૛,࡮࡭ = ࡯࡭,࡭࡮ = ࡯࡮,࡭࡯ =  .࡮࡯

If ࡭ ࡮+ + ࡯ = ࡮࡭)࢚ࢋࢊ then ࢔ࡵ + (࡯ ⋅ ࡯࡮)࢚ࢋࢊ + (࡭ ⋅ ࡭࡯)࢚ࢋࢊ + (࡮ ≥ ૙ 

Proposed by Marian Ursărescu-Romania 

Solution 1 by proposer 

࡮࡭)࢚ࢋࢊ + (࡯ = ࡮࡭)࢚ࢋࢊ + ࢔ࡵ − ࡭ (࡮− = −࡮)࡭)࢚ࢋࢊ (࢔ࡵ + ࢔ࡵ − (࡮ = 

= −࡮)൫࢚ࢋࢊ ࡭)(࢔ࡵ − ൯(࢔ࡵ = ࡭)࢚ࢋࢊ − −࡮)࢚ࢋࢊ(࢔ࡵ ;(࢔ࡵ (૚) 

+࡯࡮)࢚ࢋࢊ (࡭ = ࡯࡮)࢚ࢋࢊ + ࢔ࡵ −࡮− (࡯ = −࡯)࡮)࢚ࢋࢊ (࢔ࡵ + ࢔ࡵ − (࡯ = 

= ࡯)൫࢚ࢋࢊ − −࡮)(࢔ࡵ ൯(࢔ࡵ = −࡮)࢚ࢋࢊ ࡯)࢚ࢋࢊ(࢔ࡵ − ;(࢔ࡵ (૛) 

+࡭࡯)࢚ࢋࢊ (࡮ = ࡭࡯)࢚ࢋࢊ + ࢔ࡵ − ࡭ − (࡯ = ࡭)࡯)࢚ࢋࢊ − (࢔ࡵ + ࢔ࡵ − (࡭ = 

= −࡭)൫࢚ࢋࢊ −࡯)(࢔ࡵ ൯(࢔ࡵ = ࡭)࢚ࢋࢊ − ࡯)࢚ࢋࢊ(࢔ࡵ − ;(࢔ࡵ (૜) 

From (1),(2),(3) it follows that: 

+࡮࡭)࢚ࢋࢊ (࡯ ⋅ +࡯࡮)࢚ࢋࢊ (࡭ ⋅ +࡭࡯)࢚ࢋࢊ (࡮ ≥ ൫࡭)࢚ࢋࢊ − −࡮)࢚ࢋࢊ(࢔ࡵ ࡯)࢚ࢋࢊ(࢔ࡵ − ൯૛(࢔ࡵ ≥ ૙ 

 Solution 2 by Alex Szoros-Romania 

࡭ + ࡮ + ࡯ = ࢔ࡵ ⇒ ࡯ = ࢔ࡵ − ࡭  ࡮−
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࡮࡭ + ࡯ = ࡮࡭ + ࢔ࡵ − ࡭ ࡮− = −࡭) −࡮)(࢔ࡵ (࢔ࡵ ⇒ 

࡮࡭)࢚ࢋࢊ + (࡯ = −࡭)࢚ࢋࢊ −࡮)࢚ࢋࢊ(࢔ࡵ ;(࢔ࡵ (૚) 

+࡯࡮ ࡭ = ࡯࡮ + ࢔ࡵ ࡮− − ࡯ = −࡮) −࡯)(࢔ࡵ (࢔ࡵ ⇒ 

࡯࡮)࢚ࢋࢊ + (࡭ = −࡮)࢚ࢋࢊ −࡯)࢚ࢋࢊ(࢔ࡵ ;(࢔ࡵ (૛) 

࡭࡯ + ࡮ = ࡭࡯ + ࢔ࡵ − ࡯ − ࡭ = −࡯) −࡭)(࢔ࡵ (࢔ࡵ ⇒ 

+࡭࡯)࢚ࢋࢊ (࡮ = ࡭)࢚ࢋࢊ − −࡯)࢚ࢋࢊ(࢔ࡵ ;(࢔ࡵ (૜) 

From (1),(2),(3) it follows that: 

+࡮࡭)࢚ࢋࢊ (࡯ ⋅ +࡯࡮)࢚ࢋࢊ (࡭ ⋅ +࡭࡯)࢚ࢋࢊ (࡮ ≥ ൫࡭)࢚ࢋࢊ − −࡮)࢚ࢋࢊ(࢔ࡵ ࡯)࢚ࢋࢊ(࢔ࡵ − ൯૛(࢔ࡵ ≥ ૙ 

 Solution 3 by Ravi Prakash-New Delhi-India 

࡮࡭ + ࡯ = ࡮࡭ + ࢔ࡵ − ࡭ ࡮− = −࡭) −࡮)(࢔ࡵ (࢔ࡵ ⇒ 

࡮࡭)࢚ࢋࢊ + (࡯ = −࡭)࢚ࢋࢊ −࡮)࢚ࢋࢊ(࢔ࡵ ;(࢔ࡵ (૚) 

+࡯࡮ ࡭ = ࡯࡮ + ࢔ࡵ ࡮− − ࡯ = −࡮) −࡯)(࢔ࡵ (࢔ࡵ ⇒ 

࡯࡮)࢚ࢋࢊ + (࡭ = −࡮)࢚ࢋࢊ −࡯)࢚ࢋࢊ(࢔ࡵ ;(࢔ࡵ (૛) 

࡭࡯ + ࡮ = ࡭࡯ + ࢔ࡵ − ࡯ − ࡭ = −࡯) −࡭)(࢔ࡵ (࢔ࡵ ⇒ 

+࡭࡯)࢚ࢋࢊ (࡮ = ࡭)࢚ࢋࢊ − −࡯)࢚ࢋࢊ(࢔ࡵ ;(࢔ࡵ (૜) 

From (1),(2),(3) it follows that: 

+࡮࡭)࢚ࢋࢊ (࡯ ⋅ +࡯࡮)࢚ࢋࢊ (࡭ ⋅ +࡭࡯)࢚ࢋࢊ (࡮ ≥ ࡭)૛࢚ࢋࢊ − ࡮)૛࢚ࢋࢊ(࢔ࡵ − ࡯)૛࢚ࢋࢊ(࢔ࡵ − (࢔ࡵ ≥ ૙ 

 

࡭ .235 ∈ ࡭࢘ࢀ,૛(ℝ)ࡹ + ࡭࢚ࢋࢊ = ૛. Prove that: 

૛࡭)࢚ࢋࢊ + ࡭࢚ࢋࢊ ⋅ ࡭ + ࡭࢘ࢀ ⋅ (૛ࡵ ≥ ૝ 

Proposed by Marian Ursărescu-Romania 
Solution 1 by proposer 

(࢞)࢖ = ࢞૛ − ࢞࡭࢘ࢀ + ,࡭࢚ࢋࢊ ૚ࣅ + ૛ࣅ = ,࡭࢘ࢀ ૛ࣅ૚ࣅ =  ࡭࢚ࢋࢊ

૛࡭)࢚ࢋࢊ + ࡭࢚ࢋࢊ ⋅ ࡭ + ࡭࢚࢘ ⋅ (૛ࡵ = 

= ൫ࣅ૚૛ + ૚ࣅ࡭࢚ࢋࢊ + ૛૛ࣅ൯൫࡭࢘ࢀ + ૛ࣅ࡭࢚ࢋࢊ + ൯࡭࢘ࢀ = 

= ૛(૛ࣅ૚ࣅ) + +࡭࢚ࢋࢊ૛ࣅ૚૛ࣅ ࡭࢘ࢀ૚૛ࣅ + ૛૛ࣅ૚ࣅ࡭࢚ࢋࢊ + ૛ࣅ૚ࣅ૛(࡭࢚ࢋࢊ) + ૚ࣅ࡭࢘ࢀ࡭࢚ࢋࢊ + ૛૛ࣅ࡭࢘ࢀ

+ ૛ࣅ࡭࢚ࢋࢊ࡭࢘ࢀ + ૛(࡭࢘ࢀ) = 
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= ૛(࡭࢚ࢋࢊ) + ࡭࢘ࢀ૛(࡭࢚ࢋࢊ) + ૛(࡭࢘ࢀ))࡭࢘ࢀ − ૛࡭࢚ࢋࢊ) + ૜(࡭࢚ࢋࢊ) + ૛(࡭࢘ࢀ)࡭࢚ࢋࢊ

+ ૛(࡭࢘ࢀ) = 

= ૜(࡭࢘ࢀ) + ૜(࡭࢚ࢋࢊ) + ૛(࡭࢘ࢀ) + ૛(࡭࢚ࢋࢊ) + ࡭࢚ࢋࢊ)࡭࢘ࢀ࡭࢚ࢋࢊ + (࡭࢘ࢀ − ૛࡭࢘ࢀ࡭࢚ࢋࢊ = 

= ૜(࡭࢘ࢀ) + ૜(࡭࢚ࢋࢊ) + ૛(࡭࢘ࢀ) + ;૛(࡭࢚ࢋࢊ) (૚) 

࡭࢚ࢋࢊ) + (࡭࢘ࢀ = ૛ ⇒ ૛(࡭࢘ࢀ) + ૛(࡭࢚ࢋࢊ) = ૝ − ૛࡭࢚ࢋࢊ࡭࢘ࢀ; (૛) 

࡭࢚ࢋࢊ) + (࡭࢘ࢀ = ૛ ⇒ ૜(࡭࢘ࢀ) + ૜(࡭࢚ࢋࢊ) = ૡ − ૟࡭࢚ࢋࢊ࡭࢘ࢀ; (૜) 

From (1),(2),(3) it follows that: 

૛࡭)࢚ࢋࢊ + ࡭࢚ࢋࢊ ⋅ ࡭ + ࡭࢘ࢀ ⋅ (૛ࡵ = ૚૛ − ૡ࡭࢚ࢋࢊ࡭࢘ࢀ; (૝) 

૝࡭࢚ࢋࢊ࡭࢘ࢀ ≤ ࡭࢚ࢋࢊ) + ૛(࡭࢘ࢀ = ૝ ⇒ ࡭࢚ࢋࢊ࡭࢘ࢀ ≤ ૚; (૞) 

From (4),(5) it follows that: 

૛࡭)࢚ࢋࢊ + ࡭࢚ࢋࢊ ⋅ ࡭ + ࡭࢘ࢀ ⋅ (૛ࡵ ≥ ૝ 

Solution 2 by Alex Szoros-Romania 

࡭ = ቀࢇ ࢈
ࢉ ቁࢊ ∈ ࡭࢘ࢀ,૛(ℝ)ࡹ = ࢇ + ࢊ ࢚࢕࢔= ࡭࢚ࢋࢊ;࢚ = ࢉࢇ − ࢊ࢈ ࢚࢕࢔=  ࢾ

૛࡭ − ࡭࢚ + ૛ࡵࢾ = ૛ࡻ ⇒ ૛࡭ = ࡭࢚ − ૛ࡵࢾ  

૛࡭ + ࡭ࢾ + ૛ࡵ࢚ = ࡭࢚ − ૛ࡵࢾ + ࡭ࢾ + ૛ࡵ࢚ = ૛࡭ + (࢚ − ૛ࡵ(ࢾ = 

= ૛࡭ + (૛ − ૛ࡵ(ࢾ૛ = ૛[࡭ + (૚ − [૛ࡵ(ࢾ = ૝ ቚࢇ+ ૚ − ࢾ ࢈
ࢉ ࢊ + ૚ −  ቚࢾ

૛࡭)࢚ࢋࢊ + ࡭ࢾ + (૛ࡵ࢚ ≥ ૝ ⇔ +ࢇ) ૚ − +ࢊ)(ࢾ ૚ − (ࢾ − ࢉ࢈ ≥ ૚ ⇔ 

૛ࢾ − −ࢾ ࢾ࢚ + ࢚ ≥ ૙ ⇔ ૛ࢾ૛ − ૝ࢾ+ ૛ ≥ ૙ ⇔ ࢾ) − ૚)૛ ≥ ૙ 

Solution 3 by Ravi Prakash-New Delhi-India 

Let: ࡭ = ቀࢇ ࢈
ࢉ ቁࢊ ∈ ࡭࢘ࢀ,૛(ℝ)ࡹ = ࢇ + ࡭࢚ࢋࢊ;ࢊ = ࢉࢇ −   .ࢊ࢈

We are given: ࡭࢘ࢀ + ࡭࢚ࢋࢊ = ૛. Also, by the Cayley Hamilton theorem: 

૛࡭ − ࡭࢘ࢀ ⋅ ࡭ + ࡭࢚ࢋࢊ ⋅ ૛ࡵ = ૛ࡻ ⇒ ૛࡭ = ࡭࢘ࢀ ⋅ ࡭ − ࡭࢚ࢋࢊ ⋅ ૛ࡵ  

Now, ࡭૛ + ࡭࢚ࢋࢊ ⋅ ࡭ + ࡭࢘ࢀ ⋅ ૛ࡵ = ࡭࢘ࢀ ⋅ ࡭ − ࡭࢚ࢋࢊ ⋅ ૛ࡵ + ࡭࢚ࢋࢊ ⋅ ࡭ + ࡭࢘ࢀ ⋅ ૛ࡵ = 

= ૛(࡭ + −࡭࢘ࢀ) ૚)ࡵ૛) = ૛ ቚ૛ࢇ + ࢊ ࢈
ࢉ ૛ࢊ + ࢇ − ૚ቚ ⇒ 

૛࡭)࢚ࢋࢊ + ࡭࢚ࢋࢊ ⋅ ࡭ + ࡭࢘ࢀ ⋅ (૛ࡵ = ૝(૚ − ૝(ࢇ + (ࢊ + ૝ࢊࢇ + ૛(ࢇ૛ + (૛ࢊ + ૛) = 

= ૝(૚ + ૛(ࢇ+ ࢊ − ૚)૛) ≥ ૙ 
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,૚ࢠ .236 ,૛ࢠ ૜ࢠ ∈ ℂ∗ −different in pairs such that  

|૚ࢠ| = |૛ࢠ| = |૜ࢠ| = ૚,࡭(ࢠ૚),࡮(ࢠ૛),࡯(ࢠ૜). If  

෍
૚

૜|૛ࢠ૚ − ૛ࢠ − |૜ࢠ + |૛ࢠ૛ − ૚ࢠ − |૜ࢠ
ࢉ࢟ࢉ

=
૚
૝
⇒ ࡮࡭ = ࡯࡮ =  ࡭࡯

Proposed by Marian Ursărescu-Romania 
Solution by proposer 

|૚ࢠ| = |૛ࢠ| = |૜ࢠ| = ૚, ࡭(ࢠ૚),࡮(ࢠ૛),࡯(ࢠ૜);ઢ࡯࡮࡭ ⊂  (૙,૚)࡯

෍
૚

૜|૛ࢠ૚ − ૛ࢠ − |૜ࢠ + |૛ࢠ૛ − ૚ࢠ − |૜ࢠ
ࢉ࢟ࢉ

=
૚
૝ ⇔ 

෍
૚
૛ ⋅

૚

૜ ቚࢠ૚ −
૛ࢠ + ૜ࢠ

૛ ቚ + ቚࢠ૛ −
૚ࢠ + ૜ࢠ

૛ ቚࢉ࢟ࢉ

=
૚
૝ ⇔෍

૚
૜ࢇ࢓ + ࢉ࢟ࢉ࢈࢓

=
૚
૛ ; (૚) 

૚
૛ = ෍

૚
૜ࢇ࢓ + ࢉ࢟ࢉ࢈࢓

≥⏞
ࡿ࡮࡯ ૢ

૝(ࢇ࢓ + ࢈࢓ + (ࢉ࢓ ; (૛) 

But: ࢇ࢓ + ࢈࢓ + ࢉ࢓ ≤
ࡾૢ
૛

=⏞
ୀ૚ࡾ

ૢ
૛

; (૜) 

From (2),(3) we get:  ૚
૛
≥ ૢ

૝(ࢇ࢓ା࢈࢓ାࢉ࢓)
≥ ૢ

૝∙ૢ૛
= ૚

૛
 

ࢇ࢓ + ࢈࢓ + ࢉ࢓ =
ࡾૢ
૛ =⏞

ୀ૚ૢࡾ
૛	(૝) 

From (3),(4) it follows that ઢ࡯࡮࡭ −equilateral. 

 

,૚ࢠ .237 ,૛ࢠ ૜ࢠ ∈ ℂ∗ −different in pairs, |ࢠ૚| = |૛ࢠ| =  (૜ࢠ)࡯,(૛ࢠ)࡮,(૚ࢠ)࡭,|૜ࢠ|

෍ቤ
૚ࢠ) − ૚ࢠ|(૛ࢠ − |૜ࢠ + ૚ࢠ) − ૚ࢠ|(૜ࢠ − |૛ࢠ

૛ࢠ૚ − ૛ࢠ − ૜ࢠ
ቤ

ࢉ࢟ࢉ

= ෍ ૚ࢠ| − |૛ࢠ
ࢉ࢟ࢉ

⇒ ࡮࡭ = ࡯࡮ =  ࡭࡯

Proposed by Marian Ursărescu-Romania 

Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

Let ࡻ −circumcenter of ઢ࡯࡮࡭ is origin of the complex plane. 

|૚ࢠ| = |૛ࢠ| = |૜ࢠ| = ;ࡾ ૚ࢠ| − |૛ࢠ = ࡮࡭ =  (and analogs)		ࢉ

૚ࢠ) − ૚ࢠ|(૛ࢠ − |૜ࢠ + ૚ࢠ) − ૚ࢠ|(૜ࢠ − |૛ࢠ = ૚ࢠ)࢈| − (૛ࢠ + ૚ࢠ)ࢉ − |(૜ࢠ = 



 
www.ssmrmh.ro 

38 RMM-ABSTRACT ALGEBRA MARATHON 201-300 
 

= ࢇ| + ࢈ + ૚ࢠࢉ − ૚ࢠࢇ) + ૛ࢠ࢈ + |(૜ࢠࢉ = 

= ૛࢙ ฬࢠ૚ −
૚ࢠࢇ + ૛ࢠ࢈ + ૜ࢠࢉ

ࢇ + ࢈ + ࢉ ฬ = ૛࢙ ⋅  ࡵ࡭

|૛ࢠ૚ − ૛ࢠ − |૜ࢠ = ૛ ฬࢠ૚ −
૛ࢠ + ૜ࢠ

૛ ฬ = ૛ࢇ࢓ 

෍ቤ
૚ࢠ) − ૚ࢠ|(૛ࢠ − |૜ࢠ + ૚ࢠ) − ૚ࢠ|(૜ࢠ − |૛ࢠ

૛ࢠ૚ − ૛ࢠ − ૜ࢠ
ቤ

ࢉ࢟ࢉ

= ෍|ࢠ૚ − |૛ࢠ
ࢉ࢟ࢉ

⇔෍
ࡵ࡭
ࢉ࢟ࢉࢇ࢓

= ૛ 

We know that: 

෍
ࡵ࡭
ࢉ࢟ࢉࢇ࢓

= ࢘෍
૚

࢔࢏࢙ࢇ࢓
࡭
૛ࢉ࢟ࢉ

≤ ࢘෍
૚

࢔࢏࢙ࢇ࢝
࡭
૛ࢉ࢟ࢉ

= ࢘෍
࢈ + ࢉ

૛ࢉ࢈ ⋅ ૛࡭࢙࢕ࢉ ࢔࢏࢙
࡭
૛ࢉ࢟ࢉ

= 

= ૛࢘ࡾ෍
࢈ + ࢉ
ࢉ࢈ࢇ

ࢉ࢟ࢉ

= ૛ 

Therefore: 

෍ቤ
૚ࢠ) − ૚ࢠ|(૛ࢠ − |૜ࢠ + ૚ࢠ) − ૚ࢠ|(૜ࢠ − |૛ࢠ

૛ࢠ૚ − ૛ࢠ − ૜ࢠ
ቤ

ࢉ࢟ࢉ

= ෍ ૚ࢠ| − |૛ࢠ
ࢉ࢟ࢉ

⇒ ࡮࡭ = ࡯࡮ =  ࡭࡯

Equality holds if and only if triangle is equilateral. 

 Solution 2 by proposer 

|૚ࢠ| = |૛ࢠ| = |૜ࢠ| = ࡯࡮࡭ઢ,(૜ࢠ)࡯,(૛ࢠ)࡮,(૚ࢠ)࡭,ࡾ ⊂  (૙,૚)࡯

෍ቤ
૚ࢠ) − ૚ࢠ|(૛ࢠ − |૜ࢠ + ૚ࢠ) − ૚ࢠ|(૜ࢠ − |૛ࢠ

૛ࢠ૚ − ૛ࢠ − ૜ࢠ
ቤ

ࢉ࢟ࢉ

= ෍|ࢠ૚ − |૛ࢠ
ࢉ࢟ࢉ

⇔ 

෍ቮ
૚ࢠ) − +࡯࡭(૛ࢠ ૚ࢠ) − ࡮࡭(૜ࢠ

૛ቀࢠ૚ −
૛ࢠ + ૜ࢠ

૛ ቁ
ቮ

ࢉ࢟ࢉ

= ࡮࡭ + ࡯࡮ + ࡭࡯ ⇔ 

෍
૚ࢠ)| − ࢈(૛ࢠ + ૚ࢠ) − |ࢉ(૜ࢠ

ቚࢠ૚ −
૛ࢠ + ૜ࢠ

૛ ቚࢉ࢟ࢉ

= ૛(ࢇ+ ࢈ + (ࢉ ⇔ 

෍
+࢈)| ૚ࢠ(ࢉ − ૛ࢠ࢈ − |૜ࢠࢉ

ࢇ࢓
=

ࢉ࢟ࢉ

૛(ࢇ+ ࢈ + (ࢉ ⇔ 

෍
+ࢇ)| ࢈ + ૚ࢠ(ࢉ − ૚ࢠࢇ) + ૛ࢠ࢈ + |(૜ࢠࢉ

ࢉ࢟ࢉࢇ࢓

= ૛ ⇔෍
ࡵ࡭
ࢉ࢟ࢉ૛࢓

= ૛; (૚) 
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But: ࢇ࢓ ≥ ඥ࢙(࢙ − ࡵ࡭ and (ࢇ = ࢘

૛࡭࢔࢏࢙
⇒ 

෍
ࡵ࡭
ࢉ࢟ࢉࢇ࢓

≤෍
࢘

ඥ࢙(࢙ − ࢉ࢟ࢉ૛࡭࢔࢏࢙(ࢇ

= ෍
࢘

ඥ࢙(࢙ − (ࢇ ⋅ ට(࢙ − ࢙)(࢈ − (ࢉ
ࢉ࢈

ࢉ࢟ࢉ

= 

= ෍
ࢉ࢈√࢘
࢙

ࢉ࢟ࢉ

= ෍
ࢉ࢈√
࢙

ࢉ࢟ࢉ

≤෍
࢈ + ࢉ
૛࢙

ࢉ࢟ࢉ

= ૛; (૛) 

From (1),(2) it follows that ઢ࡯࡮࡭ −equilateral. 

238. ඥ(࢞ + ࢟)(૝ − (ࢠ + ඥ(࢟ + −૛)(ࢠ ࢚) + ඥ(ࢠ + ࢚)(૝− ࢞) + ඥ(࢚ + ࢞)(૛ − ࢟) = 

= ඨ૞࢙
૛ − ૛૝ࡿ+ ૚૝૝

૛ ; ࢙ = ࢞ + ࢟ + +ࢠ ࢚ 

Find: ષ =  തതതതതതത࢚ࢠ࢟࢞

Proposed by George Florin Şerban-Romania 

Solution 1 by proposer 

ඥ(࢞ + ࢟)(૝ − (ࢠ ≤
ࡹࡳିࡹ࡭ ࢞ + ࢟ + ૝ − ࢠ

૛ ,ඥ(࢟ + ૛)(ࢠ − ࢚) ≤
ࡹࡳିࡹ࡭ ࢟ + ࢠ + ૛ − ࢚

૛ , 

ඥ(ࢠ + ࢚)(૝ − ࢞) ≤
ࡹࡳିࡹ࡭ ࢠ + ࢚ + ૝ − ࢞

૛ ,ඥ(࢚ + ࢞)(૛ − ࢟) ≤
ࡹࡳିࡹ࡭ ࢚ + ࢞ + ૛ − ࢟

૛  

Thus, 

ඨ૞࢙
૛ − ૛૝ࡿ + ૚૝૝

૛ ≤
࢙ + ૚૛
૛  

ඨ(૛࢙)૛ + (૚૛ − ࢙)૛

૛ ≤
૛࢙ + (૚૛− ࢙)

૛ ≤ ඨ(૛࢙)૛ + (૚૛ − ࢙)૛

૛  

Applying AM-GM inequality, equality holds when ૛࢙ = ૚૛ − ࢙, ࢙ = ૝ → 

࢞ + ࢟ = ૝ − ࢟,ࢠ + ࢠ = ૛ − ࢚, ࢠ + ࢚ = ૝ − ࢞, ࢚ + ࢞ = ૛ − ࢟ 

࢞ + ࢟ + ࢠ + ࢚ = ૝, ࢞ + ࢟ + ࢠ = ૝ → ࢚ = ૙, ࢞ + ࢠ + ࢚ = ૝ → ࢟ = ૙, ࢞ = ૛,࢚࢞࢟ࢠതതതതതതത = ૛૙૛૙. 

 Solution 2 by Michael Sterghiou-Greece 
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ඥ(࢞ + ࢟)(૝− (ࢠ + ඥ(࢟ + ૛)(ࢠ − ࢚) + ඥ(ࢠ + ࢚)(૝ − ࢞) + ඥ(࢚+ ࢞)(૛ − ࢟)

= ඨ૞࢙
૛ − ૛૝ࡿ+ ૚૝૝

૛ ; (૚) 

࢞,࢟, ,ࢠ ࢚ ∈ ℕ. By AM-GM, ࡿࡴࡸ(૚) ≤
࢙ା૚૛
૛

 and ࡿࡴࡾ(૚) ≤
࢙ା૚૛
૛

→ ૢ
૝

(࢙ − ૝)૛ ≤ ૙ → ࢙ = ૝. 

We see that (࢞,࢟, ,ࢠ ࢚) = (૛,૙,૛,૙) is the only solution giving ࡿࡴࡸ(૚) = ૡ =  with (૚)ࡿࡴࡾ

࢙ = ૝. Therefor, ષ = തതതതതതത࢚ࢠ࢟࢞ = ૛૙૛૙. 

 

239. Find ࢞ ∈ (૙,࣊) such that: 

࢞)૚ି࢔ࢇ࢚ + ૚) + ૚૛ି࢔ࢇ࢚ + ૚ି࢔ࢇ࢚ ቆ
࢞૛࢙࢞࢔࢏ − ૛࢙࢞࢞࢕ࢉ − ૛࢙࢞࢔࢏
࢞૛࢙࢞࢕ࢉ − ૛࢙࢞࢞࢔࢏ − ૛࢙࢞࢕ࢉ

ቇ = ࢞ 

Proposed by Daniel Sitaru-Romania 

Solution by Mohammad Rostami-Kabul-Afghanistan 

⎩
⎪
⎨

⎪
⎧ ࢞)૚ି࢔ࢇ࢚ + ૚) = ࢻ

૚૛ି࢔ࢇ࢚ = ࢼ

૚ି࢔ࢇ࢚ ቆ
࢞૛࢙࢞࢔࢏ − ૛࢙࢞࢞࢕ࢉ − ૛࢙࢞࢔࢏
࢞૛࢙࢞࢕ࢉ− ૛࢙࢞࢞࢔࢏ − ૛࢙࢞࢕ࢉቇ = ࢽ

⇒ ൞

ࢻ࢔ࢇ࢚ = ࢞ + ૚
ࢼ࢔ࢇ࢚ = ૛

ࢽ࢔ࢇ࢚ =
࢞૛࢙࢞࢔࢏ − ૛࢙࢞࢞࢕ࢉ − ૛࢙࢞࢔࢏
࢞૛࢙࢞࢕ࢉ− ૛࢙࢞࢞࢔࢏ − ૛࢙࢞࢕ࢉ

 

ࢻ + ࢼ + ࢽ = ࢞ ⇒ ࢻ)࢔ࢇ࢚ + ࢼ + (ࢽ = ࢞࢔ࢇ࢚ ⇒ 

ࢻ࢔ࢇ࢚ + ࢼ࢔ࢇ࢚ + ࢽ࢔ࢇ࢚ − ࢻ࢔ࢇ࢚ ∙ ࢼ࢔ࢇ࢚ ∙ ࢽ࢔ࢇ࢚
૚ − ࢻ࢔ࢇ࢚ ∙ ࢼ࢔ࢇ࢚ − ࢼ࢔ࢇ࢚ ∙ ࢽ࢔ࢇ࢚ − ࢽ࢔ࢇ࢚ ∙ ࢻ࢔ࢇ࢚ =  ࢞࢔ࢇ࢚

(࢞ + ૚) + ૛ + ࢞૛࢙࢞࢔࢏− ૛࢙࢞࢞࢕ࢉ− ૛࢙࢞࢔࢏
࢞૛࢙࢞࢕ࢉ − ૛࢙࢞࢞࢔࢏− ૛࢙࢞࢕ࢉ− ૛(࢞ + ૚) ࢞

૛࢙࢞࢔࢏− ૛࢙࢞࢞࢕ࢉ − ૛࢙࢞࢔࢏
࢞૛࢙࢞࢕ࢉ − ૛࢙࢞࢞࢔࢏− ૛࢙࢞࢕ࢉ

૚ − ૛(࢞ + ૚)− (࢞ + ૚) ࢞
૛࢙࢞࢔࢏− ૛࢙࢞࢞࢕ࢉ − ૛࢙࢞࢔࢏

࢞૛࢙࢞࢕ࢉ − ૛࢙࢞࢞࢔࢏− ૛࢙࢞࢕ࢉ− ૛ ࢞
૛࢙࢞࢔࢏ − ૛࢙࢞࢞࢕ࢉ− ૛࢙࢞࢔࢏
࢞૛࢙࢞࢕ࢉ− ૛࢙࢞࢞࢔࢏− ૛࢙࢞࢕ࢉ

=  ࢞࢔ࢇ࢚

(࢞૜ + ૠ࢞૛ − ૟)࢙࢞࢕ࢉ+ (−૛࢞૜ − ૜࢞૛ − ૛࢞ + ૛)࢙࢞࢔࢏
(−૛࢞૜ + ࢞૛ + ૚૙࢞ + ૛)࢙࢞࢕ࢉ + (−࢞૜ + ࢞૛ + ૝࢞ + ૟)࢙࢞࢔࢏ = ࢞࢔ࢇ࢚ ⇒ 

൝
−૛࢞૜ − ૜࢞૛ − ૛࢞ + ૛ = −૛࢞૜ + ࢞૛ + ૚૙࢞ + ૛

࢞૜ + ૠ࢞ − ૟ = ૙
−࢞૜ + ࢞૛ + ૝࢞ + ૟ = ૙

 

(ࡵ − ૛࢞૜ − ૜࢞૛ − ૛࢞ + ૛ = −૛࢞૜ + ࢞૛ + ૚૙࢞ + ૛ ⇒ ૝࢞૛ + ૚૛࢞ = ૙

⇒ ൜ ࢞ = ૙ ∉ (૙,࣊)
࢞ = −૜࢞ ∉ (૙,࣊) 
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૜࢞	(ࡵࡵ + ૠ࢞૛ − ૟ = ૙ ⇒ (࢞૜ + ࢞૛) + (૟࢞૛ − ૟) = ૙ ⇒ (࢞ + ૚)(࢞૛ + ૟࢞ − ૟) = ૙ 

⇒ ቐ
࢞ + ૚ = ૙ ⇒ ࢞ = −૚ ∉ (૙,࣊)

࢞૛ + ૟࢞ − ૟ = ૙ ⇒ ࢞ =
−૟ ± ૛√૚૞

૛ ⇒ ቊ࢞ = −૜ − √૚૞ ∉ (૙,࣊)
࢞ = −૜ + √૚૞ ∈ (૙,࣊)

 

(ࡵࡵࡵ − ࢞૜ + ࢞૛ + ૝࢞ + ૟ = ૙ ⇒ −(࢞૜ − ૛ૠ) + (࢞૛ − ૢ) + ૝(࢞ − ૜) = ૙ 

(࢞ − ૜)(−࢞૛ − ૛࢞ − ૛) = ૙ ⇒ ቊ
࢞ − ૜ = ૙ ⇒ ࢞ = ૜ ∈ (૙,࣊)

࢞૛ + ૛࢞ + ૛ = ૙
∆ழ଴
ሳልሰ ∅

 

240. Let ࣅ ≥ ૛ be positive real numbers. Solve for real numbers: 

ࣅ) + ૚+ ࣅ)(࢞ + ࣅ)(࢞ − ૚ + ࢞)
ࣅ) + ૚ − ࣅ)(࢞ − ࣅ)(࢞ − ૚ − ࢞)

=
૜(ૢࣅ૛ − ૚)
૚ − ૛ࣅ

 

Proposed by Marin Chirciu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco  

ࣅ) + ૚ + ࣅ)(࢞ + ࣅ)(࢞ − ૚ + ࢞)
ࣅ) + ૚ − ࣅ)(࢞ − ࣅ)(࢞ − ૚ − ࢞) =

૜(ૢࣅ૛ − ૚)
૚ − ૛ࣅ ; (∗) 

⇔
ࣅ) + +ࣅ))(࢞ ࢞)૛ − ૚)
ࣅ) − ࣅ))(࢞ − ࢞)૛ − ૚) =

૜(ૢࣅ૛ − ૚)
૚ − ૛ࣅ  

⇔ ૛ି૚൯(ା࢞ࣅ)൫(ା࢞ࣅ)
૛൯(࢞ିࣅ)൫૚ି(ࣅି࢞)

= ૜൫ૢࣅ૛ି૚൯
૚ିࣅ૛

⇒ ࢞ = ૛ࣅ is a solution of (∗) 

⇔
࢞૜ + ૜࢞ࣅ૛ + (૜ࣅ૛ − ૚)࢞+ ૜ࣅ − ࣅ
−࢞૜ + ૜࢞ࣅ૛ − (૜ࣅ૛ − ૚)࢞ + ૜ࣅ − ࣅ =

૛ૠࣅ૛ − ૜
૚ − ૛ࣅ  

⇔ (૛૟ࣅ૛ − ૛)࢞૜ − (ૡ૝ࣅ૛ − ૚૛ࣅ)࢞૛ + (ૠૡࣅ૝ − ૜૛ࣅ૛ + ૛)࢞ − ૛ૡࣅ૞ + ૜૛ࣅ૜ − ૝ࣅ = ૙ 

⇔ (࢞ − ૛ࣅ)[(૚૜ࣅ૛ − ૚)࢞૛ − (૚૟ࣅ૜ − ૝ࣅ)࢞+ (ૠࣅ૝ − ૡࣅ૛ + ૚)] = ૙ 

⇔ ࢞ = ૛ࣅ or (૚૜ࣅ૛ − ૚)࢞૛ − (૚૟ࣅ૜ − ૝ࣅ)࢞+ (ૠࣅ૝ − ૡࣅ૛ + ૚) = ૙ 

Δ = (૚૟ࣅ૜ − ૝ࣅ)૛ − ૝(૚૜ࣅ૛ − ૚)(ૠࣅ૝ − ૡࣅ૛ + ૚) = 

= −૛ૢࣅ૟ − ૠૢࣅ૝(ࣅ૛ − ૝) − ૟ૠࣅ૛ − ૛ࣅ) − ૝) < 0; ࣅ) ≥ ૛) 

Hence, (૚૜ࣅ૛ − ૚)࢞૛ − (૚૟ࣅ૜ − ૝ࣅ)࢞ + (ૠࣅ૝ − ૡࣅ૛ + ૚) = ૙	does not admit a real 

solution, then ࡿ = {૛ࣅ} is unique solution.  

 

241. ࢞ ∈ ቂ૙, ࣊
૛
ቃ ࢔, ∈ {૛, ૜, … ࢔࢞,{ + ࢞ࢋ) + ࢞૜)࢔ ≤ ૚

૛
࢔
૛ష૚

  

Find ࢞ and ࢔. 

Proposed by Pavlos Trifon-Greece 
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Solution by Chris Kyriazis-Greece 
Let ࢌ(࢞) = ࢔࢞ + ࢞ࢋ) + ࢞૜)࢔, ࢞ ∈ ቂ૙, ࣊

૛
ቃ ࢔, ≥ ૛ → 

(࢞)ᇱࢌ = ૚ି࢔࢞࢔ + ࢞ࢋ)࢔ + ࢞૜)ି࢔૚(࢞ࢋ + ૜࢞૛),∀࢞ ∈ ℝ 

So, ࢌ −continuous at ቂ૙, ࣊
૛
ቃ , ࢌ −is strictly increasing. Then attains maximum at ࢞ = ૙, so  

(࢞)ࢌ ≥ (૙)ࢌ = ૚,∀࢞ ∈ ቂ૙,
࣊
૛
ቃ 

If there is one ࢞ ∈ ቂ૙, ࣊
૛
ቃ such that ࢌ(࢞) ≤ ૚

૛
࢔
૛ష૚

 it holds then ૚

૛
࢔
૛ష૚

≥ ૚ → ૛
࢔
૛ି૚ ≤ ૚ → 

࢔
૛
− ૚ ≤ ૙ → ࢔ ≤ ૛ and how ࢔ ≥ ૛ → ࢔ = ૛, thus ࢌ(࢞) ≤ ૚. 

But for every ࢞ ∈ ቂ૙, ࣊
૛
ቃ, we have ࢌ(࢞) ≥ ૚. So if there is a ࢞ ∈ ቂ૙, ࣊

૛
ቃ such that ࢌ(࢞) ≤ ૚ it  

must be ࢌ(࢞) = ૚. This holds if and only if ࢞ = ૙ because ࢌ −strictly increasing. 

So, ࢞ = ૙,࢔ = ૛ easy to check that verify the conditions. 

242. Solve for real numbers: 

෍ ෍ (࢞ + ࢞)(૛࢏ + ࢐૛)
૛૙૛૚

࢐ୀ૚

૛૙૛૙

ୀ૚࢏

= න ቆࢍ࢕࢒
૛࢚࢔ࢇ૜࢞ + ૝࢚࢕ࢉ૞࢞
૛࢚࢕ࢉ૜࢞ + ૝࢚࢔ࢇ૞࢞ቇ࢞ࢊ

࣊
૜

࣊
૟

 

Proposed by Daniel Sitaru-Romania 

Solution by Adrian Popa-Romania 

ࡵ = න ቆࢍ࢕࢒
૛࢚࢔ࢇ૜࢞ + ૝࢚࢕ࢉ૞࢞
૛࢚࢕ࢉ૜࢞+ ૝࢚࢔ࢇ૞࢞ቇ࢞ࢊ

࣊
૜

࣊
૟

= න ቆࢍ࢕࢒
૛࢚࢕ࢉ૜࢞+ ૝࢚࢔ࢇ૞࢞
૛࢚࢔ࢇ૜࢞ + ૝࢚࢕ࢉ૞࢞ቇ࢞ࢊ

࣊
૜

࣊
૟

= 

= න ቌࢍ࢕࢒
૜

૜࢞࢔ࢇ࢚ + ૝࢚࢔ࢇ૞࢞

૛࢚࢔ࢇ૜࢞ + ૝
૞࢞࢔ࢇ࢚

ቍ࢞ࢊ
࣊
૜

࣊
૟

= න ቆࢍ࢕࢒
૛࢞(૛࢔ࢇ࢚ + ૝࢚࢔ࢇૡ࢞)

૝ + ૛࢚࢔ࢇૡ࢞ ቇ࢞ࢊ
࣊
૜

࣊
૟

; (૚) 

,࢕ࡿ ࡵ = න ቌࢍ࢕࢒
૛࢚࢔ࢇ૜࢞ + ૝

૞࢞࢔ࢇ࢚
૛

૜࢞࢔ࢇ࢚ + ૝࢚࢔ࢇ૞࢞
ቍ࢞ࢊ

࣊
૜

࣊
૟

= න ࢍ࢕࢒ ቆ
૛࢚࢔ࢇૡ࢞ + ૝

૛࢞(૛࢔ࢇ࢚ + ૝࢚࢔ࢇૡ࢞)ቇ
࣊
૜

࣊
૟

;࢞ࢊ (૛) 

(૚) + (૛):૛ࡵ = න ૚ࢍ࢕࢒
࣊
૜

࣊
૟

࢞ࢊ = ૙ 
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෍ ෍ (࢞ + ࢞)(૛࢏ + ࢐૛)
૛૙૛૚

࢐ୀ૚

૛૙૛૙

ୀ૚࢏

= 

= ൬૛૙૛૙࢞ +
૛૙૛૙ ⋅ ૛૙૛૚ ⋅ ૝૙૝૚

૟ ൰ ൬૛૙૛૚࢞ +
૛૙૛૚ ⋅ ૛૙૛૛ ⋅ ૝૙૝૜

૟ ൰ = ૙ 

࢞૚ = −
૛૙૛૚ ⋅ ૚૜૝ૠ

૛ , ࢞૛ = −
૟ૠ૝ ⋅ ૝૙૝૜

૛  

Solution 2 by Serlea Kabay-Liberia 

(࢈,ࢇ)࣓ = න ቆࢍ࢕࢒
૛࢚࢞ࢇ࢔ࢇ + ૝࢞࢈࢚࢕ࢉ
૛࢞ࢇ࢚࢕ࢉ + ૝࢚࢞࢈࢔ࢇቇ࢞ࢊ

࣊
૜

࣊
૟

=
࢞ୀ࣊૟ା

࣊
૜ି࢛

 

= න ቆࢍ࢕࢒
૛࢛ࢇ࢚࢕ࢉ+ ૝࢚࢛࢈࢔ࢇ
૛࢚࢛ࢇ࢔ࢇ + ૝࢛࢈࢚࢕ࢉቇ࢛ࢊ

࣊
૜

࣊
૟

→ ૛࣓(࢈,ࢇ) = න ૚ࢍ࢕࢒
࣊
૜

࣊
૟

࢞ࢊ = ૙ 

෍ ෍ (࢞ + ࢞)(૛࢏ + ࢐૛)
૛૙૛૚

࢐ୀ૚

૛૙૛૙

ୀ૚࢏

= ෍ ෍ (࢞૛ + ࢞࢐૛ + ૛࢏࢞ + ࢐૛࢏૛)
૛૙૛૚

࢐ୀ૚

=
૛૙૛૙

ୀ૚࢏

 

= ෍൬૛૙૛૚࢞૛ + ૛૙૛૚࢞࢏૛ +
૛૙૛૚ ⋅ ૛૙૛૛ ⋅ ૝૙૝૜

૟ ࢞૛ +
૛૙૛૚ ⋅ ૛૙૛૛ ⋅ ૝૙૝૜

૟ ૛൰࢏
࢔

ୀ૚࢏

=	 

= ૛૙૛૚෍൬࢞૛ + ૛࢏࢞ +
૛૙૛૛ ⋅ ૝૙૝૜

૟ ࢞ +
૛૙૛૛ ⋅ ૝૙૝૜

૟ ૛൰࢏
࢔

ୀ૚࢏

 

૝૙ૡ૛૛૝૛૙࢞૛ + ૝૙ૡ૛૛૝૛૙࢞
૛૙૛૛ ⋅ ૝૙૝૜+ ૛૙૛૚ ⋅ ૝૙૝૚

૟

+
૛૙૛૙ ⋅ ૛૙૛૚૛ ⋅ ૛૙૛૛ ⋅ ૝૙૝૜ ⋅ ૝૙૝૚

૜૟ = ૙ 

࢞૚ = −૚૜૟૛૝ૢ૚,࢞૛ = −
૛ૠ૛૛૛ૡૠ

૛  

 Solution 3 by Mohammad Rostami-Kabul-Afghanistan 

න ࢞ࢊ(࢞)ࢌ
࢈

ࢇ
= න +ࢇ)ࢌ ࢈ − ࢞ࢊ(࢞

࢈

ࢇ
 

ષ = ෍ (࢞ + (૛࢏
૛૙૛૙

ୀ૚࢏

෍ (࢞ + ࢐૛)
૛૙૛૚

࢐ୀ૚

= න ࢍ࢕࢒ ቎
૛࢚࢔ࢇ૜ ቀ࣊૛ − ࢞ቁ + ૝࢚࢕ࢉ૞ ቀ࣊૛ − ࢞ቁ

૛࢚࢕ࢉ૜ ቀ࣊૛ − ࢞ቁ + ૝࢚࢔ࢇ૞ ቀ࣊૛ − ࢞ቁ
቏࢞ࢊ

࣊
૜

࣊
૟

= 
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= න ቆࢍ࢕࢒
૛࢚࢕ࢉ૜࢞ + ૝࢚࢔ࢇ૞࢞
૛࢚࢔ࢇ૜࢞ + ૝࢚࢕ࢉ૞࢞ቇ࢞ࢊ

࣊
૜

࣊
૟

 

૛ષ૛൭෍ ࢞
૛૙૛૙

ୀ૚࢏

+ ෍ ૛࢏
૛૙૛૙

ୀ૚࢏

൱ቌ෍ ࢞
૛૙૛૚

࢐ୀ૚

+ ෍ ࢐૛
૛૙૛૚

࢐ୀ૚

ቍ = 

= න ࢍ࢕࢒ ቈ
૛࢚࢔ࢇ૜࢞ + ૝࢚࢕ࢉ૞࢞
૛࢚࢕ࢉ૜࢞+ ૝࢚࢔ࢇ૞࢞ ⋅

૛࢚࢕ࢉ૜࢞ + ૝࢚࢔ࢇ૞࢞
૛࢚࢔ࢇ૜࢞ + ૝࢚࢕ࢉ૞࢞቉

࣊
૜

࣊
૟

 

൬૛૙૛૙࢞ +
૛૙૛૙ ⋅ ૛૙૛૚ ⋅ ૝૙૝૚

૟ ൰ ൬૛૙૛૚࢞ +
૛૙૛૚ ⋅ ૛૙૛૛ ⋅ ૝૙૝૜

૟ ൰ = ૙ 

࢞૚ = −
૛૙૛૚ ⋅ ૚૜૝ૠ

૛ , ࢞૛ = −
૟ૠ૝ ⋅ ૝૙૝૜

૛  

Solution 4 by Ravi Prakash-New Delhi-India 

ࡵ	࢚ࢋࡸ = න ቆࢍ࢕࢒
૛࢚࢔ࢇ૜࢞+ ૝࢚࢕ࢉ૞࢞
૛࢚࢕ࢉ૜࢞ + ૝࢚࢔ࢇ૞࢞ቇ࢞ࢊ

࣊
૜

࣊
૟

;∵ 	න ࢞ࢊ(࢞)ࢌ
࢈

ࢇ
= න ࢇ)ࢌ + ࢈ − ࢞ࢊ(࢞

࢈

ࢇ
→ 

ࡵ = න ቆࢍ࢕࢒
૛࢚࢔ࢇ૜࢞ + ૝࢚࢕ࢉ૞࢞
૛࢚࢕ࢉ૜࢞ + ૝࢚࢔ࢇ૞࢞ቇ࢞ࢊ

࣊
૜

࣊
૟

= ࡵ− → ૛ࡵ = ૙ → ࡵ = ૙ 

෍ ෍ (࢞ + ࢞)(૛࢏ + ࢐૛)
૛૙૛૚

࢐ୀ૚

૛૙૛૙

ୀ૚࢏

= ૙ → ෍ (࢞ + (૛࢏
૛૙૛૙

ୀ૚࢏

෍ (࢞ + ࢐૛)
૛૙૛૚

࢐ୀ૚

= ૙ → 

෍ (࢞ + (૛࢏
૛૙૛૙

ୀ૚࢏

= ૙	࢘࢕	 ෍ (࢞ + ࢐૛)
૛૙૛૚

࢐ୀ૚

= ૙ 

૛૙૛૙࢞ +
૛૙૛૙ ⋅ ૛૙૛૚ ⋅ ૝૙૝૚

૟ = ૙	࢘࢕	૛૙૛૚࢞ +
૛૙૛૚ ⋅ ૛૙૛૛ ⋅ ૝૙૝૜

૟  

࢞૚ = −
૛૙૛૚ ⋅ ૚૜૝ૠ

૛ , ࢞૛ = −
૟ૠ૝ ⋅ ૝૙૝૜

૛  

 

243. Solve for real numbers: 

૛ ⋅
૚ + ࢞૛

૚ − ࢞૛ = √૚ + ࢞ + √૚ − ࢞ 

Proposed by Marin Chirciu-Romania 



 
www.ssmrmh.ro 

45 RMM-ABSTRACT ALGEBRA MARATHON 201-300 
 

Solution by Michael Sterghiou-Greece 

૛ ⋅
૚ + ࢞૛

૚ − ࢞૛ = √૚ + ࢞ + √૚ − ࢞; (૚) 

Domain of (1) is – ૚ < ݔ < 1. By Jensen ࡿࡴࡸ(૚) ≤ ૛ට૚ା࢞ା૚ି࢞
૛

= ૛, so 

૚ା࢞૛

૚ି࢞૛
≤ ૚ → ૛࢞૛

૚ି࢞૛
≤ ૙ which is only valid for ࢞ = ૙, only solution. 

 

244. Solve for real numbers: 

(࢞ + ૜)૛ − ૛૙
૛(࢞ + ૚) = ඥ(࢞ + ૚)(࢞ − ૜) 

Proposed by George Florin Şerban-Romania 

Solution 1 by Bedri Hajrizi-Mitrovica-Kosovo 

(࢞ + ૜)૛ − ૛૙ = ૛(࢞ + ૚)ඥ(࢞ + ૚)(࢞− ૜) 

࢞ ∈ (−∞,−૚) ∪ [૜,∞); (૚) 

(࢞ + ૜)૛ − ૛૙ ≥ ૙,࢞ ∈ ൫−∞,−૜ − ૛√૞൧ ∪ ൣ−૜ + ૛√૜,∞൯; (૛) 

From (૚), (૛):		࢞ ∈ ൫−∞,−૜ − ૛√૞൧ ∪ [૜,∞); (૜) 

Let ࢞ − ૚ = ࢚ → ((࢚ + ૝)૛ − ૛૙)૛ = ૝(࢚+ ૛)૛(࢚ + ૛)(࢚ − ૛) 

(࢚૛ + ૡ࢚ − ૝)૛ = ૝(࢚૛ + ૝࢚ + ૝)(࢚૛ − ૝) 

࢚૝ + ૚૟࢚૜ + ૞૟࢚૛ − ૟૝࢚ + ૚૟ = ૝࢚૝ + ૚૟࢚૜ − ૟૝࢚ − ૟૝ 

૜࢚૝ − ૞૟࢚૛ − ૡ૙ = ૙ → ࢚૛ =
૞૟ ± ૟૝

૟  

࢚૛ = − ૝
૜
, no solution. 

࢚૛ = ૛૙ → ࢚ = ±૛√૞ → ࢞ = ૚ ± ૛√૞ → ࢞૚ = ૚ − ૛√૞ no solution. 

࢞ = ૚ + ૛√૞ solution. 

 Solution 2 by proposer 

(࢞ + ૚)(࢞ − ૜) ≥ ૙,࢞ ∈ (−∞,−૚] ∪ [૜,∞),࢞૛ + ૟࢞ − ૚૚ = ૛(࢞ + ૚)ඥ(࢞ + ૚)(࢞ − ૜) 

(࢞ + ૚)૛ + ૝(࢞ − ૜) = ૛(࢞ + ૚)ඥ(࢞ + ૚)(࢞− ૜) 
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(࢞ + ૚)૛ − ૛(࢞ + ૚)ඥ(࢞ + ૚)(࢞ − ૜) + ૝(࢞ − ૜) = ૙ 

Let us denote: ࢞ + ૚ = ࢚ → 

࢚૛ − ૛࢚ඥ(࢞ + ૚)(࢞ − ૜) + ૝(࢞ − ૜) = ૙,∆= ૝(࢞ − ૜)૛ 

If ࢚ = ૛ඥ(࢞ା૚)(࢞ି૜)ା૛(࢞ି૜)
૛

,࢞ + ૚ = ඥ(࢞ + ૚)(࢞− ૜),࢞૛ − ૛࢞ − ૚ૢ = ૙ 

(࢞ − ૚)૛ = ૛૙ → ࢞ − ૚ = √૛૙ → ࢞૚ ∈ [૜,∞),࢞ − ૚ = −√૛૙ ∈ (−∞,−૚] 

If ࢚ = ૛ඥ(࢞ା૚)(࢞ି૜)ି૛(࢞ି૜)
૛

→ ࢞ + ૚ = ඥ(࢞ + ૚)(࢞ − ૜) − ࢞ + ૜ → 

૛࢞ − ૛ = ඥ(࢞ + ૚)(࢞ − ૜) → ૝࢞૛ − ૡ࢞ + ૝ = ࢞૛ − ૛࢞ − ૜ → ૜࢞૛ − ૟࢞+ ૠ = ૙, 

∆= −૝ૡ < 0. So, ࡿ = ൛√૛૙ + ૚ൟ. 

 

245. Let ࢓ࢌ(࢞) = ࢓
ା૛࢞࢔࢏࢙

(࢞)࢓ࢍ, = ࢓
ା૛࢙࢞࢕ࢉ

. Find all real numbers ࢓ such that: 

(࢞)࢓ࢌ࢔࢏࢓ + (࢞)࢓ࢍ࢞ࢇ࢓ = ૚,∀∈ ቂ૙,
࣊
૛ቃ 

Proposed by Nguyen Van Canh-Ben Tre-Vietnam 

Solution by Tran Hong-Dong Thap-Vietnam 

ᇱ࢓ࢌ (࢞) = −
࢙࢞࢕ࢉ࢓

࢞࢔࢏࢙) + ૛)૛ ᇱ࢓ࢍ, (࢞) =
࢞࢔࢏࢙࢓

+࢙࢞࢕ࢉ) ૛)૛ 

If ࢓ ≥ ૙,∀࢓ ∈ ቂ૙, ࣊
૛
ቃ then ࢓ࢌᇱ (࢞) ≤ ૙ ⇒ ࢓ࢌ ↓ ቂ૙, ࣊

૛
ቃ ᇱ࢓ࢍ, (࢞) ≥ ૙ ⇒ ࢓ࢍ ↑ ቂ૙, ࣊

૛
ቃ ⇒ 

(࢞)࢓ࢌ࢔࢏࢓ = ࢓ࢌ ቀ
࣊
૛
ቁ =

࢓
૜ (࢞)࢓ࢍ࢞ࢇ࢓, = ࢓ࢍ ቀ

࣊
૛
ቁ =

࢓
૛ ⇒ 

࢓
૜

+ ࢓
૛

= ૚ ⇒ ૞࢓
૟

= ૚ ⇒ ࢓ = ૟
૞
(true for with ࢓ ≥ ૙) 

If ࢓ < ݔ∀,0 ∈ ቂ૙, ࣊
૛
ቃ then ࢓ࢌᇱ (࢞) ≥ ૙ ⇒ ࢓ࢌ ↑ ቂ૙, ࣊

૛
ቃ ᇱ࢓ࢍ, (࢞) ≤ ૙ ⇒ (࢞)࢓ࢍ ↓ ቂ૙, ࣊

૛
ቃ ⇒ 

(࢞)࢓ࢌ࢔࢏࢓ = (૙)࢓ࢌ =
࢓
૛ (࢞)࢓ࢍ࢞ࢇ࢓, = (૙)࢓ࢍ =

࢓
૜ ⇒ 

࢓
૜

+ ࢓
૛

= ૚ ⇒ ૞࢓
૟

= ૚ ⇒ ࢓ = ૟
૞
(false for with ࢓ < 0) 

Therefore, ࢓ = ૟
૞
. 
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246. Solve for real numbers: 

૛ ൬࢞ࢋ − ࢋ
૚
࢞൰ = ൬࢞ −

૚
࢞
൰ ൬࢞ࢋ + ࢞

૚
࢞൰ 

Proposed by Ionuţ Florin Voinea-Romania 

Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

૛ ൬࢞ࢋ − ࢋ
૚
࢞൰ = ൬࢞ −

૚
࢞൰ ൬ࢋ

࢞ + ࢞
૚
࢞൰ ⇔

࢞ࢋ − ࢋ
૚
࢞

࢞ࢋ + ࢋ
૚
࢞

=
૚
૛ ൬࢞ −

૚
࢞൰ 

⇔
ି࢞ࢋ

૚
࢞ − ૚

ି࢞ࢋ
૚
࢞ + ૚

=
૚
૛ ൬࢞ −

૚
࢞൰ ⇔ (࢟)ࢎ࢔ࢇ࢚ = ࢟; ∵ ࢟ =

૚
૛ ൬࢞ −

૚
࢞൰ 

Let ࢌ(࢟) = (࢟)ࢎ࢔ࢇ࢚ − ࢟,࢟ ∈ ℝ, (࢟)ᇱࢌ = ૛࢟ࢎ࢔ࢇ࢚− ≤ ૙ ⇒ ࢌ −decreasing on ℝ ⇒ 

(࢟)ࢌ = ૙ ⇔ ࢟ = ૙ ⇔ ࢞ −
૚
࢞ = ૙ ⇔ ࢞ = ±૚ 

Therefore, ࡿ = {±૚}. 

 Solution 2 by Ruxandra Daniela Tonilă-Romania 

૛ ൬࢞ࢋ − ࢋ
૚
࢞൰ = ൬࢞ −

૚
࢞൰ ൬ࢋ

࢞ + ࢞
૚
࢞൰ ⇔ 

૛ࢋ
૚
࢞ ൬ି࢞ࢋ

૚
࢞ − ૚൰ = ൬࢞ −

૚
࢞൰ ࢋ

૚
࢞ ൬ି࢞ࢋ

૚
࢞ + ૚൰ ⇔ ૛൬ି࢞ࢋ

૚
࢞ − ૚൰ = ൬࢞ −

૚
࢞൰ ൬ࢋ

࢞ି૚࢞ + ૚൰ 

Let ࢞ − ૚
࢞

= ࢚ ⇒ ૛(࢚ࢋ − ૚) = ࢚ࢋ)࢚ + ૚) 

࢚ࢋ࢚ + ࢚ + ૛ − ૛࢚ࢋ = ૙ ⇔ ࢚)࢚ࢋ − ૛) + ࢚ + ૛ = ૙ 

Let ࢌ:ℝ → ℝ,ࢌ(࢚) = ࢚)࢚ࢋ − ૛) + ࢚ + ૛,ࢌᇱ(࢚) = ࢚)࢚ࢋ − ૚) + ૚ 

(࢚)ᇱࢌ = ૙ ⇔ ࢚ = ૙ and ࢌ −strictly increasing thus, ࢚ = ૙ is only solution. 

Therefore, 

࢞ −
૚
࢞ = ૙ ⇔ ࢞૛ = ૚ ⇔ ࢞ = ±૚. 

247. If ࢔,࢓ ∈ ℕ,࢔ࡸ −Lucas numbers, ࢓ࡲ −Fibonacci numbers then: 

ඥ࢓ࡲ࢔ࡲ૛ ૛࢔ࡸ࢓ࡸ
૜ + ඥ࢔ࡲ࢓ࡲ૛࢓ࡸ࢔ࡸ૛

૜ ≤ ૛࢓ࡲା࢔ 

Proposed by Daniel Sitaru-Romania 
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Solution by Noor Alam-India 

ඥ࢓ࡲ࢔ࡲ૛ ૛࢔ࡸ࢓ࡸ
૜ + ඥ࢔ࡲ࢓ࡲ૛࢓ࡸ࢔ࡸ૛

૜

૛ ≤ ඨ࢓ࡲ࢔ࡲ
૛ ૛࢔ࡸ࢓ࡸ + ૛࢓ࡸ࢔ࡸ૛࢔ࡲ࢓ࡲ

૛
૜

 

ඨ࢓ࡲ࢔ࡲ
૛ ૛࢔ࡸ࢓ࡸ + ૛࢓ࡸ࢔ࡸ૛࢔ࡲ࢓ࡲ

૛
૜

= ඨ࢓ࡸ࢔ࡸ࢓ࡲ࢔ࡲ
࢔ࡸ࢓ࡲ) + (࢓ࡸ࢔ࡲ
૛

૜
= 

= ඨ࢓ࡸ࢔ࡸ࢓ࡲ࢔ࡲ ∙ ૛࢓ࡲା࢔

૛
૜

= ඥ࢓ࡲ࢓ࡸ࢔ࡸ࢓ࡲ࢔ࡲା࢔
૜  

∵ ࢔ࡸ࢓ࡲ + ࢓ࡸ࢔ࡲ = ૛࢓ࡲା࢔ 

Now, ࢔ࡲ = ࢔ࢼି࢔ࢻ

√૞
࢔ࡸ, = ࢔ࢻ + ࢻ where ,࢔ࢼ = ૚ା√૞

૛
ࢼ, = ૚ି√૞

૛
. 

࢓ࡸ࢔ࡸ࢓ࡲ࢔ࡲ =
࢔ࢻ − ࢔ࢼ

√૞
∙
࢓ࢻ ࢓ࢼ−

√૞
∙ ࢔ࢻ) + (࢔ࢼ ∙ ࢓ࢻ) + (࢓ࢼ =

࢔૛ࢻ) ࢓૛ࢻ)(࢔૛ࢼ− − (࢓૛ࢼ
૞  

=
(࢔ା࢓)૛ࢻ − ࢔૛ࢼ࢓૛ࢻ + ࢓૛ࢼ࢔૛ࢻ + (࢔ା࢓)૛ࢼ

૞ =
࢔ା࢓ࢻ) − ૛(࢔ା࢓ࢼ

૞ = 

= ቆ
࢔ା࢓ࢻ − ࢔ା࢓ࢼ

√૞
ቇ
૛

= ࢔ା࢓ࡲ
૛  

Thus, ට࢓ࡲ࢔ࡲ૛ ૛࢓ࡸ࢔ࡸ૛࢔ࡲ࢓ࡲ૛ା࢔ࡸ࢓ࡸ

૛

૜
= ඥ࢓ࡲା࢔

૜૜ =  ,Therefore .࢔ା࢓ࡲ

ඥ࢓ࡲ࢔ࡲ૛ ૛࢔ࡸ࢓ࡸ
૜ + ඥ࢔ࡲ࢓ࡲ૛࢓ࡸ࢔ࡸ૛

૜ ≤ ૛࢓ࡲା࢔ 

 

248. Find all functions ࢌ: [−૛૙૛૙;૛૙૛૙] →  :such that ܀

൫ࢌ(࢞ − ࢟)൯
૜

= ૞ࢌ(࢞ + ૛࢟) − ࢞૜࢟૜,∀࢞ ∈ [−૛૙૛૙,૛૙૛૙] 

Nguyen Van Canh-Ben Tre-Vietnam 

Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

࢞ = ࢟ = ૙ → ൫ࢌ(૙)൯
૜

= ૞ࢌ(૙) → (૙)ࢌ = ૙ of ࢌ(૙) = ±√૞. Let ࢇ =  .(૙)ࢌ

࢞ = ࢟ → ૜ࢇ = ૞ࢌ(૜࢞)− ࢞૟ → (૜࢞)ࢌ =
૚
૞

(࢞૟ + (૜ࢇ → 
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(࢞)ࢌ =
૚
૞ ቈ
ቀ
࢞
૜
ቁ
૟

+ ૜቉ࢇ ,∀࢞ ∈ [−૛૙૛૙,૛૙૛૙] 

-with ࢇ = ૙ or ࢇ = −√૞ or ࢞ = √૞. 

249. Find the remainder, when the number ૛૙૚ૢ૛૙૛૙૛૙૛૚ is divided by ૠ. 

Proposed by Rajeev Rastogi-India 

Solution 1 by Mohamed Amine Ben Ajiba-Morocco 

૛૙૚ૢ ≡ ૜(ࢊ࢕࢓	ૠ) → ૛૙૚ૢ૜ ≡ −૚(ࢊ࢕࢓	ૠ) → ૛૙૚ૢ૛ ≡ ૚(ࢊ࢕࢓	ૠ) 

૛૙૛૙ ≡ ૝(ࢊ࢕࢓	૟) → ૛૙૚ૢ૛૙૛૙ ≡ ૛૙૚ૢ૝ ≡ −૜ ≡ ૝(ࢊ࢕࢓	ૠ) 

Let ࢇ = ૛૙૚ૢ૛૙૛૙;ࢇ ≡ ૝(ࢊ࢕࢓	ૠ) → ૜ࢇ ≡ ૚(ࢊ࢕࢓	ૠ) 

We know that ૛૙૛૙ ≡ ૚(ࢊ࢕࢓	૜) → ૛૙૛૙૛૙૛૙ ≡ ૚(ࢊ࢕࢓	૜) → 

૛૙૛૙૛૙૛૙ࢇ ≡ ࢇ ≡ ૝(ࢊ࢕࢓	ૠ) 

→ ૛૙૚ૢ૛૙૛૙૛૙૛૚ = ૛૙૛૙૛૙૛૙ࢇ ≡ ૝(ࢊ࢕࢓	ૠ) 

Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand 

Because ૠ|(૛૙૚ૢ − ૜) → ૛૙૚ૢ૛૙૛૙ ≡ ૜૛૙૛૙(ࢊ࢕࢓	ૠ) and since  

૜૚,૜૛,૜૜૜૝ ,૜૞,૜૟ ≡ ૜,૛,૟,૝,૞,૚,  (ૠ	ࢊ࢕࢓)

Hence, ૜૛૙૛૙ ≡ ૝૛૙૛૙(ࢊ࢕࢓	ૠ),૛૙૛૙ ≡ ૝(ࢊ࢕࢓	૟) → (૜૛૙૛૙)૛૙૛૙ ≡ ૝૛૙૛૙(ࢊ࢕࢓	ૠ) and 

since ૝૚,૝૛,૝૜ ≡ ૝,૜,૚(ࢊ࢕࢓	ૠ) hence, ૝૛૙૛૙ ≡ ૛૙૛૙,(ૠ	ࢊ࢕࢓) ≡ ૚	(ࢊ࢕࢓	૜) → 

૛૙૚ૢ૛૙૛૙૛૙૛૚ = ૛૙૛૙૛૙૛૙ࢇ ≡ ૝(ࢊ࢕࢓	ૠ) 

250. Given ࢞ be the least prime divisor of the number ૚ ૙૙૙…૙ᇣᇧᇤᇧᇥ
૛૙૚ૡି࢚࢙ࢋ࢓࢏

૚ also  

(૛࢞)(૛࢞)(૛࢞)
≡  .࢑ then find (૚૙૙	ࢊ࢕࢓)࢑

Proposed by Rajeev Rastogi-India 

Solution by Surjeet Singhania-India 

૚ ૙૙૙…૙ᇣᇧᇤᇧᇥ
૛૙૚ૡି࢚࢙ࢋ࢓࢏

૚ = ૚૙૛૙૚ૢ + ૚ ≡ (ૠ	܌ܗܕ) → ܠ = ૠ. 

Denote ࢟ = (૛࢞)(૛࢞)(૛࢞) = ૚૝૚૝૚૝ . We need to find ࢟(ࢊ࢕࢓	૚૙૙). 
Since ૝|࢟, now we need to find ࢟(ࢊ࢕࢓૛૞). 

࢟ ≡ ૚૝૚૝૚૝(ࢊ࢕࢓	૛૞). Since ઴(૛૞) = ૛૙ → ૚૝૚૝ ≡ ૟૚૝(ࢊ࢕࢓	૛૙) 
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૚૝૚૝ ≡ ૚૟(ࢊ࢕࢓	૛૙) → ࢟ ≡ ૚૝૚૟(ࢊ࢕࢓	૛૞) ≡ ૝ૡ(ࢊ࢕࢓	૛૞)(࢘ࢋ࢒࢛ࡱ	ࢎ࢚. ). Hence, 
࢟ ≡ ૜૟(ࢊ࢕࢓	૛૞) ≡ ૚૚(ࢊ࢕࢓	૛૞). Since ૝|࢟ → ࢟ = ૝࢑૚. 

࢟ = ૝࢑૚ ≡ ૚૚(ࢊ࢕࢓	૛૞) → ࢑૚ ≡ (૛૞ࢊ࢕࢓)ૢ → ࢟ = ૚૙૙࢑૛ + ૜૟. 
Hence, ࢟ ≡ ૚૝૚૝૚૝ ≡ ૜૟(ࢊ࢕࢓	૚૙૙) → ࢑ = ૜૟. 

 
251. Show that the last two digits of the followings 

ૢૢ, ૢૢૢ , ૢૢૢ
ૢ

,ૢૢૢ
ૢૢ

, ૢૢૢ
ૢૢ
ૢ

 is always ૡૢ. 

In general prove that the last two digits of ૢ ↑↑ ࢔ = ૢૢ⋰
ૢ

ถ
ஹ૛࢔

 is ૡૢ. 

Proposed by Naren Bhandari-Bajura-Nepal 

Solution by Surjeet Singhania-India 

Define a sequence ࢞࢔ = ࢔∀,ష૚࢔࢞ૢ ∈ and ࢞૙ ࡺ = ૢ. 
Claim: Every element of sequence have last two digits are 89.  

Let’s check for ࢔ = ૚, ࢞૚ ≡ ૚	(ࢊ࢕࢓૝) and ࢞૚ ≡ ૝૜(ࢊ࢕࢓૛૞) ≡ ૚૝(ࢊ࢕࢓૛૞). 
Let’s solve these congruence. Since ࢞૚ ≡ ૚(ࢊ࢕࢓	૝) → ࢞૚ = ૝࢑૚ + ૚ also  

࢞૚ ≡ ૚૝(ࢊ࢕࢓	૛૞) → ૝࢑૚ ≡ ૚૜(ࢊ࢕࢓૛૞) → ࢑૚ ≡ ૛૛(ࢊ࢕࢓૛૞) → ࢑૚ = ૛૞࢑૛ + ૛૛. 
Put the value of ࢑૚ in ࢞૚,࢞૚ = ૚૙૙࢑૛ + ૡૢ → ࢑૚ ≡ ૡૢ(ࢊ࢕࢓૚૙૙). 

On he hypothesis true for ࢔ = ૚. Assume it is true for ࢔ = ࢑࢞,࢑ ≡ ૡૢ(ࢊ࢕࢓૚૙૙) → 
࢞࢑ = ૚૙૙࢓+ ૡૢ,࢓ ∈ ࢔ Now, we shall prove statement for .ࢆ = ࢑ + ૚. 

࢞࢑ା૚ ≡ ૢ࢞࢑ = ૢ૚૙૙࢓ାૡૢ, ࢞࢑ା૚ ≡ ૚(ࢊ࢕࢓૝). Now, we have to mod 25 for the number. 
We know that ઴(૛૞) = ૛૙ and ૚૙૙࢓+ ૡૢ ≡ (૛૙ࢊ࢕࢓)ૢ → 

࢞࢑ା૚ ≡  .(࢓ࢋ࢘࢕ࢋࢎࢀ	࢘ࢋ࢒࢛ࡱ)(૛૞ࢊ࢕࢓)ૢૢ
࢞࢑ା૚ ≡ (૛૞	ࢊ࢕࢓)ૢૢ ≡ ૚૝(ࢊ࢕࢓૛૞). Since ࢞࢑ା૚ ≡ ૚(ࢊ࢕࢓૝). 

For ૟࢚ࢎ line of our solution ࢞࢑ା૚ ≡ ૡૢ(ࢊ࢕࢓૚૙૙). 
Conclusion. In general prove that the last two digits of ૢ ↑↑ ࢔ = ૢૢ⋰

ૢ
ถ
ஹ૛࢔

 is ૡૢ. 

252. Solve for real numbers: 

⎩
⎪
⎨

⎪
⎧

࢞,࢟, ࢠ > 0

√૚ − ࢞ +
࢟

ඥ૚ − ࢟
= ૛√૚ + ࢠ

อ
ࢠ࢟ ࢞࢟ ࢞ࢠ
࢞࢟ ࢞ࢠ ࢠ࢟
࢞ࢠ ࢠ࢟ ࢞࢟

อ = ૙

 

Proposed by Daniel Sitaru-Romania 
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Solution 1 by Adrian Popa-Romania 

࢞,࢟, ࢠ > 0 and ૚ − ࢞ ≥ ૙,૚ − ࢟ > 0,1 + ݖ ≥ 0 ⇒ ݔ ∈ (૙,૚],࢟ ∈ (૙,૚), ࢠ ∈ (૙,∞) 

∆= อ
ࢠ࢟ ࢞࢟ ࢞ࢠ
࢞࢟ ࢞ࢠ ࢠ࢟
࢞ࢠ ࢠ࢟ ࢞࢟

อ = อ
࢞࢟ + ࢠ࢟ + ࢞ࢠ ࢞࢟ + +ࢠ࢟ ࢞ࢠ ࢞࢟ + ࢠ࢟ + ࢞ࢠ

࢞࢟ ࢞ࢠ ࢠ࢟
࢞ࢠ ࢠ࢟ ࢞࢟

อ = 

= (࢞࢟+ +ࢠ࢟ (࢞ࢠ อ
૚ ૚ ૚
࢞࢟ ࢠ࢞ ࢠ࢟
ࢠ࢞ ࢠ࢟ ࢞࢟

อ = (࢞࢟+ +ࢠ࢟ (࢞ࢠ ቀ−࢞૛(࢟ − ૛(ࢠ − ࢠ)ࢠ࢟ − ࢞)(࢟− ࢞)ቁ = ૙ 

−࢞૛(࢟૛ − ૛࢟ࢠ+ (૛ࢠ − ࢟ࢠ)ࢠ࢟ − ࢠ࢞ − ࢞࢟ + ࢞૛) = ૙ ⇔ 

࢞૛࢟ࢠ + ࢟૛࢞ࢠ + ૛࢞࢟ࢠ = ࢞૛࢟૛ + ࢞૛ࢠ૛ + ࢟૛ࢠ૛  

But, we know that: (૛,૛,૙) > (૛,૚,૚) ⇒ ࢞૛࢟૛ + ࢞૛ࢠ૛ + ࢟૛ࢠ૛ ≥ ࢞૛࢟ࢠ + ࢟૛࢞ࢠ +  ૛࢞࢟ࢠ

Equality holds when ࢞ = ࢟ = ࢠ ⇒ √૚ − ࢞ + ࢞
√૚ି࢞

= ૛√૚ + ࢞ ⇔ 

ඥ૚ − ࢞૛ =
૚
૛ ⇔ ࢞ =

√૜
૛ ⇒ ࢞ = ࢟ = ࢠ =

√૜
૛  

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

∆= อ
ࢠ࢟ ࢞࢟ ࢞ࢠ
࢞࢟ ࢞ࢠ ࢠ࢟
࢞ࢠ ࢠ࢟ ࢞࢟

อ = อ
࢞࢟ + ࢠ࢟ + ࢞ࢠ ࢞࢟ + +ࢠ࢟ ࢞ࢠ ࢞࢟ + ࢠ࢟ + ࢞ࢠ

࢞࢟ ࢞ࢠ ࢠ࢟
࢞ࢠ ࢠ࢟ ࢞࢟

อ = 

= (࢞࢟ + +ࢠ࢟ (࢞ࢠ อ
૚ ૚ ૚
࢞࢟ ࢠ࢞ ࢠ࢟
ࢠ࢞ ࢠ࢟ ࢞࢟

อ = ૙ ⇔෍࢞૛(࢟ − ૛(ࢠ
ࢉ࢟ࢉ

= ૙ ⇔ ࢞ = ࢟ = ;ࢠ ࢠ,࢟,࢞) > 0) 

√૚ − ࢞ +
࢞

√૚ − ࢞
= ૛√૚ + ࢞ ⇔

࢞૛

૚ − ࢞ = ૜࢞ + ૜ 

ඥ૚ − ࢞૛ =
૚
૛ ⇔ ࢞ =

√૜
૛ ⇒ ࢞࢟ = ࢠ =

√૜
૛  

Solution 3 by Remus Florin Stanca-Romania 

อ
ࢠ࢟ ࢞࢟ ࢞ࢠ
࢞࢟ ࢞ࢠ ࢠ࢟
࢞ࢠ ࢠ࢟ ࢞࢟

อ = ૙ ⇔ ૜(࢞࢟)(࢟ࢠ)(࢞ࢠ) = (࢞࢟)૜ + ૜(ࢠ࢞) + ,࢟,࢞,૜(ࢠ࢟) ࢠ > 0 

⇒ ࢞࢟ = ࢠ࢟ = ࢞ࢠ ⇒ ࢞ = ࢟ = ࢠ ⇒ √૚ − ࢞ +
࢞

√૚ − ࢞
= ૛√૚ + ࢞ ⇔ 

૝࢞૛ = ૜,࢞ > 0 ⇔ ݔ =
√૜
૛ ⇒ ࢞࢟ = ࢠ =

√૜
૛  
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 Solution 4 by Ravi Prakash-New Delhi-India 

∆= อ
ࢠ࢟ ࢞࢟ ࢞ࢠ
࢞࢟ ࢞ࢠ ࢠ࢟
࢞ࢠ ࢠ࢟ ࢞࢟

อ = (࢞࢟ + ࢠ࢟ + (࢞ࢠ อ
૚ ࢞࢟ ࢞ࢠ
૚ ࢞ࢠ ࢠ࢟
૚ ࢠ࢟ ࢞࢟

อ = 

= (࢞࢟ + ࢠ࢟ + (࢞ࢠ ቮ
૚ ࢞࢟ ࢞ࢠ
૙ ࢠ)࢞ − ࢟) ࢟)ࢠ − ࢞)
૙ ࢟)ࢠ − ࢞) ࢟(࢞ − ࢟)

ቮ = ૙ 

⇒ (࢞࢟ + +ࢠ࢟ ࢠ)࢟࢞](࢞ࢠ − ࢟)(࢞ − (ࢠ − ࢟)૛ࢠ − ࢞)૛] = ૙; (࢞࢟ + ࢠ࢟ + ࢞ࢠ > 0) 

࢞૛࢟ࢠ+ ૛ࢠ࢟࢞ + ࢞࢟૛ࢠ − ࢞૛࢟૛ − ૛࢞૛ࢠ − ૛࢟૛ࢠ = ૙ ⇔ 

(࢞࢟ − ૛(ࢠ࢟ + ࢠ࢟) − ૛(࢞ࢠ + ࢞ࢠ) − ࢞࢟)૛ = ૙ ⇔ ࢞࢟ = ࢠ࢟ = ࢞ࢠ ⇔ ࢞ = ࢟ =  ࢠ

Equality holds when ࢞ = ࢟ = ࢠ ⇒ √૚ − ࢞ + ࢞
√૚ି࢞

= ૛√૚ + ࢞ ⇔ 

ඥ૚ − ࢞૛ =
૚
૛
⇔ ࢞ =

√૜
૛
⇒ ࢞ = ࢟ = ࢠ =

√૜
૛

 

253. Solve for real numbers: 

⎩
⎪
⎨

⎪
⎧ቆ

࢞૜

࢟
+ ࢞࢟ +

࢟૜

࢞
ቇ
૛

= ඥ૛ૠ(࢞ૡ + ࢟ૡ + ࢞૝࢟૝)

૞࢞૝ − ૚૙࢞࢟ + ૚
࢞૝࢟૛ − ૚૙࢟૝ + ૞࢞૛

=
࢟
࢞૛

 

Proposed by Orlando Irahola Ortega-Tarija-Bolivia 

Solution 1 by Carlos Eduardo Aguiar Paiva-Fortaleza-Brazil  

ቆ
࢞૜

࢟ + ࢞࢟ +
࢟૜

࢞ ቇ
૛

= ඥ૛ૠ(࢞ૡ + ࢟ૡ + ࢞૝࢟૝),  (࢏)

૞࢞૝ − ૚૙࢞࢟ + ૚
࢞૝࢟૛ − ૚૙࢟૝ + ૞࢞૛ =

࢟
࢞૛ ,  (࢏࢏)

Now, ቀ࢞
૛

࢟૛
+ ࢟૛

࢞૛
+ ૚ቁ

૛
= ට૛ૠ ቀ࢞

૝

࢟૝
+ ࢟૝

࢞૝
+ ૚ቁ 

Let ࢓ = ࢞૛

࢟૛
+ ࢟૛

࢞૛
⇒ +࢓) ૚)૛ = ඥ૛ૠ(࢓૛ − ૚) 

+࢓√ ૚ ቀඥ(࢓ + ૚)૜ − ૜ඥ૜(࢓− ૚)ቁ = ૙ ⇒ ࢓√ + ૚ = ૙ ⇒ ૚࢓ = −૚ 

ඥ(࢓ + ૚)૜ = ૜ඥ૜(࢓− ૚) ⇒ ࢓) + ૚)૜ = ૛ૠ(࢓− ૚) ⇒ +࢓)૛(૛−࢓) ૠ) = ૙ ⇒ 
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૛,૜࢓ = ૛,࢓૝ = −ૠ 

૚) 	
࢞૛

࢟૛ +
࢟૛

࢞૛ = −૚ ⇒ ൬
࢞
࢟ +

࢟
࢞൰

૛
= ૚ ⇒

࢞
࢟ +

࢟
࢞ = ±૚ ≤ ૛,ܜܝ܊			

࢞
࢟ +

࢟
࢞ ≥

ࡹࡳିࡹ࡭
૛ 

૛) 	
࢞૛

࢟૛ +
࢟૛

࢞૛ = −ૠ ⇒ ൬
࢞
࢟ +

࢟
࢞൰

૛
= −૞ ⇒

࢞
࢟ +

࢟
࢞ = ±૞࢏ ∈ ℂ 

૜) 	
࢞૛

࢟૛ +
࢟૛

࢞૛ = ૛ ⇒ ൬
࢞
࢟ +

࢟
࢞൰

૛
= ૝ ⇒

࢞
࢟ +

࢟
࢞ = ±૛ ⇒ ࢟ = ࢟	ܚܗ	࢞ = −࢞ 

(࢏࢏ 	
૞࢞૝ − ૚૙࢞૛ + ૚
࢞૟ − ૚૙࢞૝ + ૞࢞૛ =

࢞
࢞૛ ,࢞ ≠ ૙ ⇒ ࢞૞ − ૞࢞૝ − ૚૙࢞૜ + ૚૙࢞૛ + ૞࢞ − ૚ = ૙ 

(࢞ − ૚)(࢞૝ − ૝࢞૜ − ૚૝࢞૛ − ૝࢞ + ૚) = ૙ ⇒ ࢞૚ = ૚ 

࢞૝ − ૝࢞૜ − ૚૝࢞૛ − ૝࢞ + ૚ = ૙ ⇒ ࢞૝ − ૝࢞૜ + ૝࢞૛ = ૚ૡ࢞૛ + ૝࢞ − ૚ 

(࢞૛ − ૛࢞ + ૛(ࣅ = (૛ࣅ+ ૚ૡ)࢞૛ − (૝ࣅ − ૝)࢞ + ૛ࣅ − ૚ ⇒ =ࡿࡴࡾ∆ ૙ 

[−(૝ࣅ − ૝)]૛ − ૝(૛ࣅ + ૚ૡ)(ࣅ૛ − ૚) = ૙ ⇒ ࣅ) − ૚)(ࣅ૛ + ૡࣅ + ૚૚) = ૙ 

⇒ ૚ࣅ = ૚ ⇒ (࢞૛ − ૛࢞ + ૚)૛ = ૛૙࢞૛ ⇒ ࢞૛ − ૛࢞ + ૚ = ±૛࢞√૞ 

࢞૛,૜ = ૚ + √૞ ± ට૞ + ૛√૞, ࢞૝,૞ = ૚ − √૞ ± ට૞ − ૛√૞ 

(࢏࢏ 	
૞࢞૝ − ૚૙࢞૛ + ૚
࢞૟ − ૚૙࢞૝ + ૞࢞૛ =

࢞
࢞૛ ,࢞ ≠ ૙ ⇒ ࢞૞ + ૞࢞૝ − ૚૙࢞૜ + ૚૙࢞૛ + ૞࢞ + ૚ = ૙ 

By Newton-Raphson Method, ࢞૟ = −૟.૟ૢૢ… 

(࢞,࢟) ∈ ቊ(૚,૚), ቆ૚ + √૞ ± ට૞ + ૛√૞,૚ + √૞ ± ට૞ + ૛√૞ቇ , ቆ૚ − √૞ ± ට૞ − ૛√૞,૚

− √૞ ± ට૞ − ૛√૞൰ቋ 

Solution 2 by Mohamed Amine Ben Ajiba-Morocco 

ቆ
࢞૜

࢟ + ࢞࢟ +
࢟૜

࢞ ቇ
૛

= ඥ૛ૠ(࢞ૡ + ࢟ૡ + ࢞૝࢟૝), (૚) 

૞࢞૝ − ૚૙࢞࢟ + ૚
࢞૝࢟૛ − ૚૙࢟૝ + ૞࢞૛ =

࢟
࢞૛ , (૛) 

(૚) ⇔ ቆ
࢞૛

࢟૛ +
࢟૛

࢞૛ + ૚ቇ
૝

= ૛ૠቆ
࢞૝

࢟૝ +
࢟૝

࢞૝ + ૚ቇ 
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Let us prove that: (∑ࢇ)૟ ≥ ૛ૠ(∑࢈ࢇ)૛(∑ࢇ૛),∀࢈,ࢇ, ࢉ > 0, (∗) 

Denote: (ࢗ,࢖,࢘) = ࢇ∑) ࢈ࢇ∑,  (ࢉ࢈ࢇ,

(∗) ⇔ ૟࢖ ≥ ૛ૠࢗ૛(࢖૛ − ૛ࢗ) ⇔ ૛࢖) − ૜ࢗ)૛(࢖૛ + ૟ࢗ) ≥ ૙ is true. 

Equality holds if ࢖૛ = ૜ࢗ ⇔ ࢇ = ࢈ =  .ࢉ

ࢇ =
࢞૛

࢟૛ ࢈, =
࢟૛

࢞૛ , ࢉ = ૚ ⇒෍࢈ࢇ =
࢞૛

࢟૛ +
࢟૛

࢞૛ + ૚ = ෍ࢇ 

(∗) ⇒ ቆ
࢞૛

࢟૛ +
࢟૛

࢞૛ + ૚ቇ
૝

≥ ૛ૠቆ
࢞૝

࢟૝ +
࢟૝

࢞૝ + ૚ቇ 

Equality holds if ࢞
૛

࢟૛
= ࢟૛

࢞૛
= ૚ ⇒ ࢟ = ࢟	ܚܗ	࢞ = −࢞. 

If ࢞ = ࢟
(૛)
ሳሰ ૞࢞૝ି૚૙࢞૛ା૚

࢞૞ି૚૙࢞૜ା૞࢞
= ૚, let us denote ࢞ = ࢇ࢔ࢇ࢚ ⇒ (ࢇ૞)࢔ࢇ࢚ = ࢇ࢔ࢇା૞࢚ࢇ૜࢔ࢇ૚૙࢚ିࢇ૞࢔ࢇ࢚

૞࢚࢔ࢇ૝ିࢇ૚૙࢚࢔ࢇ૛ࢇା૚
= ૚ 

⇒ ࢇ ∈ ൜
࣊
૛૙ +

࢑࣊
૞ ฬ࢑ ∈ ℤൠ ⇒ 

࢞ = ࢟ = ࢔ࢇ࢚ ቀ
࣊
૛૙
ቁ = ૚ + √૞ + ට૞ + ૛√૞ 

࢞ = ࢟ = ࢔ࢇ࢚ ቀ
࣊
૝
ቁ = ૚ 

࢞ = ࢟ = ࢔ࢇ࢚ ൬
ૢ࣊
૛૙൰ = ૚ + √૞ − ට૞ + ૛√૞ 

࢞ = ࢟ = ࢔ࢇ࢚ ൬
૚૜࣊
૛૙ ൰ = ૚ − √૞ − ට૞ − ૛√૞ 

࢞ = ࢟ = ࢔ࢇ࢚ ൬
૚ૠ࣊
૛૙ ൰ = ૚ − √૞ + ට૞ − ૛√૞ 

If ࢟ = −࢞
(૛)
ሳሰ	૞࢞

૝ା૚૙࢞૛ା૚
࢞૞ି૚૙࢞૜ା૞࢞

= −૚ ⇔ ࢞૞ + ૞࢞૝ − ૚૙࢞૜ + ૚૙࢞૛ + ૞࢞ + ૚ = ૙ 

Let ࢌ(࢞) = ࢞૞ + ૞࢞૝ − ૚૙࢞૜ + ૚૙࢞૛ + ૞࢞ + ૚ ⇒ 

(࢞)ᇱࢌ = ૞൫࢞૛ + ൫૛√૜ + ૛൯࢞ + ૚൯(࢞૛ − ൫૛√૜ − ૛൯࢞ + ૚) 

(࢞)ᇱࢌ = ૙ ⇔ ࢞૚ = −√૜ − ૚ −ට૜ + ૛√૜ ≅ −૞,૛ૠ 

࢞૛ == −√૜ − ૚ + ට૜ + ૛√૜ ≅ −૙,૚ૡ 

We have: ࢌ(࢞૚) > 0,݂(࢞૛) > 0 ⇒ ݂(࢞) = ૙ admits only one solution ࢞૙ < ࢞૚ 
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By Newton-Raphson Method, ࢞૙ = −࢟૙ = −૟.૟ૢૢ… 

(࢞,࢟) ∈ ቊ(૚,૚), ቆ૚ + √૞ ± ට૞ + ૛√૞,૚ + √૞ ± ට૞ + ૛√૞ቇ , ቆ૚ − √૞ ± ට૞ − ૛√૞,૚

− √૞ ± ට૞ − ૛√૞൰ , (−૟,૟ૢૢ,૟,૟ૢૢ)ቋ 

254. Solve in ℂ: 

ቊ
(࢞ + ࢟)૛ = ૞ + ࢞࢟

ૢ࢞૜ − ૞࢞ + ૛࢞࢟૛ = ૛૟࢟૜ + ૞࢟ − ૛࢞૛࢟
 

Proposed by Carlos Paiva-Fortalezza-Brazil 

Solution by Amir Sofi-Pristina-Kosovo 

ૢ࢞૜ − ૞࢞ + ૛࢞࢟૛ = ૛૟࢟૜ + ૞࢟ − ૛࢞૛࢟ ↔ 

࢞૜ + ࢟૜ − ૞(࢞+ ࢟) + ૛࢞࢟(࢞ + ࢟) + (૛࢞)૜ − (૜࢟)૜ = ૙ ↔ 

(+࢟)(࢞૛ − ࢞࢟ + ࢟૛ + ૛࢞࢟ − ૞) + (૛࢞)૜ − (૜࢟)૜ = ૙ ↔ 

(࢞ + ࢟)[(࢞ + ࢟)૜ − ࢞࢟ − ૞] + (૛࢞)૜ − (૜࢟)૜ = ૙ ↔ 

(૛࢞)૜ − (૜࢟)૜ = ૙ ↔ (૛࢞ − ૜࢟)(૝࢞૛ + ૟࢞࢟ + ૢ࢟૛) = ૙ 

૝࢞૛ + ૟࢞࢟ + ૢ࢟૛ = ૙ ↔
૛࢞
૜࢟ +

૜࢟
૛࢞ + ૚ = ૙ ↔ ൬

૜࢟
૛࢞൰

૛

+
૜࢟
૛࢞ + ૚ = ૙ ↔ 

૜࢞
૛࢟ =

−૚ ± ૜√࢏
૛ ↔ ࢟ =

−૚ ± ૜√࢏
૜ ࢞ 

(࢞ + ࢟)૛ = ૞ + ࢞࢟ 

ቆ࢞ +
−࢞ + ૜࢞√࢏

૜ ቇ
૛

= ૞ + ࢞ ⋅
−࢞ + ૜࢞√࢏

૜ 	ܞ	 ቆ࢞ +
−࢞ − ૜࢞√࢏

૜ ቇ
૛

= ૞ + ࢞ ⋅
−࢞ − ૜࢞√࢏

૜ 	 

ቆ
૛࢞ + ૜࢞√࢏

૜ ቇ
૛

=
૚૞ − ࢞૛ + ૜࢞૛√࢏

૜ 	ܞ	 ቆ
૛࢞ − ૜࢞√࢏

૜ ቇ
૛

=
૚૞ − ࢞૛ − ૜࢞૛√࢏

૜  

૝࢞૛ + ૜࢞૛√࢏ − ૝૞ = ૙		ܞ	૝࢞૛ − ૜࢞૛√࢏ − ૝૞ = ૙		 

࢞ = ±ඨ
૝૞൫૝ − ૜൯√࢏

૚ૢ ࢞	ܞ	 = ±ඨ
૝૞൫૝ + ૜൯√࢏

૚ૢ  
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(࢞,࢟) = ቌ±ඨ
૝૞൫૝ − ૜൯√࢏

૚ૢ
, ±൫−૚ ± ૜൯√࢏ ± ඨ૝૞൫૝ − ૜൯√࢏

૚ૢ
ቍ, 

ቌ±ඨ
૝૞൫૝ + ૜൯√࢏

૚ૢ , ±൫−૚ ± ૜൯√࢏ ± ඨ૝૞൫૝ + ૜൯√࢏
૚ૢ

ቍ 

255. Solve for real numbers: 

⎩
⎪
⎨

⎪
⎧

࢞,࢟, ࢠ > 0

ඥ࢞࢟+ ඥ࢟ࢠ+ ࢞ࢠ√ + ඨ࢞
૛ + ࢟૛

૛
+ඨ࢟

૛ + 	૛ࢠ
૛

+ඨࢠ
૛ + ࢞૛

૛
= ૟

࢞ + ࢟ + ࢠ = ૜

 

Proposed by Daniel Sitaru-Romania 

Solution 1 by Lazaros Zachariadis-Thessaloniki-Greece 

ඥ࢞࢟ + ඥ࢟ࢠ + ࢞ࢠ√ + ඨ࢞
૛ + ࢟૛

૛ + ඨ࢟
૛ + 	૛ࢠ
૛ + ඨࢠ

૛ + ࢞૛

૛ = ૟ ⇔ 

෍ඨ࢞
૛ + ࢟૛

૛
ࢉ࢟ࢉ

−෍࢞
ࢉ࢟ࢉ

= ෍࢞
ࢉ࢟ࢉ

−෍ඥ࢞࢟
ࢉ࢟ࢉ

; (૚) 

ඨ࢞
૛ + ࢟૛

૛ ≥
࢞ + ࢟
૛ ⇒෍ඨ࢞

૛ + ࢟૛

૛
ࢉ࢟ࢉ

≥෍
࢞ + ࢟
૛

ࢉ࢟ࢉ

=
∑࢞ + ∑࢟

૛ = ෍࢞
ࢉ࢟ࢉ

 

ඥ࢞࢟ ≤
࢞ + ࢟
૛ ⇒෍ඥ࢞࢟

ࢉ࢟ࢉ

≤෍࢞
ࢉ࢟ࢉ

 

So, ࡿࡴࡸ ≥ ૙,ࡿࡴࡾ ≥ ૙, equality holds when ࢞ = ࢟ = ࢞∑	but	,ࢠ = ૜, thus ࢞ = ࢟ = ࢠ = ૚. 

 Solution 2 by Florentin Vişescu-Romania 

ࢍ࢓ + ࢗ࢓ ≤ ૛ࢇ࢓, equality for ࢇ =  .࢈

࢈ࢇ√ + ඨࢇ
૛ + ૛࢈

૛ ≤ +ࢇ ࢈ ⇔ ࢈ࢇ +
૛ࢇ + ૛࢈

૛ + ૛ඨ
࢈૜ࢇ + ૜࢈ࢇ

૛ ≤ ૛ࢇ + ૛࢈ + ૛࢈ࢇ ⇔ 
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૛ඨ
࢈૜ࢇ + ૜࢈ࢇ

૛ ≤
૛ࢇ + ૛࢈ + ૛࢈ࢇ

૛ ⇔
૝(ࢇ૜࢈ + (૜࢈ࢇ

૛ ≤
+ࢇ) ૝(࢈

૛ ⇔ 

ࢇ) − ૝(࢈ ≥ ૙, with equality for ࢇ =  .࢈

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
ඥ࢞࢟ + ඨ࢞

૛ + ࢟૛

૛ ≤ ࢞ + ࢟

ඥ࢟ࢠ + ඨ࢟
૛ + ૛ࢠ

૛
≤ ࢟ + ࢠ

࢞ࢠ√ + ඨࢠ
૛ + ࢞૛

૛ ≤ +ࢠ ࢞

⇒ 

ඥ࢞࢟ + ඨ࢞
૛ + ࢟૛

૛ + ඥ࢟ࢠ + ඨ࢟
૛ + ૛ࢠ

૛ + ࢞ࢠ√ + ඨࢠ
૛ + ࢞૛

૛ ≤ ૛(࢞+ ࢟ +  (ࢠ

Equality holds for ࢞ = ࢟ = ࢞ but ,ࢠ + ࢟ + ࢠ = ૜ ⇒ ࢞ = ࢟ = ࢠ = ૚. 

 Solution 3 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

෍࢞
ࢉ࢟ࢉ

= ૜ =
૚
૛෍

ቌඥ࢞࢟ + ඨ࢞
૛ + ࢟૛

૛
ቍ	

ࢉ࢟ࢉ

≤
ࡿି࡯ ૚

૛෍
ඨ૛ቆ࢞࢟ +

࢞૛ + ࢟૛

૛ ቇ =
ࢉ࢟ࢉ

૚
૛෍(࢞ + ࢟)
ࢉ࢟ࢉ

= ෍࢞
ࢉ࢟ࢉ

⇒ ࢞࢟ =
࢞૛ + ࢟૛

૛  (࢙ࢍ࢕ࢇ࢔ࢇ	ࢊ࢔ࢇ)

Equality if and only if ࢞ = ࢟ = ∑ and how ,ࢠ ࢉ࢟ࢉ࢞ = ૜, thus ࢞ = ࢟ = ࢠ = ૚. 

256. Solve for natural numbers: 

࢞૛૙૚ૢ + ૜ ∙ ࢟! = ૛૚૟૚ ∙ ૛૙૛૙૜ࢠ 

Proposed by George Florin Şerban-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

࢞૛૙૚ૢ + ૜ ∙ ࢟! = ૛૚૟૚ ∙ ૛૙૛૙૜ࢠ; (∗) 

For ࢟ ≥ ૠ;૜࢟! ≡ ૙	(ࢊ࢕࢓	ૠ) 

૛૙૛૙ ≡ ૝	(ࢊ࢕࢓	ૠ) ⇒ ૛૙૛૙૜ ≡ ૚(ࢊ࢕࢓	ૠ) ⇒ ૛૙૛૙૜ࢠ ≡ ૚(ࢊ࢕࢓	ૠ) 

૛૚૟૚ ≡ ૞	(ࢊ࢕࢓	ૠ) ⇒ ૛૚૟૚ ∙ ૛૙૛૙૜ࢠ ≡ ૞(ࢊ࢕࢓	ૠ) 
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࢞૛૙૚ૢ = (࢞૟ૠ૜)૜ = ૜ࢇ ≡ ૙;૚; ૟	(ࢊ࢕࢓	ૠ) 

⇒ ∀࢟ ≥ ૠ, ࢞૛૙૚ૢ + ૜࢟! ≠ ૛૚૟૚ ∙ ૛૙૛૙૜ࢠ 

If ࢟ = ૙ or ࢟ = ૚ then, (∗) ⇔ ࢞૛૙૚ૢ = ૛૚૟૚ ∙ ૛૙૛૙૜ࢠ − ૜.  

But ૛૚૟૚ ∙ ૛૙૛૙૜ࢠ − ૜ ≡ ૛	(ࢊ࢕࢓	ૠ)  and ࢞૛૙૚ૢ ≡ ૙; ૚;૟	(ࢊ࢕࢓	ૠ). 

If ࢠ = ૙, (∗) ⇔૛૙૚ૢ+ ૜࢟! = ૛૚૟૚ < ૛૚૛ ⇒ ࢞ < 2 

࢞ = ૙ ⇒ ૜࢟! = ૛૚૟૚ 

࢞ = ૚ ⇒ ૜࢟! = ૛૚૟૙ ⇒ ࢟ = ૟. 

If ࢠ ≠ ૙; ࢟ ∈ {૛,૜,૝,૞,૟},࢞૛૙૚ૢ = ૛૚૟૚ ∙ ૛૙૛૙૜ࢠ − ૜࢟! ⇒ ∀࢞ ∈ ℕ,࢞ −eveb, then 

{࢞ = ૛࢚|࢚ ∈ ℕ} ⇒ ૜࢟! = ૛૟൫૛૚૟૚ ∙ ૛૟(ିࢠ૚) ∙ ૞૙૞૜ࢠ − ૛૛૙૚૜ ∙ ࢚૛૙૚ૢ൯ 

⇒ ૛૟|࢟! absurd for ࢟ ≤ ૟. 

Therefore, ࡿ = {(૚;૟;૙)|࢞,࢟,ࢠ ∈ ℕ}. 

࢔,࢑ .257 ∈ ℕ∗ −fixed. Solve for real numbers: 

࢞૛࢑ − ૛࢞࢑ + ૜ = √࢞૛࢔ + √૛ − ࢞૛࢔  

Proposed by Marin Chirciu-Romania 
Solution by George Florin Şerban-Romania 

ቐ
࢞ ≥ ૙

૛ − ࢞ ≥ ૙
࢞૛࢑ − ૛࢞࢑ + ૜ ≥ ૙

⇒ ቐ
࢞ ≥ ૙
࢞ ≤ ૛

൫࢞࢑ − ૚൯
૛

+ ૛ ≥ ૙
⇒ ࢞ ∈ [૙,૛] 

Let ࢌ(࢞) = √࢞૛࢔ , :ࢌ [૙,૛] → ℝ,ࢌᇱ(࢞) = ૚
૛࢔
࢞

૚
૛ି࢔૚, (࢞)ᇱᇱࢌ = ૚ି૛࢔

૝࢔૛
࢞

૚
૛ି࢔૚ < ݔ∀,0 ∈ [૙,૛],	 

࢔ ≥ ૚ ⇒ ࢌ −concave ⇒ ࢈ାࢇቀࢌ
૛
ቁ ≥ (࢈)ࢌା(ࢇ)ࢌ

૛
⇒ ࢌ ቀ࢞ା૛ି࢞

૛
ቁ ≥ (૛ି࢞)ࢌା(࢞)ࢌ

૛
 

(࢞)ࢌ + ૛)ࢌ − ࢞) = √࢞૛࢔ + √૛ − ࢞૛࢔ ≤ ૛ࢌ(૚) = ૛ 

൫࢞࢑ − ૛൯ + ૛ ≤ ૛ ⇔ ૙ ≤ ൫࢞࢑ − ૚൯
૛
≤ ૙ ⇒ ࢞࢑ − ૚ = ૙ ⇔ ࢞ = ૚. 

258. Solve for real numbers: 

૛ ∙ ඥࢋ૝࢞ ∙ ૛∙૟࢞ࢋ ∙ ૝࢞ૢࢋ = ૝࢞ࢋ + ࢞ૢࢋ  

Proposed by Daniel Sitaru-Romania 

Solution by Michael Sterghiou-Greece 

૛ ∙ ඥࢋ૝࢞ ∙ ૛∙૟࢞ࢋ ∙ ૝࢞ૢࢋ = ૝࢞ࢋ + ;࢞ૢࢋ (૚) 
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૝࢞ࢋ ∙ ૛∙૟࢞ࢋ ∙ ࢞ૢࢋ = ૝࢞ା૛∙૟࢞ାૢ࢞ࢋ = ૛ା(૜࢞)૛ା૛∙૛࢞∙૜࢞(૛࢞)ࢋ = ૛(૛࢞ା૜࢞)૛ ⇒ 

(૚)ࡿࡴࡸ = ૛ ∙ ൬ࢋ
૛࢞ା૜࢞
૛ ൰

૛

; (૛) 

By AM-GM inequality, we have: 

(૚)ࡿࡴࡾ ≥ ૛ ∙ ඥࢋ૛૛࢞ା૜૛࢞ = ૛ ∙ ࢋ
૛૛࢞శ૜૛࢞

૛ , therefore, we get: 

൬ࢋ
૛࢞శ૜࢞

૛ ൰
૛

≥ ࢋ
૛૛࢞శ૜૛࢞

૛  and as ࢌ(࢚) = ࢚ࢋ ↑in ℝ ⇒ ቀ૛
࢞ା૜࢞

૛
ቁ
૛
≥ ૛૛࢞ା૜૛࢞

૛
⇒ 

૛૛࢞ + ૜૛࢞ + ૛ ∙ ૟࢞

૝ ≥
૛૛࢞ + ૜૛࢞

૛ ⇒ ૛૛࢞ + ૜૛࢞ − ૛ ∙ ૟࢞ ≤ ૙ ⇒ (૛࢞ − ૜࢞)૛ ≤ ૙ 

⇔ ૛࢞ = ૜࢞ ⇔ ࢞ = ૙ which is only solution. 

259.  

(࢞)࢓ࢌ = ࢓) + ૚)࢞૜ − ૛(࢓ + ૚)࢞૛ − −࢓) ૛)࢞ + ૛࢓ − ૜,࢓ ∈ ℝ − {−૚} 

Find the equation of the line which contains the three fixed points of ࢓ࢌ (the 

points not depends of ࢓) 

Proposed by Costel Florea-Romania 

Solution 1 by Adrian Popa-Romania 

(࢞)࢓ࢌ = +࢓) ૚)࢞૜ − ૛(࢓ + ૚)࢞૛ − ࢞(૛−࢓) + ૛࢓− ૜,࢓ ∈ ℝ− {−૚} 

(࢞)࢓ࢌ = ૜࢞࢓ + ࢞૜ − ૛࢞࢓૛ − ૛࢞૛ ࢞࢓− + ૛࢓− ૜ 

(࢞)࢓ࢌ = ૜࢞)࢓ − ૛࢞૛ − ࢞ + ૛) + ࢞૜ − ૛࢞૛ + ૛࢞ − ૜ 

࢞૜ − ૛࢞૛ − ࢞ + ૛ = ૙ ⇒ ࢞૚ = ૚, ࢞૛ = ૛, ࢞૜ = −૚ 

⇒  (૚,−ૡ−)࡯,(૛,૚)࡮,(૚,−૛)࡭

:࡮࡭
࢞ − ૚
૛ − ૚ =

࢟ + ૛
૚ + ૛ ⇒ ࢟ = ૜࢞ − ૞ ⇒ ࡯ ∈  ࡮࡭

Solution 2 by Alex Szoros-Romania 

(࢞)࢓ࢌ = +࢓) ૚)࢞૜ − ૛(࢓ + ૚)࢞૛ − ࢞(૛−࢓) + ૛࢓− ૜,࢓ ∈ ℝ− {−૚} 

(࢞)࢓ࢌ = ૜࢞࢓ + ࢞૜ − ૛࢞࢓૛ − ૛࢞૛ ࢞࢓− + ૛࢓− ૜ 

(࢞)࢓ࢌ = ૜࢞)࢓ − ૛࢞૛ − ࢞ + ૛) + ࢞૜ − ૛࢞૛ + ૛࢞ − ૜ 

(࢞)࢓ࢌ = ࢓) + ૚)(࢞૜ − ૛࢞૛ − ࢞ + ૛) + ૜࢞ − ૞ 
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If ࡼ(࢞૙,࢟૙) −fix point if and only if ࢞૙૜ − ૛࢞૙૛ − ࢞૙ + ૛ = ૙, so ࢟ = ૜࢞ − ૞. 

Solution 3 by Khaled Abd Imouti-Damascus-Syria 

(࢞)࢓ࢌ = +࢓) ૚)࢞૜ − ૛(࢓ + ૚)࢞૛ − ࢞(૛−࢓) + ૛࢓− ૜,࢓ ∈ ℝ− {−૚} 

࢟ = ૜࢞࢓ + ࢞૜ − ૛࢞࢓૛ − ૛࢞૛ ࢞࢓− + ૛࢓− ૜ 

૜࢞)࢓ − ૛࢞૛ − ࢞ + ૛) + ࢞૜ − ૛࢞૛ + ૛࢞ − ૜ − ࢟ = ૙ 

ቊ ࢞૜ − ૛࢞૛ − ࢞ + ૛ = ૙, (૚)
࢞૜ − ૛࢞૛ + ૛࢞ − ૜ − ࢟ = ૙, (૛)

⇒ ൜
࢞૚ = ૚, ࢞૛ = ૛,࢞૜ = −૚

 (૚,−ૡ−)࡯,(૛,૚)࡮,(૚,−૛)࡭

:࡮࡭ ࢟ = ࢞࢓ + ࢓,࢖ =
࡮࢟ − ࡭࢟
࡮࢞ − ࡭࢞

= ૜ 

(૛,૚)࡭ ∈ ૚:(࡮࡭) = ૟ + ࢖ ⇒ ࢖ = −૞. 

࢟:࡮࡭ = ૜࢞ − ૞ 

260. Find ࢞ ∈ ℤ such that: ඥ(࢞ − ૜)(૞࢞ − ૚)(૞࢞૛ − ૚૛࢞ + ૜) ∈ ℕ. 

Proposed by George Florin Şerban-Romania 

Solution by Mohamed Amine Ben Ajiba-Morocco 

(࢞ − ૜)(૞࢞− ૚)(૞࢞૛ − ૚૛࢞ + ૜) = (૞࢞૛ − ૚૟࢞ + ૜)(૞࢞૛ − ૚૛࢞ + ૜) = 

= ቀ(૞࢞૛ − ૚૝࢞ + ૜)− ૛࢞ቁ ቀ(૞࢞૛ − ૚૝࢞ + ૜) + ૛࢞ቁ = 

= (૞࢞૛ − ૚૝࢞ + ૜)૛ − ૝࢞૛ < (૞࢞૛ − ૚૝࢞ + ૜)૛,∀࢞ ∈ ℤ∗ 

(૞࢞૛ − ૚૝࢞ + ૜)૛ − ૝࢞૛ > (૞࢞૛ − ૚૝࢞ + ૛)૛  

⇔ (૞࢞૛ − ૚૝࢞ + ૛)૛ + ૛(૞࢞૛ − ૚૝࢞ + ૛) + ૚ − ૝࢞૛ > (૞࢞૛ − ૚૝࢞ + ૛)૛ 

⇔ ૟࢞૛ − ૛ૡ࢞ + ૞ > 0 true for all ࢞ ∈ ℤ − [૚;૝] 

(૞࢞૛ − ૚૝࢞ + ૛)૛ < (࢞ − ૜)(૞࢞ − ૚)(૞࢞૛ − ૚૝࢞ + ૜)૛ 

⇒ ∀࢞ ∈ ℤ − {૚,૛,૜,૝},ඥ(࢞ − ૜)(૞࢞ − ૚)(૞࢞૛ − ૚૛࢞ + ૜) ∈ ℕ. 

࢞ = ૙; 	√ૢ = ૜ ∈ ℕ,࢞ = ૚;√૜૛ ∉ ℕ 

࢞ = ૛; 	√ૢ = ૜ ∈ ℕ	 

࢞ = ૜; ૙ ∈ ℕ 

࢞ = ૝; 	√૟૟૞ ∉ ℕ ⇒ ࡿ = {૙,૚,૛,૜, } 

 



 
www.ssmrmh.ro 

61 RMM-ABSTRACT ALGEBRA MARATHON 201-300 
 

261. Two numbers ࢇ and ࢈ are chosen uniformly and randomly from 

(૙, ૚).	Then ࢇ
࢈

 is calculated and rounded off to the nearest integer. Find the 

probability that after rounding off, the integer is odd (find the closed form). 

Proposed by Arghyadeep Chatterjee-India 

Solution by proposer 

Probability=  ࡼ

ࡼ = ෍න න ࢟ࢊ࢞ࢊ

૛࢟
૝࢘ା૚

૛࢟
૝࢘ା૜

૚

૙

ஶ

࢘ୀ૚

+ නන࢞ࢊ࢟ࢊ
࢞

࢞
૛

૚

૙

+ න න࢟ࢊ࢞ࢊ

࢟

૛
૜࢟

૚

૙

= 

=
૚
૝ +

૚
૟ + ෍൬

૚
૝࢘ + ૚ −

૚
૝࢘+ ૜൰

ஶ

࢘ୀ૚

=
૚
૝ +

૚
૟ + නቆ

࢞૝

૚ + ࢞૝ ࢞ࢊ −
࢞૟

૚ − ࢞૝ ቇ࢞ࢊ
૚

૙

= 

=
૚
૝ +

૚
૟ + න

࢞૝

૚ + ࢞૝ ࢞ࢊ
૚

૙

=
૚
૝ +

૚
૟ + න ࣂ૝࢔ࢇ࢚

࣊
૝

૙

ࣂࢊ =
࢘
૝ −

૚
૝ 

262. Solve for real numbers: 

ቐ
࢞૜ + ࢞૛ + ࢞ = (࢞ + ૚)(࢟ + ૛)ඥ(࢞ + ૚)(࢟ + ૚)

ඥ࢟+ ૚ + ૛ = ൬࢞ − ૚ −
૜
૝࢞൰√࢞ + ૚

 

Proposed by Carlos Eduardo Aguiar Paiva-Brazil 
Solution by proposer 

૜࢞			(࢏ + ࢞૛ + ࢞ = (࢞ + ૚)(࢟ + ૛)ඥ(࢞+ ૚)(࢟ + ૚) 

⇔
࢞૜ + ࢞૛ + ࢞

(࢞ + ૚)√࢞ + ૚
= (࢟+ ૛)ඥ࢟ + ૚ 

⇔
࢞૜

(࢞ + ૚)√࢞ + ૚
+

࢞
√࢞+ ૚

= (࢟ + ૛)ඥ࢟ + ૚ 

⇔ ൬
࢞

√࢞ + ૚
൰
૜

+
࢞

√࢞ + ૚
= (࢟ + ૚ + ૚)ඥ࢟ + ૚ = (࢟ + ૚)ඥ࢟+ ૚ + ඥ࢟ + ૚ 
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⇔ ൬
࢞

√࢞ + ૚
൰
૜

+
࢞

√࢞ + ૚
= ൫ඥ࢟ + ૚൯

૜
+ ඥ࢟ + ૚	 

Let (࢓)ࢌ = ૜࢓ +  .injective−࢓

࢞
√࢞ + ૚

= ඥ࢟ + ૚ ⇒ ࢟ =
࢞૛ − ࢞ − ૚
࢞ + ૚  

ඥ࢟		(࢏࢏ + ૚ + ૛ = ൬࢞ − ૚ −
૜
૝࢞൰√࢞ + ૚ 

⇔ ૝࢞ඥ࢟ + ૚ + ૡ࢞ = (૝࢞૛ − ૝࢞− ૜)√࢞ + ૚ 

⇔ ૝࢞૛ + ૡ࢞√࢞ + ૚ = (૝࢞૛ − ૝࢞ − ૜)(࢞ + ૚) 

૝࢞૛ + ૡ࢞√࢞ + ૚ + ૝(࢞ + ૚) = (૝࢞૛ − ૝࢞ + ૚)(࢞ + ૚) 

⇔ ൫૛࢞ + ૛√࢞ + ૚൯
૛

= (૛࢞ − ૚)૛(࢞ + ૚) 

૛࢞	(′࢏࢏ + ૛√࢞ + ૚ = (૛࢞ − ૚)√࢞ + ૚ or ࢏࢏′′)	૛࢞ + ૛√࢞ + ૚ = −(૛࢞ − ૚)√࢞ + ૚ 

૝࢞૜		(′࢏࢏ − ૚૛࢞૛ − ૜࢞ + ૢ = ૙ ⇔ (૝࢞૛ − ૜)(࢞ − ૜) = ૙ ⇔ 

࢞૚,૛ = ±
√૜
૛ ; ࢞૜ = ૜ 

૛࢞	(′′࢏࢏ + ૛√࢞ + ૚ = −(૛࢞ − ૚)√࢞ + ૚ 

ࡱ = −૝૝,ࡲ = −૜૟ૡ,ࡳ = ૡ૙,ࡴ = ૢ૚૞ૡ૝ − ૛૟ ⋅ ૜૛ ⋅ ૚૞ૢ > 0 

If ࡴ > 0, in the cubic equation, then there is only one real root: 

࢞૝ =
−૛ + ඥ૚૙ + ૜√૚૞ૢ

૜
+ ඥ૚૙ − ૜√૚૞ૢ

૜

૟ ~− ૙.૛૜૜ 

(࢞,࢟) ∈ ൝ቆ
√૜
૛ ,

૝ − ૜√૜
૛ ቇ ;ቆ−

√૜
૛ ,

૝ +૜√૜
૛ ቇ ; ൬૜,

૞
૝൰൭

−૛ + ඥ૚૙ + ૜√૚૞ૢ
૜ + ඥ૚૙ − ૜√૚૞ૢ

૜

૟ ,
࢞૝૛ −࢞૝ − ૚
࢞૝ + ૚ ൱ൡ 

After the tests: (࢞,࢟) ∈ ቀ૜, ૞
૝
ቁ 

 

263. Solve for real numbers: 

⎩
⎨

⎧
࢞,࢟, ,ࢠ ࢚ > 0

(૛ − ࢞)(૛ − ࢟)(૛ − ૛)(ࢠ − ࢚)
(࢞ + ࢟)(࢟ + ࢠ)(ࢠ + ࢚)(࢚+ ࢞)

=
૚
૚૟

࢞ + ࢟ + ࢠ + ࢚ = ૝
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Proposed by Daniel Sitaru-Romania 
Solution 1 by Florentin Vişescu-Romania 

If ࢞ > 2 then for ࢟ > 2 ⇒ ݔ + ݕ > 4 false. Hence, ࢞,࢟, ,ࢠ ࢚ < 2. 

࢞ + ࢟ = ૝ − ࢠ − ࢚ = (૛ − (ࢠ + (૛ − ࢚) 

(૛ − ࢞)(૛ − ࢟)(૛ − ૛)(ࢠ − ࢚)
(࢞ + ࢟)(࢟ + +ࢠ)(ࢠ ࢚)(࢚ + ࢞) =

૚
૚૟ ; (૛ − ࢞)(૛ − ࢟)(૛ − ૛)(ࢠ − ࢚) > 0 

We distinguish the cases: 

 ൞

૛ − ࢞ > 0
૛ − ࢟ > 0
૛ − ࢠ > 0
૛ − ࢚ > 0

⇒ ࢞,࢟, ,ࢠ ࢚ < 2 

 ൞

૛ − ࢞ > 0
૛ − ࢟ > 0
૛ − ࢠ < 0
૛ − ࢚ < 0

⇒ ቄࢠ > 2
࢚ > 2 ⇒ ࢠ + ࢚ > 4	contradiction, because  ࢞ + ࢟ + ࢠ + ࢚ = ૝ 

 ൞

૛ − ࢞ < 0
૛ − ࢟ < 0
૛ − ࢠ < 0
૛ − ࢚ < 0

⇒ ࢞,࢟, ,ࢠ ࢚ > 2	contradiction, because  ࢞ + ࢟ + ࢠ + ࢚ = ૝. 

(૛ − ࢞)(૛ − ࢟)(૛ − ૛)(ࢠ − ࢚)
(࢞ + ࢟)(࢟ + +ࢠ)(ࢠ ࢚)(࢚ + ࢞) =

૚
૚૟ ⇔ 

(૛ − ࢞)(૛− ࢟)(૛ − ૛)(ࢠ − ࢚)
(૛ − ࢠ + ૛ − ࢚)(૛− ࢞ + ૛ − ࢚)(૛− ࢟ + ૛ − ࢞)(૛ − ࢟ + ૛ − (ࢠ =

૚
૚૟ ; (૚) 

૛ − ࢠ + ૛ − ࢚
૛ ≥ ඥ(૛ − −૛)(ࢠ ࢚) ⇒

૚
(૛ − ࢠ + ૛ − ࢚) ≤

૚
૛ඥ(૛ − −૛)(ࢠ ࢚)

 

Analogously: 

૚
(૛ − ࢞ + ૛ − ࢚) ≤

૚
૛ඥ(૛ − ࢞)(૛ − ࢚)

;
૚

(૛ − ࢟ + ૛ − ࢞) ≤
૚

૛ඥ(૛ − ࢟)(૛ − ࢞)
 

૚
(૛ − ࢟ + ૛ − (ࢠ ≤

૚
૛ඥ(૛ − ࢟)(૛ − (ࢠ

 

Hence, 

(૛ − ࢞)(૛− ࢟)(૛ − ૛)(ࢠ − ࢚)
(૛ − ࢠ + ૛ − ࢚)(૛− ࢞ + ૛ − ࢚)(૛− ࢟ + ૛ − ࢞)(૛ − ࢟ + ૛ − (ࢠ ≤

૚
૚૟ ; (૛) 

From (૚), (૛) it follows that: ૛ − ࢞ = ૛ − ࢟ = ૛ − ࢚ = ૛ − ࢠ ⇒ 
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࢞ = ࢟ = ࢠ = ࢚, but ࢞ + ࢟ + ࢠ + ࢚ = ૝ then ࢞ = ࢟ = ࢠ = ࢚ = ૚. 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

⎩
⎨

⎧
࢞,࢟, ,ࢠ ࢚ > 0

(૛ − ࢞)(૛ − ࢟)(૛− ૛)(ࢠ − ࢚)
(࢞+ ࢟)(࢟ + +ࢠ)(ࢠ ࢚)(࢚ + ࢞) =

૚
૚૟

࢞ + ࢟ + ࢠ + ࢚ = ૝

; (∗) 

If ૛ − ࢞,૛ − ࢟ ≤ ૙ → ૝ = ࢞ + ࢟ + ࢠ + ࢚ ≤ ࢞ + ࢟ contradiction! 

So, (૛− ࢞)(૛ − ࢟)(૛ − ૛)(ࢠ − ࢚) = ૚
૚૟

(࢞ + ࢟)(࢟ + +ࢠ)(ࢠ ࢚)(࢚+ ࢞) > 0 

→ ૛− ࢞,૛ − ࢟,૛ − ૛,ࢠ − ࢚ > 0. 

Let ࢇ = ૛ − ࢈,࢞ = ૛ − ࢟, ࢉ = ૛ − ࢊ,ࢠ = ૛ − ,࢈,ࢇ;࢚ ࢊ,ࢉ > 0;∑ܽ = 4 

→ ൞

࢞ + ࢟ = ૝ − +ࢇ) (࢈ = ࢉ + ࢊ
࢟ + ࢠ = ࢇ + ࢊ
+ࢠ ࢚ = ࢇ + ࢈
࢚ + ࢞ = ࢈ + ࢉ

→ (∗) ⇔ ࢉ) + +ࢇ)(ࢊ +ࢇ)(ࢊ ࢈)(࢈ + (ࢉ = ૚૟ࢊࢉ࢈ࢇ 

But from AM-GM we have: 

ࢉ) + +ࢇ))(ࢊ +ࢇ)(ࢊ +࢈)(࢈ (ࢉ ≥ ൫૛√ࢊࢉ൯൫૛√ࢊࢇ൯൫૛√࢈ࢇ൯൫૛√ࢉ࢈൯ = ૚૟ࢊࢉ࢈ࢇ 

Equality holds when ࢇ = ࢈ = ࢉ = ࢊ = ૚ → ࢞ = ࢟ = ࢠ = ࢚ = ૚. 

264. If ࢞,࢟, ࢠ ∈ ℂ,࢞ + ࢟ + ࢠ = ૙ then: 

|࢞| + |࢟| + |ࢠ| ≤ |࢞ − |ࢠ + ࢠ| − ࢞| + |࢟ − ࢞| 

Proposed by Daniel Sitaru-Romania 
Solution 1 by Florentin Vişescu-Romania 

If ࢞,࢟, ࢠ −different in pairs, let (ࢠ)࡯,(࢟)࡮,(࢞)࡭. How ࢞ + ࢟ + ࢠ = ૙ → ࢞ା࢟ାࢠ
૜

= ૙ → 

ࡳ = ࡭ࡳ :We must to prove that .ࡻ + ࡮ࡳ + ࡯ࡳ ≤ ࡮࡭ + ࡯࡮ +  ࡭࡯

૜
૛࡭ࡳ ≤ ࡮࡭ +

࡯࡮
૛ ;

૜
૛࡮ࡳ ≤ ࡯࡮ +

࡯࡭
૛ ;

૜
૛࡯ࡳ ≤ ࡭࡯ +

࡮࡭
૛  

→
૜
૛

࡭ࡳ) + ࡮ࡳ + (࡯ࡳ ≤
૜
૛

࡮࡭) + +࡯࡮  (࡭࡯

If ࢞ = ࢟ ≠ ࢠ → ૛࢞ + ࢠ = ૙ → ࢠ = −૛࢞ 

We must show that:	૛|࢞| + |−૛࢞| ≤ |࢞ + ૛࢞| + |−૛࢞ − ࢞| or ૝|࢞| ≤ ૟|࢞| ⇔ 

૛|࢞| ≥ ૙ true. 
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If ࢞ = ࢟ = ࢠ → ૜࢞ = ૙ → ࢞ = ૙. 

 Solution 2 by Ravi Prakash-New Delhi-India 

ࢇ = |࢟ − ࢈,|ࢠ = ࢠ| − ࢞|, ࢉ = |࢞ − ࡻ࡭,|࢟ = ࡻ࡮,|࢞| = ࡻ࡯,|࢟| =  |ࢠ|

Let (ࢠ)࡯,(࢟)࡮,(࢞)࡭ be vertices of triangle ࡯࡮࡭. Centroid ࡳ of ઢ࡯࡮࡭ is given by  

ࡳࢠ =
૚
૜

(࢞ + ࢟ + (ࢠ = ૙;ࡻ࡭ =
૛
૜ࢇ࢓ =

૛
૜ࡰ࡭ 

But ࡰ࡭ ≤ ࡯ࡰ + ࡯࡭ → ૜
૛
ࡻ࡭ ≤ ࢇ

૛
+ Similarly, ૜ .࢈

૛
ࡻ࡭ ≤ ࢇ

૛
+ ࡻ࡭thus ૜ ,ࢉ ≤ +ࢇ ࢈ +  .ࢉ

Similarly,૜ࡻ࡮ ≤ ࢇ + ࢈ + ࡻ࡯૜,ࢉ ≤ ࢇ + +࢈ ࢉ → 

૜(ࡻ࡭+ +ࡻ࡮ (ࡻ࡯ ≤ ૜(ࢇ + ࢈ +  (ࢉ

Therefore, 

|࢞| + |࢟| + |ࢠ| ≤ |࢞ − |ࢠ + ࢠ| − ࢞| + |࢟ − ࢞| 

265. Find ࢞, ࢟ > 0 such that: 

૛ૠ࢞࢟ + ૛ૠ(૚ − ࢞ − ࢟)(࢞ + ࢟ + ࢞࢟) = ૚૙ 

Proposed by Daniel Sitaru-Romania 
Solution by Michael Sterghiou-Greece 
 

૛ૠ࢞࢟ + ૛ૠ(૚− ࢞ − ࢟)(࢞ + ࢟ + ࢞࢟) = ૚૙; (૚) 

Let ࢞ + ࢟ = ࢇ > 0, then ࢞࢟ ≤ ૛ࢇ

૝
; (૚) → 

૙ = ૛ૠ࢞࢟ + ૛ૠ(૚ − ࢇ)(ࢇ + ࢞࢟) ≤ ૛ૠ ⋅
૛ࢇ

૝ + ૛ + (૚− ࢇቆ(ࢇ +
૛ࢇ

૝ ቇ = 

= − ૚
૝

(૜ࢇ − ૛)૛(૜ࢇ+ ૚), which can only be true for ࢇ = ૛
૜
→ ࢞ = ૛

૜
− ࢟ 

Now, (૚)	and	࢞ = ૛
૜
− ࢟ → −૝(૚− ૜࢟)૛ = ૙ → ࢟ = ૚

૜
 and ࢞ = ૚

૜
 which are the only 

solution. 

266. Solve for integers: 
ඥࢇ૛ + ૛૜࢈ + √૛࢈ࢇ૜ = ࢇ +  ࢈

Proposed by Mehmet Şahin-Turkey 
Solution by George Florin Şerban-Romania 
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If ࢇ૛ + ૛࢈ = −૛࢈ࢇ ⇒ ࢇ) + ૛(࢈ = ૙ ⇒ ࢈ = ࢇ− ⇒ ૛ࢇ√ + ૛૜࢈ − ૛ࢇ√ + ૛૜࢈ = ૙ true. 

⇒ ࢇ;(ࢇ−,ࢇ)} ∈ ℤ}−solution. 

If ࢇ૛ + ૛࢈ ≠ −૛ࢇ,࢈ࢇ + ࢈ ∈ ℤ ⇒ ૛ࢇ√ + ૛૜࢈ + √૛࢈ࢇ૜ ∈ ℤ 

Let us denote:  ቊ√ࢇ
૛ + ૛૜࢈ = ࢞
૜࢈ࢇ√ = ࢟

; ࢞,࢟ ∈ ℤ ⇒ ૛ࢇ + ૛࢈ + ૛࢈ࢇ = ࢞૜ + ࢟૜  and ࢞ + ࢟ = +ࢇ  .࢈

ࢇ) + ૛(࢈ = ࢞૜ + ࢟૜; 		ቀ∵ ࢞૜ + ࢟૜ = (࢞ + ࢟)(࢞૛ − ࢞࢟ + ࢟૛)ቁ 

If ࢞ + ࢟ = ૙ ⇒ +ࢇ ࢈ = ૙ ⇒ ࢈ =  .ࢇ−

If ࢞૛ − ࢞࢟ + ࢟૛ − ࢞ − ࢟ = ૙ ⇔ ࢞૛ − (࢟+ ૚)࢞ + ࢟૛ − ࢟ = ૙ 

∆= −૜࢟૛ + ૟࢟ + ૚ = ࢑૛;࢑ ∈ ℤ 

∆≥ ૙ ⇒ −૜࢟૛ + ૟࢟ + ૚ ≥ ૙ ⇔ ૜࢟૛ − ૟࢟ − ૚ ≤ ૙ ⇔ ૜(࢟ − ૚)૛ ≤ ૝ ⇔ (࢟ − ૚)૛ ≤
૜
૝ 

⇔ ૚−
૛√૜
૜ ≤ ࢟ ≤ ૚ +

૛√૜
૜ ; ࢟ ∈ ℤ ⇔ ࢟ ∈ {૙,૚,૛} 

If ࢟ = ૙ ⇒ ࢞૛ − ࢞ = ૙ ⇒ ࢞ ∈ {૙,૚}. 

࢞ = ࢟ = ૙ ⇒ ൜ࢇ
૛ + ૛࢈ = ૙
૛࢈ࢇ = ૙

⇒ (࢈,ࢇ) ∈ (૙,૙). 

If ࢟ = ૚ ⇒ ࢞૛ − ૛࢞ = ૙ ⇒ ࢞ ∈ {૙,૛} 

࢞ = ૙,࢟ = ૚ ⇒ ൜ࢇ
૛ + ૛࢈ = ૙
૛࢈ࢇ = ૚

 no solution. 

࢞ = ૛,࢟ = ૚ ⇒ ൜ࢇ
૛ + ૛࢈ = ૡ
૛࢈ࢇ = ૚

 no solution. 

If ࢞ = ࢟ = ૛ ⇒ ൜ࢇ
૛ + ૛࢈ = ૡ
૛࢈ࢇ = ૡ

⇒ (࢈,ࢇ) = (૛,૛) 

࢞ = ૚,࢟ = ૛ ⇒ ൜ࢇ
૛ + ૛࢈ = ૡ
૛࢈ࢇ = ૚

 no solution.  

267. Solve for integers: 

(૛ࢇ૜ + ૜ࢇ૛࢈ + ૜࢈ࢇ૛ + ૛࢈૜)(ࢇ૛ + (૛࢈ = ૛(ࢇ +  ૞(࢈

Proposed by Mehmet Şahin-Ankara-Turkey 
Solution by George Florin Şerban-Romania 
 

૛ࢇ૜ + ૜ࢇ૛࢈ + ૜࢈ࢇ૛ + ૛࢈૜ = ૛(ࢇ૜ + (૜࢈ + ૛ࢇ)࢈ࢇ + (࢈ = 
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= ૛(ࢇ+ ૛ࢇ)(࢈ − ࢈ࢇ + (૛࢈ + ૜ࢇ)࢈ࢇ + (࢈ = 

= ࢇ) + ૛ࢇ૛)(࢈ − ૛࢈ࢇ + ૛࢈૛ + ૜࢈ࢇ) = +ࢇ) ૛ࢇ૛)(࢈ + ૛࢈૛ +  (࢈ࢇ

⇒ +ࢇ) ૛ࢇ૛)(࢈ + ࢈ࢇ + ૛࢈૛) = ૛(ࢇ+  ૞(࢈

If ࢇ + ࢈ = ૙ ⇒ ࢈ = ࢇ− ⇒ ࢇ|(ࢇ−,ࢇ)} ∈ ℤ} −solution. 

If (૛ࢇ૛ + ࢈ࢇ + ૛࢈૛)(ࢇ૛ + (૛࢈ = ૛(ࢇ +  ;૝(࢈

Let ࢇ + ࢈ = ࢈ࢇ;࢙ = ;࢖ ࢖,࢙ ∈ ℤ then: 

(૛࢙૛ − ૝࢖ + ૛࢙)(࢖ − (࢖ = ૛࢙૝ ⇒ (૛࢙૛ − ૜࢖)(࢙૛ − ૛࢖) = ૛࢙૝ 

࢖૟)࢖ − ૠ࢙૛) = ૙ 

If ࢖ = ૙; ࢈ࢇ) = ૙) ⇒ ;(૙,ࢇ)} (૙,࢈)|࢈,ࢇ ∈ ℤ} −solution. 

If ૟࢖ − ૠ࢙૛ = ૙ ⇔ ૠ(ࢇ + ૛(࢈ = ૟࢈ࢇ ⇔ ૠࢇ૛ + ૡ࢈ࢇ + ૠ࢈૛ = ૙ 

Suppose ࢈ ≠ ૙ ⇒ ૠቀࢇ
࢈
ቁ
૛

+ ૡ ቀࢇ
࢈
ቁ + ૠ = ૙;ቀ࢚ = ࢇ

࢈
ቁ ⇒ 

ૠ࢚૛ + ૡ࢚ + ૠ = ૙,ઢ = −૚૜૛ < 0 no solution. 

Therefore, 

ࡿ = ,(ࢇ,ࢇ)} ,(૙,ࢇ) (૙,ࢇ)|ࢇ ∈ ℤ} 

268. Find ࢞, ࢟ ∈ ℤ such that: 

࢞|࢟ and ࢞૛ + ࢟૛|࢟૝ + ૛૙ૡ૙ 

Proposed by Mehmet Şahin-Turkey 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

࢞ห࢟ ⇒ ࢞૛ห࢞૛ + ࢟૛|࢟૝ + ૛૙ૡ૙ and ࢞૛ห࢟૝ ⇒ ࢞૛ห࢟૝ + ૛૙ૡ૙ − ࢟૝ = ૛૙ૡ૙ = ૛૞ ⋅ ૞ ⋅ ૚૝ 

 ࢞ = ±૚ ⇒ ૚ + ࢟૛|࢟૝ + ૛૙ૡ૙ = (࢟૛ + ૚)(࢟૛ − ૚) + ૛૙ૡ૚ 

⇒ ૚ + ࢟૛|૛૙ૡ૚, but ૛૙ૡ૚ is a prime number, then ࢟ = ૙. 

 ࢞ = ±૛ ⇒ ૝ + ࢟૛|࢟૝ + ૛૙ૡ૙ = (࢟૛ + ૝)(࢟૛ − ૝) + ૛૙ૢ૟ 

⇒ ૝ + ࢟૛|૛૙ૢ૟ = ૛૝ ⋅ ૚૜૚ ⇒ ࢟૛ ∈ {૛࢔ ⋅ ૚૜૚࢓ − ૝|૙ ≤ ࢔ ≤ ૝;૙ ≤ ࢓ ≤ ૚} 

⇒ ࢟ = ૙ (others are not perfect square) 

 ࢞ = ±૝ ⇒ ૚૟ + ࢟૛|࢟૝ + ૛૙ૡ૙ = (࢟૛ + ૚૟)(࢟૛ − ૚૟) + ૛૜૜૟ 

૚૟ + ࢟૛|૛૜૜૟ = ૛૞ ⋅ ૠ૜ 

⇒ ࢟૛ ∈ {૛࢔ ⋅ ૠ૜࢓ − ૚૟|૙ ≤ ࢔ ≤ ૞;૙ ≤ ࢓ ≤ ૚} 
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࢟૛ = ૙ or ࢟૛ = ૚૟ = ૛૞ − ૚૟ (others are not perfect square) 

⇒ ࢟ = ૙ or ࢟ = ±૝ 

Therefore, 

ࡿ = {(૚,૙); (−૚,૙); (૛,૙); (−૛,૙); (૝,૙); (−૝,૙); (૝,૝); (૝,−૝); (−૝,−૝)}  

269. 

ࢠ ∈ ℂ, ࢠ࢓ࡵ ≠ ૙, ૛ࢠ) + ૚) ቀࢠ૛ + ૚ቁ = ൭૚ + ቆ
ࢠ + ࢠ
૛ ቇ

૛

൱
૛

 (ࢠ)࡯,(࢏−)࡮,(࢏)࡭,

Find: ષ = ࡮࡭ ࡯࡮+ +  ࡭࡯

Proposed by Florentin Vișescu – Romania  
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

ࢠ ∈ ℂ, ࢠ࢓ࡵ ≠ ૙, ૛ࢠ) + ૚) ቀࢠ૛ + ૚ቁ = ൬૚ + ቀࢠାࢠ
૛
ቁ
૛
൰
૛

 (*)    (ࢠ)࡯,(࢏−)࡮,(࢏)࡭,

Let ࡰ ቀࢠାࢠ
૛
ቁ 

 

૚ + ቆ
+ࢠ ࢠ
૛ ቇ

૛

+ ቆ
ࢠ + ࢠ
૛ + ቇ࢏ ቆ

ࢠ + ࢠ
૛ − ቇ࢏ = 

= ቆ
+ࢠ ࢠ
૛ + ቇ࢏ ൭

+ࢠ ࢠ
૛ + ൱࢏ = ૛࡮ࡰ =  ૛࡭ࡰ

૛ࢠ) + ૚) ቀࢠ૛ + ૚ቁ = ࢠ) + ࢠ)(࢏ − ࢠ)(࢏ − +ࢠ)(࢏ (࢏ = 

= +ࢠ) ࢠ൫(࢏ + ࢠ)൯࢏ − ࢠ൫(࢏ − ൯࢏ = ૛࡯࡮ × ૛࡯࡭  

⇒ (*) ⇔ ×࡯࡮ ࡯࡭ = ૛࡮ࡰ = ૛࡭ࡰ = ૚ +  ૛ࡰࡻ
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Let ࢟ = ࢠ࢓ࡵ > 0 ⇒ ܥܤ >  ܥܣ

We have ࡰࡻ૛ = ૛࡯࡭ − (࢟ − ૚)૛ = ૛࡯࡮ − (࢟ + ૚)૛ 

⇒ ૛࡯࡮ − ૛࡯࡭ = ૝࢟   (1) 

and (࡯࡮− ૛(࡯࡭ = ૛ࡰࡻ + (࢟ + ૚)૛ + ૛ࡰࡻ + (࢟ − ૚)૛ − ૛ − ૛ࡰࡻ૛  

⇒ ࡯࡮) − ૛(࡯࡭ = ૛࢟૛ ⇒ −࡯࡮ ࡯࡭ = √૛࢟   (2) 

(1), (2) ⇒ +࡯࡮ ࡯࡭ = ૛√૛ and ࡮࡭ = ૛ 

⇒ ષ = ૛ + ૛√૛ (Similarly for ࢟ < 0) 

Solution 2 by Ravi Prakash-New Delhi-India 

Let ࢠ = ࢞ + ࢟,࢟࢏ ≠ ૙, ૛ࢠ) + ૚) ቀࢠ૛ + ૚ቁ = ൤૚ + ቀࢠାࢠ
૛
ቁ
૛
൨
૛

 

⇒ (࢞૛ − ࢟૛ + ૚ + ૛࢞࢟࢏)(࢞૛ − ࢟૛ + ૚ − ૛࢞࢟࢏) = (૚ + ࢞૛)૛ 

⇒ (࢞૛ − ࢟૛ + ૚)૛ + ૝࢞૛࢟૛ = ૚ + ૛࢞૛ + ࢞૝ 

⇒ (࢞૛ − ࢟૛)૛ + ૛(࢞૛ − ࢟૛) + ૚ + ૝࢞૛࢟૛ = ૚ + ૛࢞૛ + ࢞૝ 

⇒ ࢞૝ − ૛࢞૛࢟૛ + ࢟૝ − ૛࢟૛ + ૝࢞૛࢟૛ = ࢞૝ ⇒ ࢟૛(૛࢞૛ + ࢟૛ − ૛) = ૙ 

⇒ ૛࢞૛ + ࢟૛ = ૛			[∵ ࢟ ≠ ૙] ⇒ ࢞૛ +
࢟૛

૛ = ૚ 

Eccentricity ࢋ of the ellipse is given by  ૚ = ૛(૚ − (૛ࢋ ⇒ ࢋ = ૚
√૛

 

Focii of the ellipse are  ൬૙, ±√૛ ቀ ૚
√૛
ቁ൰ = (૙, ±૚) =  ࢏−,࢏

 

࡮࡭ + ࡯࡭ + ࡯࡮ = |૛࢏| + ᇱ࡭࡭ = ૛ + ૛√૛ = ૛൫૚ + √૛൯ 
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Solution 3 by proposer 

ࢠ ∈ ℂ ∖ ℝ ⇒ ࢠ = ࢇ + ࢈,ࢇ,࢏࢈ ∈ ℝ,࢈ ≠ ૙ 

ࢠ + ࢠ
૛ =

+ࢇ +࢏࢈ ࢇ − ࢏࢈
૛ =  ࢇ

⇒ ൭૚ + ቆ
ࢠ + ࢠ
૛ ቇ

૛

൱
૛

= (૚ +  ૛)૛ࢇ

૛ࢠ) + ૚) ቀࢠ૛ + ૚ቁ = ૛ࢠ૛ࢠ + ૛ࢠ + ૛ࢠ + ૚ = 

= ૝|ࢠ| + ૛ࢠ + ૛ࢠ + ૚ = ૛ࢇ) + ૛)૛࢈ + ૛ࢇ + ૛࢏࢈ࢇ − ૛࢈ + ૛ࢇ − ૛࢏࢈ࢇ − ૛࢈ + ૚ = 

= ૝ࢇ + ૝࢈ + ૛ࢇ૛࢈૛ + ૛ࢇ૛ + ૚ − ૛࢈૛ 

⇒ ૝ࢇ + ૝࢈ + ૛ࢇ૛࢈૛ + ૛ࢇ૛ − ૛࢈૛ + ૚ = ૚ + ૝ࢇ + ૛ࢇ૛ 

⇒ ૝࢈ + ૛ࢇ૛࢈૛ − ૛࢈૛ = ૙|:࢈૛ ⇒ ૛࢈ + ૛ࢇ૛ − ૛ = ૙ 

૛ࢇ૛ + ૛࢈ = ૛ ⇒ ૛ࢇ +
૛࢈

૛ = ૚ ⇒
૛ࢇ

૚૛ +
૛࢈

√૛
૛ = ૚ 

 

So: |ࢠ − ૚| + +ࢠ| |࢏ = ૛√૛ ⇒ ࡯࡮࡭ઢࡼ = |૛࢏| + ࢠ| − |࢏ + ࢠ| + |࢏ = ૛ + ૛√૛ 

 

,૚ࢠ	.270 ,૛ࢠ ૜ࢠ ∈ ℂ∗ different in pairs, |ࢠ૚| = |૛ࢠ| = |૜ࢠ| = ૚. ࡭(ࢠ૚),࡮(ࢠ૛),࡯(ࢠ૜).	If  

෍
૚

ห(ࢠ૚ − ૚ࢠ|(૛ࢠ − |૜ࢠ + ૚ࢠ) − ૚ࢠ|(૛ࢠ − ࢉ࢟ࢉ૛|ห૛ࢠ

=
૜

૚ࢠ|) − |૛ࢠ + ૛ࢠ| − |૜ࢠ + ૜ࢠ| −  ૚|)૛ࢠ

Then ࡮࡭ = ࡯࡮ =  .࡭࡯

Proposed by Marian Ursărescu-Romania 
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Solution by proposer 

Let ࡭(ࢠ૚),࡮(ࢠ૛),࡯(ࢠ૜) ∈  (૚,ࡻ)࡯

෍
૚

૚ࢠ)࢈| − (૛ࢠ + ૚ࢠ)ࢉ − |(૜ࢠ
ࢉ࢟ࢉ

=
૜

ࢇ) + ࢈ + ૛(ࢉ ⇔ 

෍
+ࢇ) ࢈ + ૛(ࢉ

+࢈)૚ࢠ| −(ࢉ ૛ࢠ࢈ − ૜|૛ࢠࢉ
ࢉ࢟ࢉ

= ૜ ⇔෍
૚

ฬ(ࢇ+ ࢈ + ૚ࢠ(ࢉ − ૚ࢠࢇ) + ૛ࢠ࢈ + (૜ࢠࢉ
+ࢇ ࢈ + ࢉ ฬ

૛
ࢉ࢟ࢉ

= ૜ 

⇔෍
૚

ฬࢠ૚ −
૚ࢠࢇ + ૛ࢠ࢈ + ૜ࢠࢉ

ࢇ + ࢈ + ࢉ ฬ
૛

ࢉ࢟ࢉ

= ૜ ⇔෍
૚
૛ࡵ࡭

ࢉ࢟ࢉ

= ૜; 		(૚) 

ࡵ࡭ =
࢘

૛࡭࢔࢏࢙
⇒෍

૚
૛ࡵ࡭

ࢉ࢟ࢉ

=
૚
࢘૛෍࢙࢔࢏૛

࡭
૛

ࢉ࢟ࢉ

=
૚
࢘૛
ቀ૚ −

࢘
૛ࡾ

ቁ 

We must to prove that: 

෍
૚
૛ࡵ࡭

ࢉ࢟ࢉ

≥
૜
૛ࡾ = ૜; (૛) 

Which is true because ቀ૚ − ࢘
૛ࡾ
ቁ ≥ ૜࢘૛

૛ࡾ
⇔ ૜࢘૛

૛ࡾ
+ ࢘

૛ࡾ
− ૚ ≤ ૙. Let ࢞ = ࢘

ࡾ
≤ ૚

૛
, hence, 

૜࢞૛ + ࢞
૛
− ૚ ≤ ૙ ⇔ ૟࢞૛ + ࢞ − ૛ ≤ ૙ ⇔ (૛࢞ − ૚)(૜࢞ + ૛) ≤ ૙ true. 

From (૚), (૛) it follows that ࡮࡭ = ࡯࡮ =  .࡯࡭

,૚ࢠ	.271 ,૛ࢠ ૜ࢠ ∈ ℂ∗ different in pairs, |ࢠ૚| = |૛ࢠ| =  .(૜ࢠ)࡯,(૛ࢠ)࡮,(૚ࢠ)࡭ ,|૜ࢠ|

If  

෍ฬ
૛ࢠ૚ − ૜ࢠ૛ࢠ
૛ࢠ − ૜ࢠ

ฬ
૛

ࢉ࢟ࢉ

= ૢ ⇒ ࡮࡭ = ࡯࡮ =  .࡭࡯

Proposed by Marian Ursărescu-Romania 
Solution 1 by proposer 

(૜ࢠ)࡯,(૛ࢠ)࡮,(૚ࢠ)࡭ ∈ ,(ࡾ,ࡻ)࡯ |૚ࢠ| = |૛ࢠ| = |૜ࢠ| =  ࡾ

෍ฬ
૛ࢠ૚ − ૜ࢠ૛ࢠ
૛ࢠ − ૜ࢠ

ฬ
૛

ࢉ࢟ࢉ

= ૢ ⇔෍
૝ቚࢠ૚ −

૛ࢠ + ૜ࢠ
૛ ቚ

૛

૛ࢠ| − |૜ࢠ
ࢉ࢟ࢉ

= ૢ ⇔෍
ࢇ࢓

૛

૛ࢇ
ࢉ࢟ࢉ

=
ૢ
૝ ; (૚) 
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ࢇ࢓
૛ =

૛(࢈૛ + (૛ࢉ − ૛ࢇ

૝ ⇒෍
ࢇ࢓

૛

૛ࢇ
ࢉ࢟ࢉ

=
૚
૝෍

૛(࢈૛ + (૛ࢉ − ૛ࢇ

૛ࢇ
ࢉ࢟ࢉ

= 

=
૚
૝ ቈ૛ቆ

૛ࢇ

૛࢈ +
૛࢈

૛ቇࢇ + ૛ቆ
૛࢈

૛ࢉ +
૛ࢉ

૛ቇࢇ + ૛ቆ
૛ࢉ

૛ࢇ +
૛ࢇ

૛ቇࢉ − ૜቉ ≥ 

≥
૚
૝

(૚૛− ૜) =
ૢ
૝ ; (૛) 

From (૚), (૛) it follows that: ࡮࡭ = ࡯࡮ =  .࡭࡯

Solution 2 by Alex Szoros-Romania 

෍ฬ
૛ࢠ૚ − ૜ࢠ૛ࢠ
૛ࢠ − ૜ࢠ

ฬ
૛

ࢉ࢟ࢉ

= ૢ ⇔෍
|૜ࢠ૚ − ૚ࢠ) + ૛ࢠ + ૜)|૛ࢠ

૛ࢠ| − ૜|૛ࢠ
ࢉ࢟ࢉ

= ૢ 

⇔ ૢ෍
ቚࢠ૚ −

૚ࢠ + ૛ࢠ + ૜ࢠ
૜ ቚ

૛

૛ࢠ| − ૜|૛ࢠ
ࢉ࢟ࢉ

= ૢ ⇔෍
૛ࡳ࡭

૛࡯࡮
ࢉ࢟ࢉ

= ૚ 

⇔෍൬
૛ࢇ࢓

૜ࢇ ൰
૛

ࢉ࢟ࢉ

= ૚ ⇔෍
ࢇ࢓

૛

૛ࢇ
ࢉ࢟ࢉ

=
ૢ
૝ ⇔෍

૛(࢈૛ + (૛ࢉ − ૛ࢇ

૝ࢇ૛
ࢉ࢟ࢉ

=
ૢ
૝ 

⇔෍
૛࢈ + ૛ࢉ

૛ࢇ
ࢉ࢟ࢉ

= ૟ ⇔෍ቆ
૛ࢇ

૛࢈ +
૛࢈

૛ࢉ − ૛ቇ
ࢉ࢟ࢉ

= ૙ 

⇔෍൬
ࢇ
࢈ −

࢈
൰ࢇ

૛

ࢉ࢟ࢉ

= ૙ ⇔ ࢇ = ࢈ = ࢉ ⇔ ࡮࡭ = ࡯࡮ =  .࡭࡯

Solution 3 by Ravi Prakash-New Delhi-India 

Affix of ࡳ−centroid is ࢍࢠ = ૚
૜

૚ࢠ) + ૛ࢠ +  ,૜). Alsoࢠ

|૛ࢠ૚ − ૛ࢠ − ૜|૛ࢠ = ૢ ฬࢠ૚ −
૚ࢠ + ૛ࢠ + ૜ࢠ

૜ ฬ
૛

= ૛ࡳ࡭ૢ = ૢ ൬
૛
૜ࢇ࢓൰

૛

= ૝ࢇ࢓
૛

= ૛(࢈૛ + (૛ࢉ −  ૛ࢇ

|૛ࢠ૚ − ૛ࢠ − ૜|૛ࢠ

૛ࢠ| − ૜|૛ࢠ =
૛(࢈૛ + −(૛ࢉ ૛ࢇ

૛ࢇ  

Now,  

෍
|૛ࢠ૚ − ૛ࢠ − ૜|૛ࢠ

૛ࢠ| − ૜|૛ࢠ
ࢉ࢟ࢉ

= ෍ቆ
૛࢈૛

૛ࢇ +
૛ࢉ૛

૛ࢇ − ૚ቇ
ࢉ࢟ࢉ

⇒ 
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૛෍ቆ
૛࢈

૛ࢉ +
૛ࢉ

૛ࢇ − ૛ቇ
ࢉ࢟ࢉ

= ૙ ⇒෍൬
࢈
ࢇ −

ࢇ
൰ࢇ

૛

ࢉ࢟ࢉ

= ૙ ⇒ ࢇ = ࢈ = ࢉ ⇒ ࡮࡭ = ࡯࡮ =  .࡭࡯

272. If ࢞,࢟ ∈ ℂ then 

|࢞| + |࢟| + |૜࢞ + ૛࢟| ≤ |૝࢞ + ૜࢟| + ૛|࢞ + ࢟| + |࢟ − ࢞| 

Proposed by Daniel Sitaru-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

We have: 

|૝࢞ + ૜࢟| + |࢞ + ࢟|≥⏞
ઢ

|(૝࢞+ ૜࢟)− (࢞ + ࢟)| = |૜࢞ + ૛࢟|; (૚) 

|࢞ + ࢟| + |࢟ − ࢞|≥⏞
ઢ

|(࢞ + ࢟) + (࢟ − ࢞)| = ૛|࢟|; (૛) 

|࢞ + ࢟| + |࢟ − ࢞|≥⏞
ઢ

|(࢞ + ࢟)− (࢟− ࢞)| = ૛|࢞|; (૜) 

From (૚), (૛), (૜) it follows that: 

|࢞| + |࢟| + |૜࢞ + ૛࢟| ≤ |૝࢞ + ૜࢟| + ૛|࢞ + ࢟| + |࢟ − ࢞| 

273. Find all numbers: ષ =  :such that ࢊࢉ࢈ࢇ

ඥ(࢈ + ૛(ࢊ − ૛ࢇ + ૝ࢉ − ૝ + ૛(࢈૛ + (૛ࢊ + ૛ࢉ − ૝ࢇ + ૝ = ૙ 

Proposed by George Florin Șerban-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

ඥ(࢈ + ૛(ࢊ − ૛ࢇ + ૝ࢉ − ૝ + ૛(࢈૛ + (૛ࢊ + ૛ࢉ − ૝ࢇ + ૝ =
(∗)
૙ 

(*) is defined when (࢈ + ૛(ࢊ − ૛ࢇ + ૝ࢉ − ૝ ≥ ૙ ⇔ ࢈) + ૛(ࢊ ≥ ૛ࢇ − ૝ࢉ + ૝ 

We have: ૛(࢈૛ + (૛ࢊ ≥ ࢈) + ૛(ࢊ ↔ −࢈) ૛(ࢊ ≥ ૙ 

Which is true with equality holds when ࢈ = ࢊ → ૛(࢈૛ + (૛ࢊ ≥ ૛ࢇ − ૝ࢉ + ૝ 

→ ૛(࢈૛ + (૛ࢊ + ૛ࢉ − ૝ࢇ + ૝ ≥ ૛ࢇ − ૝ࢉ+ ૝ + ૛ࢉ − ૝ࢇ + ૝ = ࢇ) − ૛)૛ + ࢉ) − ૛)૛ ≥ ૙ 

→ ඥ(࢈ + ૛(ࢊ − ૛ࢇ + ૝ࢉ − ૝ + ૛(࢈૛ + (૛ࢊ + ૛ࢉ − ૝ࢇ + ૝ ≥ ૙, equality holds when: 

ඥ(࢈ + ૛(ࢊ − ૛ࢇ + ૝ࢉ − ૝ = ૛(࢈૛ + (૛ࢊ + ૛ࢉ − ૝ࢇ+ ૝ = ૙ 

↔ ࢈ = ࢇ,ࢊ = ࢉ = ૛ and (࢈ + ૛(ࢊ = ૛ࢇ − ૝ࢉ + ૝ → ࢇ = ࢉ = ૛ and ࢈ = ࢊ = ૙ 

Therefore, ષ = ࢊࢉ࢈ࢇ = ૛૙૛૙. 
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274. Solve in ℝ the following equation: 

૛ ⋅ ૜࢞ + ૞ ⋅ ૝࢞ = ૝ ⋅ ૞࢞ + ૜ ⋅ ૛࢞ 

Proposed by Florentin Vișescu – Romania  

Solution by proposer 

We write the equation: ૛ ⋅ ૜࢞ − ૜ ⋅ ૛࢞ = ૝ ⋅ ૞࢞ − ૞ ⋅ ૝࢞ 

We consider the function ࢌ:ℝ → ℝ, (࢚)ࢌ = ࢚࢞ 

On the intervals [૛,૜] and [૝,૞] ࢌ meets the conditions of Pompeiu’s Theorem. 

:ࢌ [࢈,ࢇ] → ℝ
[࢈,ࢇ]	࢔࢕	࢙࢛࢕࢛࢔࢏࢚࢔࢕ࢉ	ࢌ
(࢈,ࢇ)	࢔࢕	ࢋ࢒࢈ࢇ࢜࢏࢘ࢋࢊ	ࢌ

૙ ∉ [࢈,ࢇ] ⎭
⎬

⎫
⇒ ࢉ∃ ∈  (࢈,ࢇ)

(࢈)ࢌࢇ − (ࢇ)ࢌ࢈
ࢇ − ࢈ = (ࢉ)ࢌ −  (ࢉ)ᇱࢌࢉ

So, ∃ࢉ૚ ∈ (૛,૜) such that ૛ࢌ(૜)ି૜ࢌ(૛)
૛ି૜

= −(૚ࢉ)ࢌ  (૚ࢉ)ᇱࢌ૚ࢉ

⇒
૛ ⋅ ૜࢞ − ૜ ⋅ ૛࢞

−૚ = ૚࢞ࢉ − ૚ࢉ × ૚࢞ି૚ࢉ = ૚࢞ࢉ −  ૚࢞ࢉ࢞

૛ࢉ∃ ∈ (૝,૞) such that ૝⋅૞
࢞ି૞ ⋅૝࢞

ି૚
= ૛࢞ࢉ −  ૛࢞ࢉ࢞

Then, we obtain ࢉ૚࢞(૚ − ࢞) = ૛࢞(૚ࢉ − ࢞) or 

(૚ − ૚࢞ࢉ)(࢞ − (૛࢞ࢉ = ૙ 

૚ − ࢞ = ૙ ⇒ ࢞ = ૚, ൬
૚ࢉ
૛ࢉ
൰
࢞

= ૚ ⇒ ࢞ = ૙,ࡿ = {૙,૚} 

275. Find ࢞, ࢟, ࢠ ≥ ૚ such that: 

ቐ
࢞૜ + ࢟૛ + ૛ࢠ૛ = ૝

ૠ૛ૢ ⋅ෑ(܏ܗܔ(࢞࢟) ⋅ ܏ܗܔ (ࢠ
ࢉ࢟ࢉ

= ૡ ⋅  (ࢠ࢟࢞)૟܏ܗܔ

Proposed by Daniel Sitaru – Romania  
Solution by Asmat Qatea-Afghanistan 
 

∏ ࢉ࢟ࢉ(ࢠ)ܖܔ ≤ ૚
૛ૠ
(ࢠ࢟࢞)૜ܖܔ → by AM-GM 
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∏ ࢉ࢟ࢉ(࢟࢞)ܖܔ ≤ ૡ
૛ૠ
(ࢠ࢟࢞)૜ܖܔ → by AM-GM 

ૠ૛ૢෑܖܔ(࢞࢟) ⋅
ࢉ࢟ࢉ

(ࢠ)ܖܔ ≤ ૡܖܔ૟(࢞࢟ࢠ) 

Equality holds when ࢞ = ࢟ =  ࢠ

࢞૜ + ࢟૛ + ૛ࢠ૛ = ૝, ࢞૜ + ૜࢞૛ = ૝ ⇒ ࢞૜ + ૜࢞૛ − ૝ = ૙ 

࢞૜ − ࢞૛ + ૝࢞૛ − ૝ = ૙, ࢞૛(࢞ − ૚) + ૝(࢞ − ૚)(࢞ + ૚) = ૙ 

(࢞ − ૚)(࢞૛ + ૝࢞ + ૝) = ૙,ઢ = ૚૟ − ૚૟ = ૙ 

࢞૚ = ૚,࢞૚,૛ = ି૝±૙
૛

= −૛.	Solution ࢞ = ࢟ = ࢠ = ૚ 

276. Solve for integers: 

(࢞૛ + ࢟૛)(࢞૝ + ࢟૝) = (࢞ + ࢟)૟ 

Proposed by Mehmet Şahin-Ankara-Turkey 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

(࢞૛ + ࢟૛)(࢞૝ + ࢟૝) = (࢞ + ࢟)૟; 		(∗) 

Let ࢇ = ࢞૛ + ࢟૛,࢈ = ૛࢞࢟ ⇒ (∗) ⇔ ૛ࢇ૛)ࢇ − (૛࢈ = ૛(ࢇ+  ૜(࢈

૟ࢇ૛࢈ + ૠ࢈ࢇ૛ + ૛࢈૜ = ૙ ⇔ +ࢇ૛)࢈ +ࢇ૜)(࢈ ૛࢈) = ૙ 

⇔ ࢈ = ૙ or ૛ࢇ+ ࢈ = ૙ or ૜ࢇ + ૛࢈ = ૙ 

⇔࢞ = ૙ or ࢟ = ૙ or ࢞૛ + ࢟૛ + (࢞ + ࢟)૛ = ૙ or ࢞૛ + ࢟૛ + ૛(࢞ + ࢟)૛ = ૙ 

⇔ ࢞ = ૙ or ࢟ = ૙. 

Therefore, 

ࡿ = {(࢞,૙); (૙࢟,࢟)|࢞,࢟ ∈ ℤ} 

Solution 2 by George Florin Şerban-Romania 

Let ࢞ + ࢟ = ࢙;࢞࢟ = ࢖ ⇒ ࢞૛ + ࢟૛ = (࢞ + ࢟)૛ − ૛࢞࢟ = ࢙૛ − ૛࢖ 

࢞૝ + ࢟૝ = (࢞૛ + ࢟૛)૛ − ૛࢞૛࢟૛ = (࢙૛ − ૛࢖)૛ − ૛࢖૛ = ࢙૝ − ૝࢙૛࢖+ ૛࢖૛ 

(࢞૛ + ࢟૛)(࢞૝ + ࢟૝) = (࢞ + ࢟)૟ ⇔ (࢙૛ − ૛࢖)(࢙૝ − ૝࢙૛࢖ + ૛࢖૛) = ࢙૟ 

૟࢙૝−)࢖ + ૚૙࢙૛࢖ − ૝࢖૛) = ૙ 

If࢖ = ૙ ⇒ ࢞࢟ = ૙ ⇒ ࢞ = ૙ or ࢟ = ૙ ⇒ ࡿ = {(࢞,૙); (૙࢟,࢟)|࢞,࢟ ∈ ℤ} solution. 

If – ૟࢙૝ + ૚૙࢙૛࢖− ૝࢖૛ = ૙ ⇒ (࢙૛ − ૟࢙૛)(࢖ − ૝࢖) = ૙ 
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If ࢙૛ − ࢖ = ૙ ⇒ (࢞+ ࢟)૛ = ࢞࢟ ⇒ ࢞૛ + ࢞࢟ + ࢟૛ = ૙ 

ቀ࢞
࢟
ቁ
૛

+ ࢞
࢟

+ ૚ = ૙; ࢚ = ࢞
࢟
⇒ ࢚૛ + ࢚ + ૚ = ૙ −no has solution. 

If ૟࢙૛ − ૝࢖ = ૙ ⇒ ૜(࢞ + ࢟)૛ = ૛࢞࢟ ⇒ ૜࢞૛ + ૝࢞࢟+ ૜࢟૛ = ૙ no has solution. 

Therefore, 

ࡿ = {(࢞,૙); (૙,࢟)|࢞,࢟ ∈ ℤ} 

277. Solve for integers: 

ඥ࢞૜ + ࢟૜ + ඥ࢟૜ + ૜ࢠ + ඥࢠ૜ + ࢞૜ = ૛(࢞ + ࢟+  (ࢠ

Proposed by Mehmet Şahin-Ankara-Turkey 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

ඥ࢞૜ + ࢟૜ + ඥ࢟૜ + ૜ࢠ + ඥࢠ૜ + ࢞૜ = ૛(࢞ + ࢟ + ;(ࢠ (∗) 

࢞૜ + ࢟૜ = (࢞ + ࢟) ቈ൬࢞ −
૚
૛࢟൰

૛

+
૜
૝࢟

૛቉ ≥ ૙ ⇒ ࢞ + ࢟ ≥ ૙,࢟ + ࢠ ≥ ૙, ࢠ + ࢞ ≥ ૙ 

ඥ࢞૜ + ࢟૜ − (࢞ + ࢟) = ඥ࢞ + ࢟ቀඥ࢞૛ − ࢞࢟ + ࢟૛ −ඥ࢞ + ࢟ቁ = 

= ඥ࢞ + ࢟ ⋅
࢞૛ − (࢟ + ૚)࢞ + ࢟૛ − ࢟
ඥ࢞૛ − ࢞࢟ + ࢟૛ + ඥ࢞ + ࢟

 

࢞૛ − (࢟ + ૚)࢞ + ࢟૛ − ࢟ = ൬࢞ −
࢟ + ૚
૛ ൰

૛

+
૚
૝

(૜࢟૛ − ૟࢟ − ૚) = 

= ൬࢞ −
࢟ + ૚
૛ ൰

૛

+
૜
૝ቆ࢟ −

૜ − ૛√૜
૜ ቇቆ࢟ −

૜ + ૛√૜
૜ ቇ 

Hence, if ࢟ ∈ ℤ − {૙,૚,૛};ඥ࢞૜ + ࢟૜ > ݔ + ݔ∀,ݕ ∈ ℤ; (૚) 

Using (૚), if ࢞,࢟ ∈ ℤ − {૙,૚,૛} it follows that ඥ࢞૜ + ࢟૜ > ݔ +  ,ݕ
ඥ࢟૜ + ૜ࢠ > ݕ + ૜ࢠඥ;ݖ + ࢞૜ > ݖ +  ݔ

⇒ ඥ࢞૜ + ࢟૜ + ඥ࢟૜ + ૜ࢠ + ඥࢠ૜ + ࢞૜ > ݔ)2 + +ݕ  (ݖ
So, it is necessary that two of ࢞,࢟,  .be in {૙,૚,૛};࢟ for example ࢠ

ࢠ = ૙: (∗) ⇔ඥ࢞૜ + ࢟૜ + ඥ࢟૜ + ඥ࢞૜ = ૛(࢞ + ࢟),࢞ ≥ ૙ 
࢟ = ૙: (∗) ⇔ √࢞૜ = ࢞ ⇔ ࢞ = ૚ or ࢞ = ૙. 
࢟ = ૚: (∗) ⇔ ඥ࢞૜ + ૚ + ඥ࢞૜ = ૛࢞ + ૚ 

࢞ > 2 ⇒ √࢞૜ + ૚ ≥
(૚)

࢞ + ૚ and √࢞૜ > ݔ ⇒ √࢞૜ + ૚ + √࢞૜ > 2࢞ + ૚ ⇒ 
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࢞ ∈ {૙,૚,૛} ⇒ ࢞ = ૙ 
If ࢟ = ૛(∗) ⇔ √࢞૜ + ૛૜ + √࢞૜ + ૛√૛ = ૛(࢞ + ૛) 

Similarly, using (૚) ⇒ ࢞ ∈ {૙,૚,૛} ⇒ (∗) does not admit a solution. 
⇒ ࢠ = ૙ ⇒ (࢞ = ૙,࢟ = ૙) or (࢞ = ૚,࢟ = ૙) or (࢞ = ૙,࢟ = ૚) 

 
If 	ࢠ = ૚ ⇒ (∗) ⇔ ඥ࢞૜ + ࢟૜ + ඥ࢟૜ + ૜ࢠ + ૜ࢠ√ + ࢞૜ = ૛(࢞ + ࢟ + ࢞,(ࢠ ≥ −૚ 

࢟ = ૙ ⇒ ࢞ = ૙ (similarly to ࢠ = ૙ and ࢟ = ૚) 
 

࢟ = ૚ ⇒ (∗) ⇔ ૛ඥ࢞૜ + ૚ + √૛ = ૛(࢞ + ૛); ࢞ ≥ ૚ 
 

If ࢞ ≥ ૜ ⇒ ࢞૜ + ૚ ≥ ૜࢞૛ + ૚ ≥
࢞ஹ૜

࢞૛ + ૟࢞ + ૚ ≥
࢞ஹ૜

࢞૛ + ૝࢞ + ૠ > (࢞+ ૛)૛ 

⇒ ૛√࢞૜ + ૚ + √૛ > 2(࢞ + ૛) ⇒ ࢞ ∈ {−૚,૙,૚,૛} ⇒ (∗) does not admit a solution. 

࢟ = ૛ ⇒ (∗) ⇔ ඥ࢞૜ + ૛૜ + ඥ࢞૜ + ૚ = ૛࢞ + ૜,࢞ ≥ −૚ 

Using (૚) ⇒ ࢞ ∈ {૙,૚,૛} ⇒ ࢞ = ૛ ⇒ ࢠ = ૚ ⇒ (࢞ = ࢟ = ૙) or (࢞ = ࢟ = ૛). 

If ࢠ = ૛: (∗) ⇔ ඥ࢞૜ + ࢟૜ + ඥ࢟૜ + ૡ + √ૡ + ࢞૜ = ૛(࢞ + ࢟ + ૛),࢞ ≥ −૛ 

࢟ = ૙ ⇒ (∗) does not admit solution (similarly to ࢠ = ૙ and ࢟ = ૛) 

࢟ = ૚ ⇒ ࢞ = ૛ (similarly to ࢠ = ૚ and ࢟ = ૛) 

࢟ = ૛ ⇒ (∗) ⇔ ඥ࢞૜ + ૛૜ = ࢞ + ૛,࢞ ≥ −૛ 

By (૚),࢞ ∈ {૙,૚,૛} ⇒ ࢞ = ૚ or ࢞ = ૛. 

⇒ ࢠ = ૛ ⇒ (࢞ = ࢟ = ૛) or (࢞ = ૚,࢟ = ૛) or (࢞ = ૛,࢟ = ૚). 

ࡿ = {(૙,૙,૙); (૙,૙,૚); (૙,૚,૙); (૚,૙,૙), (૚,૛,૛); (૛,૚,૛); (૛,૛,૛)} 

278. Solve for integers: 

࢞૛ඥ࢟ࢠ+ ࢟૛√࢞ࢠ + ૛ඥ࢞࢟ࢠ = ૜࢞࢟ࢠ 

Proposed by Mehmet Şahin-Ankara-Turkey 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

Let ࡿ be the set of solutions of (∗). 

࢞ = ૙ → ૙ = ૙, (∀࢟, ࢠ ∈ ℤ,࢟ࢠ ≥ ૙) 

→ ൛(૙,࢟૚, ,(૚ࢠ (࢞૛,૙, ,(૛ࢠ (࢞૜,࢟૜,૙)ห(࢞૛,࢟૚,࢟૜, ,૚ࢠ (૛ࢠ ∈ ℤ૞; ࢟૚ࢠ૚, ࢞૛ࢠ૛, ࢞૜࢟૜ ≥ ૙ൟ ∈  ࡿ

Now, we assume that ࢞,࢟, ࢠ ∈ ℤ∗. We have: ࢞࢟,࢟ࢠ, ࢞ࢠ > 0 and  
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૜࢞࢟ࢠ = ࢞૛ඥ࢟ࢠ + ࢟૛√࢞ࢠ + ૛ඥ࢞࢟ࢠ > 0 → ,ݔ ,ݕ ݖ > 0 

By AM-GM we have: 

૜࢞࢟ࢠ = ࢞૛ඥ࢟ࢠ+ ࢟૛√࢞ࢠ + ૛ඥ࢞࢟ࢠ ≥ ૜ඨෑ൫࢞૛ඥ࢟ࢠ൯
ࢉ࢟ࢉ

ૡ = ૜࢞࢟ࢠ. 

Equality holds when ࢞૛ඥ࢟ࢠ = ࢟૛√࢞ࢠ = ૛ඥ࢞࢟ࢠ ⇔ ࢞√࢞ = ࢟ඥ࢟ = ࢠ√ࢠ ⇔ ࢞ = ࢟ =  .ࢠ

Finally, 

ࡿ = ൜(૙,࢟૚, ,(૚ࢠ (࢞૛,૙, ,(૛ࢠ (࢞૜,࢟૜,૙)ฬ(࢞૛,࢟૚,࢟૜, ,૚ࢠ (૛ࢠ ∈ ℤ૞; ࢞૚ ∈ ℕ
࢟૚ࢠ૚,࢞૛ࢠ૛,࢞૜࢟૜ ≥ ૙ ൠ 

279. Find all (࢞,࢟, (ࢠ ∈ ℕ × ℕ ×ℕ such that: 

ඥ࢞࢟ +ඥ࢟ࢠ + ࢞ࢠ√ ≤ ૛૙૛૙ 

Proposed by Mehmet Şahin-Ankara-Turkey 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

 

ඥ࢞࢟ + ඥ࢟ࢠ + ࢞ࢠ√ ≤ ૛૙૛૙; (∗)−is symmetric, then we can assume that ࢞ ≤ ࢟ ≤  .ࢠ

It is clear that (૙,૙, ࢇ is a solution of (∗) for all (ࢠ ∈ ℕ. Assume that: ࢟ > 0. 

We have: ૜࢞ ≤ ඥ࢞࢟ + ඥ࢟ࢠ + ࢞ࢠ√ ≤ ૛૙૛૙ → ࢞ ≤ ૟ૠ૜. 

Now, we fix ࢞ ≤ ૟ૠ૜, we have: ૛ඥ࢞࢟ + ࢟ ≤ ඥ࢞࢟ + ඥ࢟ࢠ + ࢞ࢠ√ ≤ ૛૙૛૙. 

→ ඥ࢟૛ + ૛√࢞ඥ࢟ − ૛૙૛૙ ≤ ૙,ઢ = ૝(࢞ + ૛૙૛૙) > 0 

→ ඥ࢟ ≤ √࢞ + ૛૙૛૙ − √࢞ → ࢞ ≤ ࢟ ≤ ቂ൫√࢞ + ૛૙૛૙ − √࢞൯
૛
ቃ 

Now, we fix ࢞ ≤ ૟ૠ૜, ࢞ ≤ ࢟ ≤ ቂ൫√࢞ + ૛૙૛૙ − √࢞൯
૛
ቃ → ࢠ√ ≤

૛૙૛૙ିඥ࢞࢟

√࢞ାඥ࢟
 

࢟ ≤ ࢠ ≤ ቎ቆ
૛૙૛૙− ඥ࢞࢟

√࢞+ ඥ࢟
ቇ
૛

቏ 

ࡿ = ൞

,࢈,ࢇ) ,(ࢉ ,ࢇ) ,(࢈,ࢉ ,ࢇ,࢈) ,(ࢉ ,(ࢇ,ࢉ,࢈) ,(࢈,ࢇ,ࢉ) ,(ࢇ,࢈,ࢉ) ,(૙,૙,ࢊ) (૙,ࢊ,૙), (૙,૙,ࢊ)|

ࢇ ≤ ૟ૠ૜,ࢇ ≤ ࢈ ≤ ቂ൫√ࢇ+ ૛૙૛ − ൯ࢇ√
૛
ቃ ࢈, ≤ ࢉ ≤ ൥ቆ

૛૙૛૙− ࢈ࢇ√
ࢇ√ + ࢈√

ቇ
૛

൩ ࢊ, ∈ ℕ
ൢ 
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280. Solve for natural numbers: 

࢞ඥ࢟+ ࢠ√࢟ + ࢞√ࢠ = (࢞ + ࢟ + ඨ(ࢠ
࢞ + ࢟ + ࢠ

૜
 

Proposed by Mehmet Şahin-Ankara-Turkey 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

We have: ࢞ඥ࢟ + +ࢠ√࢟ ࢞√ࢠ = √࢞ඥ࢞࢟ + ඥ࢟ඥ࢟ࢠ+ ࢞ࢠ√ࢠ√ ≤
ࡿ࡮࡯

 

≤ ඥ࢞ + ࢟ + ࢠ ⋅ ඥ࢞࢟ + +ࢠ࢟ ࢞ࢠ ≤
૜∑࢞࢟ஸ(∑࢞)૛

ඥ࢞ + ࢟ + ࢠ ⋅ ඨ
૚
૜

(࢞ + ࢟ + ૛(ࢠ  

Hence, 

࢞ඥ࢟ + ࢠ√࢟ + ࢞√ࢠ = (࢞ + ࢟ + ඨ(ࢠ
࢞+ ࢟ + ࢠ

૜  

Equality holds when: ૜(࢞࢟ + ࢠ࢟ + (࢞ࢠ = (࢞ + ࢟ + ૛(ࢠ ↔ 

(࢞ − ࢟)૛ + (࢟ − ૛(ࢠ + ࢠ) − ࢞)૛ = ૙ ↔ ࢞ = ࢟ =  ࢠ

ࡿ = {(࢞,࢞,࢞)|࢞ ∈ ℕ} 

281. Solve for integers: 

࢞૜ + ࢟૜ + ૜ࢠ = ඥ࢞࢟ࢠ૜ (࢞૛ + ࢟૛ +  (૛ࢠ

Proposed by Mehmet Şahin-Ankara-Turkey 

Solution by Dang Le Minh Nhat-Vietnam 

Let ࢖ = ࢞ + ࢟ + ࢗ,ࢠ = ࢞࢟ + ࢠ࢟ + ,࢞ࢠ ࢘ =  :We have .ࢠ࢟࢞

ඥ࢞࢟ࢠ૜ (࢞૛ + ࢟૛ + (૛ࢠ ≤
࢞ + ࢟ + ࢠ

૜ ⋅ (࢞૛ + ࢟૛ + (૛ࢠ =
૜࢖ − ૛ࢗ࢖

૜ . 

We will prove: ࢞૜ + ࢟૜ + ૜ࢠ = ૜࢖ − ૜ࢗ࢖ + ૜࢘ ≥ ࢗ࢖૜ି૛࢖
૜

→ 

૛࢖૜ − ૠࢗ࢖ + ૢ࢘ ≥ ૙ and ૢ࢘ ≥ ૝ࢗ࢖ −  (ᇱ࢙࢛࢘ࢎࢉࡿ)૜࢖

Then: ૛࢖૜ − ૠࢗ࢖ + ૢ࢘ ≥ ૛࢖૜ − ૠࢗ࢖+ ૝ࢗ࢖ − ૜࢖ = ૜࢖ − ૜ࢗ࢖. 

We prove: ࢖૜ − ૜ࢗ࢖ ≥ ૙ → ૛࢖ ≥ ૜ࢗ, which is true. 
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Equality occurs since ࢞ = ࢟ = ,࢟,࢞,ࢠ ࢠ ∈ ℤ.  

282. 

,࢈,ࢇ ࢊ,ࢉ > 0,
࢈ࢇ + ࢉ࢈ + ࢊࢉ + ࢇࢊ
ࢇ + ࢈ + ࢉ + ࢊ

=
࢈ࢇ
ࢇ + ࢈

+
ࢊࢉ
ࢉ + ࢊ

=
ࢊࢇ
ࢇ + ࢊ

+
ࢉ࢈
࢈ + ࢉ

 

Prove that: (ࢊ࢈ + ࢊ࢈)(૛ࢇ + (૛ࢉ = ࢉࢇ) + ࢉࢇ)(૛࢈ +  (૛ࢊ

Proposed by Daniel Sitaru – Romania  
Solution by Mohammed Diai-Rabat-Morocco 
 

+ࢊ࢈) +ࢊ࢈)(૛ࢇ (૛ࢉ = ࢉࢇ) + +ࢉࢇ)(૛࢈  (*)   (૛ࢊ

We have: (*) ⇔ ૛ࢇ)ࢊ࢈ + (૛ࢉ = ૛࢈)ࢉࢇ + (૛ࢊ ⇔ −ࢇ)ࢊ࢈ ૛(ࢉ = −࢈)ࢉࢇ ૛(ࢊ   (**) 

࢈ࢇ
+ࢇ ࢈ +

ࢊࢉ
ࢉ + ࢊ =

ࢊࢇ
ࢇ + +ࢊ

ࢉ࢈
࢈ + ࢉ ⇔

+ࢉ)࢈ࢇ (ࢊ + +ࢇ)ࢊࢉ (࢈
+ࢇ) +ࢉ)(࢈ (ࢊ =

+࢈)ࢊࢇ (ࢉ + +ࢇ)ࢉ࢈ (ࢊ
ࢇ) + ࢈)(ࢊ + (ࢉ  

⇔
ࢉ࢈ࢇ + +ࢊ࢈ࢇ +ࢊࢉࢇ ࢉࢊ࢈

+ࢇ) +ࢉ)(࢈ (ࢊ =
+ࢊ࢈ࢇ ࢊࢉࢇ + ࢉ࢈ࢇ + ࢊࢉ࢈

ࢇ) + ࢈)(ࢊ + (ࢉ  

⇔ +ࢇ) ࢉ)(࢈ + (ࢊ = +ࢇ) ࢈)(ࢊ + (ࢉ ⇔ +ࢊࢇ ࢉ࢈ = ࢈ࢇ +  ࢊࢉ

⇔ ࢇ) − −࢈)(ࢉ (ࢊ = ૙ ⇔ ࢇ = ࢈ or ࢉ =  ࢊ

Case: ࢇ =  (The other case is similar) ࢉ

To prove (**) we must prove that: ࢇ = ࢉ ⇒ ࢈ =  ࢊ

࢈ࢇ + ࢉ࢈ + +ࢊࢉ ࢇࢊ
ࢇ + ࢈ + ࢉ + ࢊ =

࢈ࢇ
+ࢇ ࢈ +

ࢊࢉ
ࢉ + ࢊ ⇔

૛࢈)ࢇ+ (ࢊ
૛ࢇ + ࢈ + ࢊ = ࢇ ൬

࢈
+ࢇ ࢈ +

ࢊ
+ࢇ  ൰ࢊ

⇔ (૛࢈ + ૛ࢇ)(ࢊ૛ + ࢈ࢇ + ࢊࢇ + (ࢊ࢈ = (૛ࢇ + +࢈ ࢈ࢇ)(ࢊ + ࢊࢇ + ૛ࢊ࢈) 

⇔ −࢈)ࢇ ૛(ࢊ = ૙ ⇔ ࢈ =  .Q.E.D ࢊ

 

283.	࣐ −Euler’s totient function, ࣌(࢔) = ∑ (࢔|ࢊ)ࢊ  

Find: 

ષ = ܕܑܔ
࢞→ஶ

(࢔)࣐ ⋅ (࢔)࣌
૜࢔  

Proposed by Adi Abdullayev-Baku-Azerbaijan 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
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Let ࢔ = ∏ ࢏࢖
࢑࢏ࢻ

ୀ૚࢏  be the factorization of ࢔,࢔ > 1. 

We have:  ࣌(࢔) = ∏ ࢏࢖
శ૚ି૚࢏ࢻ

૚ି࢏࢖
࢑
ୀ૚࢏  and ࣘ(࢔) = ∏࢔ ቀ૚ − ૚

࢏࢖
ቁ࢑

ୀ૚࢏ = ∏࢔ ૚ି࢏࢖
࢏࢖

࢑
ୀ૚࢏  

(࢔)࣌(࢔)ࣘ = ቌ࢔ෑ
࢏࢖ − ૚
࢏࢖

࢑

ୀ૚࢏

ቍቌෑ
࢏࢖
ା૚࢏ࢻ − ૚
࢏࢖ − ૚

࢑

ୀ૚࢏

ቍ = ෑ࢔
࢏࢖
ା૚࢏ࢻ − ૚
࢏࢖

࢑

ୀ૚࢏

= 

= ࢏࢖ෑ൬࢔
࢏ࢻ −

૚
࢏࢖
൰

࢑

ୀ૚࢏

< ݊ෑ࢏࢖
࢏ࢻ

࢔

ୀ૚࢏

=  ૛࢔

૙ ≤
(࢔)࣌(࢔)ࣘ

૜࢔ <
૚
࢔ → ૙(࢔ → ∞) 

Therefore, ષ = ૙. 

Solution 2 by Amrit Awasthi-India 

It is well known: ૟
࣊૛

< (࢔)࣌(࢔)ࣘ
૛࢔

≤ ૚| ⋅ ૚
࢔
→ ૟

૛࣊࢔
< (࢔)࣌(࢔)ࣘ

૜࢔
≤ ૚

࢔
 

૙ ≤
(࢔)࣌(࢔)ࣘ

૜࢔ <
૚
࢔ → ૙(࢔ → ∞) 

Therefore, ષ = ૙. 

284. Find all ࢔ ∈ ℕ such that: 

ෑ
(࢑૛ + ࢑ + ૚)૛ + ૚

(࢑૛ + ૚)૛

࢔

࢑ୀ૙

= ቂ
࢔
ૠ
ቃ + ૛૙૛૙, [∗] −  ࡲࡵࡳ

Proposed by George Florin Șerban-Romania 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

(࢑૛ + ࢑ + ૚)૛ + ૚
(࢑૛ + ૚)૛ =

࢑૝ + ૛࢑૜ + ૜࢑૛ + ૛࢑ + ૛
(࢑૛ + ૚)૛ =

(࢑૛ + ૚)(࢑૛ + ૛࢑ + ૛)
(࢑૛ + ૚)૛

=
(࢑ + ૚)૛ + ૚

࢑૛ + ૚  

→ෑ
(࢑૛ + ࢑ + ૚)૛ + ૚

(࢑૛ + ૚)૛

࢔

࢑ୀ૙

= ෑ
(࢑+ ૚)૛ + ૚

࢑૛ + ૚

࢔

࢑ୀ૙

=
࢔) + ૚)૛ + ૚

૙૛ + ૚ = ૛࢔ + ૛࢔ + ૛ 

ෑ
(࢑૛ + ࢑ + ૚)૛ + ૚

(࢑૛ + ૚)૛

࢔

࢑ୀ૙

= ቂ
࢔
ૠ
ቃ+ ૛૙૛૙ ↔ ૛࢔ + ૛࢔ − ૛૙૚ૡ = ቂ

࢔
ૠ
ቃ 
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→ ࢔
ૠ
− ૚ < ૛࢔ + ૛࢔ − ૛૙૚ૡ ≤ ࢔

ૠ
↔ ૠ࢔૛ + ૚૜࢔ − ૚૝૚૚ૢ > 0 and ૠ࢔૛ + ૚૜࢔ −

૚૝૚૛૟ ≤ ૙ 

ૠ࢔૛ + ૚૜࢔ − ૚૝૚૚ૢ > 0 → ݊ ≥
−૚૜ + √૚૜૛ + ૝ ⋅ ૠ ⋅ ૚૝૚૚ૢ

૚૝ > 43 

ૠ࢔૛ + ૚૜࢔ − ૚૝૚૛૟ ≤ ૙ → ࢔ ≤
−૚૜ + √૚૜૛ + ૝ ⋅ ૠ ⋅ ૚૝૚૛૟

૚૝ < 45 

Therefore, ࢔ = ૝૝ 

Solution 2 by Samar Das-India 

∏ ൫࢑૛ା࢑ା૚൯
૛
ା૚

൫࢑૛ା૚൯૛
࢔
࢑ୀ૙ = ቂ࢔

ૠ
ቃ+ ૛૙૛૙   <where ࢔ ∈ ℕ> 

⇒ෑ
(࢑૛ + ૚)૛ + ૛࢑)࢑૛ + ૚) + (࢑૛ + ૚)

(࢑૛ + ૚)૛

࢔

࢑ୀ૙

= ቂ
࢔
ૠ
ቃ + ૛૙૛૙ 

⇒ෑ
(࢑૛ + ૚)(࢑૛ + ૚ + ૛࢑ + ૚)

(࢑૛ + ૚)૛

࢔

࢑ୀ૙

= ࢓ + ૛૙૛૙ 

⇒ ∏ ࢑૛ା૛࢑ା૛
࢑૛ା૚

࢔
࢑ୀ૙ = ࢓ + ૛૙૛૙  (࢓ = ቂ࢔

ૠ
ቃ which is an integer) 

⇒
૛
૚ ×

૞
૛ ×

૚૙
૞ × … ×

૛࢔ + ૚
−࢔) ૚)૛ + ૚ ×

૛࢔ + ૛࢔ + ૛
૛࢔ + ૚ = ࢓ + ૛૙૛૙ 

⇒ ା૛࢔૛ା૛࢔
૚

= ࢓ + ૛૙૛૙    (1) 

∵ ࢔
ૠ
− ૚ ≤ ࢓ ≤ ࢔

ૠ
⇒
(૚) ࢔

ૠ
− ૚ ≤ ૛࢔ + ૛࢔ − ૛૙૚ૡ ≤ ࢔

ૠ
    (2) 

when ࢔૛ + ૛࢔ − ૛૙૚ૡ ≤ ࢔
ૠ
⇒ ૛࢔ + ૚૜

ૠ
࢔ − ૛૙૚ૡ ≤ ૙ 

⇒ ቀ࢔ + ૚૜
૚૝
ቁ
૛
− ቀ૛૙૚ૡ + ૚૟ૢ

૚ૢ૟
ቁ ≤ ૙ ⇒ ቀ࢔ + ૚૜

૚૝
ቁ
૛
− ቀ√૜ૢ૞૟ૢૠ

૚૝
ቁ
૛
≤ ૙   (3) 

⇒ −
√૜ૢ૞૟ૢૠ

૚૝ ≤
࢔
ૠ +

૚૜
૚૝ ≤

√૜ૢ૞૟ૢૠ
૚૝ ⇒ −ቆ

૚૜
૚૝ +

√૜ૢ૞૟ૢૠ
૚૝ ቇ ≤ ࢔ ≤

√૜ૢ૞૟ૢૠ
૚૝ −

૚૜
૚૝ 

⇒ −૝૞.ૡ૟ ≤ ࢔ ≤ ૝૝.૙૙૜૛ ∴ ࢔ = ૝૝ (where is positive integers) 

And when ࢔૛ + ૛࢔ − ૛૙૚ૡ ≥ ࢔
ૠ
− ૚ 

⇒ ૛࢔ + ࢔ × ૚૜
ૠ
− ૛૙૚ૠ ≥ ૙ ⇒ ቀ࢔ + ૚૜

૚૝
ቁ
૛
− ቀ√૜ૢ૞૞૙૚

૚૝
ቁ
૛
≥ ૙   (4) 
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So, ࢔+ ૚૜
૚૝
− √૜ૢ૞૞૙૚

૚૝
≥ ૙ ⇒ ࢔ ≥ ૝૜.ૢૢ ⇒ ࢔ = ૝૝ 

But, ࢔ ≤ − ૚૜
૚૝
− √૜ૢ૞૞૙૚

૚૝
 is not possible, since ࢔ is positive integers 

285. Solve for real numbers: 

(࢞ܖܑܛ)ܖܑܛ
ܖܑܛ ࢞

+
(࢞ܛܗ܋)ܛܗ܋
࢞ܛܗ܋

= ૚ 

Proposed by Rovsen Pirguliyev-Sumgait-Azerbaijan 
Solution by Mohammed Diai-Rabat-Morocco  
 

ܖܑܛ)ܖܑܛ ࢞)
࢞ܖܑܛ

+ ܛܗ܋)ܛܗ܋ ࢞)
ܛܗ܋ ࢞

= ૚    (*) 

First domain of solutions is: ࡰ = ℝ ∖ ቄ࢑࣊, ࣊
૛

+ ࢑ᇱ࣊ቅ 	࢑,࢑ᇱ ∈ ℤ 

(*) ⇔ ܛܗ܋)ܛܗ܋ ࢞)
ܛܗ܋ ࢞

= (࢞ܖܑܛ)ܖܑܛି࢞ܖܑܛ
࢞ܖܑܛ

> 0 because ൜ܖܑܛ ࢞ > 0 ⇒ ܖܑܛ ࢞ > ܖܑܛ)ܖܑܛ ࢞)
ܖܑܛ ࢞ < 0 ⇒ ܖܑܛ ࢞ < ܖܑܛ)ܖܑܛ ࢞) 

And since ܛܗ܋ ࢞ ∈ ]−૚,૚[ ⊂ ቃ− ࣊
૛

, ࣊
૛
ቂ therefore ܛܗ܋)ܛܗ܋ ࢞) > 0 

So we conclude that ܛܗ܋ ࢞ > 0 ⇒ ݔ ∈ ቃ− ࣊
૛

+ ૛࢑࣊, ࣊
૛

+ ૛࢑࣊ቂ ,࢑ ∈ ℤ 

From now we will study the domain ࡰ∗ = ቃ− ࣊
૛

, ࣊
૛
ቂ 

Let be the function ࢌ defined by ࢌ(࢞) = ܖܑܛ ࢞
࢞

, (࢞)ᇱࢌ = ܛܗ܋ ܖ܉ܜି࢞)࢞ ࢞)
࢞૛

 

 

Therefore: ܖܑܛ ૚ < (࢞ܖܑܛ)ܖܑܛ
ܖܑܛ ࢞

< 1	  (**) 

Let be the function ࢍ defined by ࢍ(࢞) = ܛܗ܋ ࢞
࢞

(࢞)ᇱࢍ, = − ܖܑܛ࢞ ࢞ାܛܗ܋ ࢞
࢞૛

= − (࢞)ࢎ
࢞૛

 

(࢞)ᇱࢎ = ܖܑܛ ࢞ + ܛܗ܋࢞ ࢞ − ܖܑܛ ࢞ = ܛܗ܋࢞ ࢞ then 
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ܛܗ܋ ࢞ ∈ ]૙,૚[ ⇒
ܛܗ܋)ܛܗ܋ ࢞)
ܛܗ܋ ࢞ >  ૚ܛܗ܋

Using (**) ૚ = (࢞ܖܑܛ)ܖܑܛ
ܖܑܛ ࢞

+ ܛܗ܋)ܛܗ܋ ࢞)
ܛܗ܋ ࢞

> ܖܑܛ ૚ + ܖܑܛ ૚ impossible sinceܛܗ܋ ૚ + ܛܗ܋ ૚ > 1 

Conclusion the equation (*) have no real solutions. 

 

286. Let ࢔ ∈ ℕ,࢔ ≥ ૚. Find all functions ࢌ:ℝ → ℝ such that: 

(࢔૛૙૛૙࢞૛)ࢌ = (࢔૛૙૛૙࢟૛−)ࢌ + ࢞૛࢟࢔૛࢔ା૚,∀࢞,࢟ ∈ ℝ 

Proposed by Nguyen Van Canh-Ben Tre-Vietnam 
Solution by Mohammed Diai-Rabat-Morocco 

(࢔૛૙૛૙࢞૛)ࢌ = (࢔૛૙૛૙࢟૛−)ࢌ + ࢞૛࢟࢔૛࢔ା૚,∀࢞,࢟ ∈ ℝ; (∗) 

Let ࢌ −an eventual solution. If ࢌ −is constant solution, then ∃ࢉ ∈ ℝ,∀࢞ ∈ ℝ,ࢌ(࢞) =  ࢉ

(∗) → ∀࢞,࢟ ∈ ℝ: ࢞૛࢟࢔૛࢔ା૚ = ૙,  

 which is not true, hence there is no constant solution for (∗). 

Let be ࢇ ≥ ૙. Taking ࢟ = ૙ in (∗):		∀࢞ ∈ ℝ, (࢔૛૙૛૙࢞૛)ࢌ =  (∗∗)		;(૙)ࢌ

Taking ࢞ = ቀ ࢇ
૛૙૛૙

ቁ
૚
૛࢔ in (∗∗):			(ࢇ)ࢌ = ࢇ∀ ,Therefore .(૙)ࢌ ∈ ℝା:		(ࢇ)ࢌ = ;(૙)ࢌ (૚) 

Let be ࢇ ≤ ૙. Taking  ࢞ = ૙ in (∗):			∀࢟ ∈ ℝ,ࢌ(−૛૙૛૙࢟૛࢔) = ;(૙)ࢌ (∗∗∗) 

Taking ࢟ = ቀ− ࢇ
૛૙૛૙

ቁ
૚
૛࢔  in (∗∗∗):		(ࢇ)ࢌ = ࢇ∀ ,Therefore .(૙)ࢌ ∈ ℝି, (ࢇ)ࢌ = ;(૙)ࢌ (૛) 

From (૚), (૛) it follows that ࢌ −is a constant function on ℝ which is impossible. 

Therefore, there is no solution function satisfying (∗) 
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287. Find all ࢔ – prime numbers such that 

ห࢔૜ − ૜࢔૛ + ૛࢔ − ૛૙૜ห, ห࢔૝ − ૚ૡ࢔૜ + ૚ૢૢ࢔૛ − ૜૝૛࢔ + ૜૛૞ห 

are prime numbers. 

Proposed by George Florin Șerban-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

Let (࢔)࡭ = ห࢔૜ − ૜࢔૛ + ૛࢔ − ૛૙૜ห,(࢔)࡮ = ห࢔૝ − ૚ૡ࢔૜ + ૚૚ૢ࢔૛ − ૜૝૛࢔ + ૜૛૞ห 

We have: ࡭(ૠ) = ૠ a prime number and ࡮(ૠ) = ૚૚ a prime number, so ࢔ = ૠ is a 

solution. 

If ࢔ ≠ ૠ → ࢔ ≡ ૚,૛,૜,૝,૞,૟ (mod 7) because ࢔ is a prime number. 

We have: (࢔)࡭ = ࢔)࢔| − ૚)(࢔− ૛) − ૛૙૜| and ૛૙૜ ≡ ૙ (mod ૠ) 

→ If ࢔ ≡ ૚,૛(ࢊ࢕࢓	ૠ) → ࢔) − ૚)(࢔ − ૛) ≡ ૙(ࢊ࢕࢓	ૠ) → (࢔)࡭ ≡ ૙	(ࢊ࢕࢓	ૠ) 

(࢔)࡭ = ૠ ↔ ࢔)࢔ − ૚)(࢔ − ૛) = ૛૚૙ or ࢔)࢔ − ૚)(࢔ − ૛) = ૚ૢ૟ 

−࢔)࢔ ૚)(࢔− ૛) = ૛૚૙ = ૠ.૟.૞ → ࢔ = ૠ 

࢔)࢔ − ૚)(࢔ − ૛) = ૚ૢ૟ has no solution on IN because ࢔)࢔ − ૚)(࢔− ૛) ≡ ૙(ࢊ࢕࢓	૜) but 

૚ૢ૟ ≡ ૚(ࢊ࢕࢓	૜) 

So, if ࢔ ≡ ૚,૛(ࢊ࢕࢓	ૠ) →  .is not a prime number (࢔)࡭

We also have: (࢔)࡮ = ࢔)| − ૟)(࢔ − ૞)(࢔ − ૝)(࢔− ૜) − ૜૞| and ૜૞ ≡ ૙	(ࢊ࢕࢓	ૠ) 

→ If ࢔ = ૜,૝,૞,૟(ࢊ࢕࢓	ૠ) → −࢔) ૟)(࢔− ૞)(࢔− ૝)(࢔ − ૜) ≡ ૙(ࢊ࢕࢓	ૠ) → 

(࢔)࡮ ≡ ૙(ࢊ࢕࢓	ૠ) 

(࢔)࡮ = ૠ ↔ ࢔) − ૟)(࢔− ૞)(࢔− ૝)(࢔− ૜) = ૝૛ or  

−࢔) ૟)(࢔− ૞)(࢔ − ૝)(࢔− ૜) = ૛ૡ 

࢔) − ૟)(࢔ − ૞)(࢔− ૝)(࢔− ૜) = ૝૛ has no solution on IN because: 

−࢔) ૟)(࢔− ૞)(࢔ − ૝)(࢔ − ૜) ≡ ૙(ࢊ࢕࢓	૝) but ૝૛ ≡ ૛(ࢊ࢕࢓	૝) 

࢔) − ૟)(࢔ − ૞)(࢔− ૝)(࢔− ૜) = ૛ૡ has no solution on IN because: 

−࢔) ૟)(࢔− ૞)(࢔ − ૝)(࢔ − ૜) = ૙(ࢊ࢕࢓	૜) but ૛ૡ ≡ ૚(ࢊ࢕࢓	૜) 

So, if ࢔ ≡ ૜,૝,૞,૟(ࢊ࢕࢓	ૠ) →  .is not a prime number (࢔)࡮

Finally, the only solution is ࢔ = ૠ. 
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288. Solve for real numbers: ቐ
࢞૛ = ࢠ࢟ + ૚
࢟૛ = ࢞ࢠ + ࢇ
૛ࢠ = ࢞࢟ + ૛ࢇ

ࢇ, > 1 

Proposed by Marin Chirciu-Romania 
Solution 1 by Mohammed Diai-Rabat-Morocco 

ቐ
࢞૛ = ࢠ࢟ + ૚		(૚)
࢟૛ = ࢞ࢠ + (૛)		ࢇ
૛ࢠ = ࢞࢟ + ૛(૜)ࢇ

ࢇ, > 1 

(1)−(2)⇒ (࢞− ࢟)(࢞ + ࢟) = ࢟)ࢠ − ࢞) + ૚ − ࢇ ⇒ (࢟ − ࢞)(࢞ + ࢟ + (ࢠ = ࢇ − ૚ > 0  (3) 

(1)−(3)	⇒ (࢞ − ࢞)(ࢠ + (ࢠ = ࢠ)࢟ − ࢞) + ૚ − ૛ࢇ ⇒ ࢠ) − ࢞)(࢞ + ࢟ + (ࢠ = ૛ࢇ − ૚ > 0  (4) 

The real numbers ࢞,࢟, ࢇ must be different since ࢠ > 1 

(૝) (૜)⁄ ⇒ ࢞ିࢠ
࢟ି࢞

= +ࢇ ૚ ⇒ ࢞ࢇ − ࢇ) + ૚)࢟+ ࢠ = ૙ ⇒ ࢠ = +ࢇ) ૚)࢟ −  (5)   ࢞ࢇ

(5) and (3) ⇒ ൫(ࢇ+ ૚)࢟ − ൯࢞ࢇ
૛

= ࢞࢟ + ૛ࢇ ⇒ 

⇒ ૛࢞૛ࢇ + +ࢇ) ૚)૛࢟૛ − +ࢇ)) ૚)૛ + ࢟࢞(૛ࢇ =  ૛ࢇ

⇒ ࢞)૛࢞ࢇ − ࢟) + +ࢇ) ૚)૛࢟(࢟ − ࢞) = ૛ࢇ ⇒ (࢞ − ૛࢞ࢇ)(࢟ − +ࢇ) ૚)૛࢟) =  ૛   (6)ࢇ

(1)+(2) and (5) ⇒ ࢞૛ + ࢟૛ = ൫(ࢇ+ ૚)࢟ − +࢞)൯࢞ࢇ ࢟) + ૚ + ࢇ ⇒ 

⇒ ࢇ) + ૚)࢞૛ − ૛࢟ࢇ − ࢞࢟ = ࢇ + ૚ ⇒ ૛࢞)ࢇ − ࢟૛) + ࢞૛ − ࢞࢟ = ࢇ + ૚ 

⇒ (࢞ − ࢟)൫(ࢇ+ ૚)࢞ + ൯࢟ࢇ = ࢇ + ૚   (7) 

(૟) (ૠ)⁄ ⇒
૛࢞ࢇ − +ࢇ) ૚)૛࢟

ࢇ) + ૚)࢞ + ࢟ࢇ =
૛ࢇ

ࢇ + ૚ ⇒ ࢟ = ૙ 

࢟ = ૙ in (6) ⇒ ૛࢞૜ࢇ = ૛ࢇ ⇒ ࢞ = ૚ and by (5) we find ࢠ =  ࢇ−

Therefore there is only one unique solution (࢞,࢟, (ࢠ = (૚,૙,−ࢇ) 

Solution 2 by Fayssal Abdelli-Bejaia-Algerie 

ቐ
࢞૛ = +ࢠ࢟ ૚		(࡭)
࢟૛ = ࢞ࢠ + (࡮)		ࢇ
૛ࢠ = ࢞࢟ + (࡯)૛ࢇ

ࢇ, > 1 

(࡭) − (࡮) ⇒ ࢞૛ − ࢟૛ = ࢠ࢟ − ࢠ࢞ + ૚ − ࢇ ⇒ (࢞ − ࢟)(࢞ + ࢟) = ࢟)ࢠ − ࢞) + ૚ −  ࢇ

⇒ (࢞ − ࢟)(࢞ + ࢟ + (ࢠ = ૚ −   (D)           ࢇ
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૚ − ࢇ ≠ ૙ ⇒ ൜࢞ + ࢟ + ࢠ ≠ ૙
࢞ ≠ ࢟  

−(࡭) (࡯) ⇒ ࢞૛ − ૛ࢠ = ࢠ࢟ − ࢞࢟ + ૚ −  ૛ࢇ

⇒ (࢞ − ࢞)(ࢠ + (ࢠ = ࢠ)࢟ − ࢞) + ૚ −  ૛ࢇ

⇒ (࢞ − ࢞)(ࢠ + ࢟ + (ࢠ = ૚ − ૛ࢇ = (૚ − ૚)(ࢇ + ቄ࢞   (E)    (ࢇ + ࢟ + ࢠ ≠ ૙
࢞ ≠ ࢠ  

−(࡮) (࡯) ⇒ ࢟૛ − ૛ࢠ = ࢠ࢞ − ࢞࢟ + ࢇ −  ૛ࢇ

⇒ (࢟− ࢟)(ࢠ + (ࢠ = ࢠ)࢞ − ࢟) + ࢇ −  ૛ࢇ

⇒ (࢟ − ࢞)(ࢠ + ࢟ + (ࢠ = ૚)ࢇ − ൜࢞   (F)    (ࢇ + ࢟ + ࢠ ≠ ૙
࢟ ≠ ૙  

Replace (૚−  in (E) (ࢇ

(࢞ − ࢠ)(ࢠ + ࢟ + (ࢠ = (૚ + ࢞)(ࢇ − ࢟)(࢞ + ࢟ +  (ࢠ

⇒ ࢞ − ࢠ = (૚ + −࢞)(ࢇ ࢟)														(࢞+ ࢟ + ࢠ ≠ ૙) ⇒ ࢠ = +ࢇ) ૚)࢟ −  (G)    ࢞ࢇ

Replace ࢠ in (C): ൫(ࢇ + ૚)࢟− ൯࢞ࢇ
૛

= ࢞࢟ +  ૛ࢇ

⇒ ૛࢟૛ࢇ + ૛࢟ࢇ૛ + ࢟૛ + ૛࢞૛ࢇ − ૛ࢇ)ࢇ+ ૚)࢞࢟− ࢞࢟ − ૛ࢇ = ૙ 

⇒ ૛࢟૛ࢇ + ૛࢟ࢇ૛ + ࢟૛ + ૛࢞૛ࢇ − ૛ࢇ૛࢞࢟ − ૛࢟࢞ࢇ − ࢞࢟ − ૛ࢇ = ૙ 

⇒ ૛(࢟૛ࢇ + ࢞૛ − ૛࢞࢟ − ૚) + ૛࢟૛)ࢇ − ૛࢞࢟) + (࢟૛ − ࢞࢟) = ૙ 

⇒ ቐ
࢟૛ + ࢞૛ − ૛࢞࢟ − ૚ = ૙ ⇒ (࢟ = ૙)⋁(࢞ = ૚)⋁(࢞ = −૚)

૛࢟૛ − ૛࢞࢟ = ૙ ⇒ (࢟ = ૙)⋁(࢞ = ૚)
࢟૛ − ࢞࢟ = ૙ ⇒ (࢟ = ૙)⋁(࢞ = ૚)

 

࢟ = ૙: (A)	⇒ ࢞૛ = ૚ ⇒ (࢞ = ૚)⋁(࢞ = −૚) 

(B)	⇒ ࢠ࢞ + ࢇ = ૙ ⇒ ࢠ = − ࢇ
࢞
⇒ ൜

ࢠ) = ࢞	ࢌ࢏	(ࢇ− = ૚
ࢠ = ࢞	ࢌ࢏	ࢇ+ = −૚ 

Finally: 2 solutions: (࢞,࢟, (ࢠ = {(−૚,૙,ࢇ), (૚,૙,−ࢇ)} 

289. Let ࣅ ∈ ℝ. Solve for real numbers: 

૝૜࢞૛ି૛࢞ࣅ + ૝૛࢞ି࢞ࣅ૛ + ૝૛࢞ି࢞ࣅ૛ + ૝૛࢞ି࢞ࣅ૛ = ૝૚ା࢞ࣅ 

Proposed by Marin Chirciu-Romania 
Solution 1 by Mohammed Diai-Rabat-Morocco 

૝૜࢞૛ି૛࢞ࣅ + ૝૛࢞ି࢞ࣅ૛ + ૝૛࢞ି࢞ࣅ૛ + ૝૛࢞ି࢞ࣅ૛ = ૝૚ା࢞ࣅ     (*) 

(*) ⇔ ૝૜࢞૛ି૛࢞ࣅ + ૜ × ૝૛࢞ି࢞ࣅ૛ = ૝૚ି࢞ࣅ 
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⇔ ૝૜࢞૛ି૜࢞ࣅ + ૜ × ૝࢞ି࢞ࣅ૛ = ૝ ⇔ ൫૝࢞(࢞ିࣅ)൯
૜

+
૜

૝࢞(࢞ିࣅ) = ૝ 

Let be ࢻ = ૝࢞(࢞ିࣅ) we have the equation: ࢻ૜ + ૛
ࢻ

= ૝   (**) 

(**)⇔ ૝ࢻ − ૝ࢻ + ૜ = ૙ ⇔ ૝ࢻ) − −(ࢻ ૜ࢻ + ૜ = ૙ 

⇔ ࢻ)ࢻ − ૚)(ࢻ૛ + ࢻ + ૚)− ૜(ࢻ − ૚) = ૙ 

⇔ ࢻ) − ૚)(ࢻ૜ + ૛ࢻ + ࢻ − ૜) = ૙ 

⇔ −ࢻ) ૚) ቀ(ࢻ૜ − ૚) + ૛ࢻ) − ૚) + ࢻ) − ૚)ቁ = ૙ 

⇔ ࢻ) − ૚)૛(ࢻ૛ + ࢻ + ૚ + ࢻ + ૚ + ૚) = ૙ 

⇔ ࢻ) − ૚)૛((ࢻ + ૚)૛ + ૛) = ૙ ⇔ ࢻ = ૚ 

Therefore ૝࢞(࢞ିࣅ) = ૚ ⇒ ࢞(࢞− (ࣅ = ૙ ⇒ ࢞ = ૙ or ࢞ =  ࣅ

If ࡿ denotes the set of real solutions of (*) then: ࡿ = {૙,  {ࣅ

Solution 2 by Ravi Prakash-New Delhi-India 

૝૚ା࢞ࣅ = ૝૜࢞૛ି૛࢞ࣅ + ૝૛࢞ି࢞ࣅ૛ + ૝૛࢞ି࢞ࣅ૛ + ૝૛࢞ି࢞ࣅ૛ ≥ 

≥ ૝ൣ૝૜࢞૛ି૛࢞ࣅା૛࢞ି࢞ࣅ૛ା૛࢞ି࢞ࣅ૛ା૛࢞ି࢞ࣅ૛൧
૚
૝ 

[A.M. ≥ G.M.]⇒ ૝૚ା࢞ࣅ ≥ (૝)൫૝࢞ࣅ൯ 

Equality when  

૝૜࢞૛ି૛࢞ࣅ = ૝૛࢞ି࢞ࣅ૛ ⇒ ૜࢞૛ − ૛࢞ࣅ = ૛࢞ࣅ− ࢞૛ ⇒ ࢞૛ = ࢞ࣅ ⇒ ࢞ = ૙,ࣅ 

 

290. If (࡭, +,⋅) is a ring with ૙ ≠ ૚ and ૚+ ૚ is invertible, then prove that if 

࢈,ࢇ ∈ ࢇ) and ࡭ + ૛(࢈ = ૛ࢇ + ,૛࢈ ࢇ) + ૝(࢈ = ૝ࢇ + ૛(࢈ࢇ) ૝, then࢈ = ૙. 

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu-Romania 
 

Solution 1 by Ravi Prakash-New Delhi-India 

૛ࢇ + ૛࢈ = +ࢇ) ૛(࢈ = ࢇ) + +ࢇ)(࢈ (࢈ = ࢇࢇ + +ࢇ࢈ +࢈ࢇ ࢈࢈ = ૛ࢇ + +ࢇ࢈ ࢈ࢇ + ;૛࢈ (૚) 

ࢇ࢈ + ࢈ࢇ = ૙; (૛) 

Also, ࢇ૝ + ૝࢈ = +ࢇ) ૝(࢈ = ࢇ)) + ૛)૛(࢈ = ૛ࢇ) + ૛)૛࢈ = 

= ૝ࢇ + ૛ࢇ૛࢈ + ૛࢈૛ࢇ + ;૝࢈ (૚) → 
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૛ࢇ૛࢈ + ૛࢈૛ࢇ = ૙; (૜) 

But:࢈૛ࢇ૛ = ࢇ(ࢇ࢈)࢈ = ࢇ(࢈ࢇ−)࢈ =⏞
(૛)

− (ࢇ࢈)(ࢇ࢈) = ૛(ࢇ࢈)− = ;૛(࢈ࢇ−)− (૝) and  

૛࢈૛ࢇ = ࢈(࢈ࢇ)ࢇ = ࢈(ࢇ࢈−)ࢇ = ;૛(࢈ࢇ)− (૞) 

From (૜), (૝), (૞), we get: −(࢈ࢇ)૛ − ૛(࢈ࢇ) = ૙ → −(૚ + ૚)(࢈ࢇ)૛ = ૙. 

As (૚ + ૚) is invertible, −(૚ + ૚) is invertible. 

Therefore, (࢈ࢇ)૛ = ૙. 

Solution 2 by Samar Das-India 

,࡭) +,⋅) is a ring, (ࢇ+ ૛(࢈ = +ࢇ) +ࢇ)(࢈ (࢈ = +ࢇࢇ +࢈ࢇ +ࢇ࢈ ૛ࢇ,࢈࢈ + ૛࢈ = +ࢇ)  ૛(࢈

→ ૛ࢇ + ૛࢈ = ૛ࢇ + ࢈ࢇ + ࢇ࢈ + ૛࢈ → ૙ + ૛࢈ = ࢈ࢇ + +ࢇ࢈ ૛࢈ → 

૛࢈ + (૛࢈−) = ࢈ࢇ + ࢇ࢈ + ૛࢈ + (૛࢈−) → ૙ = +࢈ࢇ  ࢇ࢈

→ ࢈ࢇ− + ૙ = ࢈ࢇ− + ࢈ࢇ + ࢇ࢈ → ࢈ࢇ− =  ࢇ࢈

Again, (ࢇ+ ૝(࢈ = ૝ࢇ + ૝࢈ → ࢇ)) + ૛)૛(࢈ = ૝ࢇ + ૝࢈ → 

૛ࢇ૛ࢇ + ૛࢈૛ࢇ + ૛ࢇ૛࢈ + ૛࢈૛࢈ = ૝ࢇ + ,૝࢈ (∵ +ࢇ) ૛(࢈ = ૛ࢇ + (૛࢈ → 

૛ࢇ) + ૛)૛࢈ = ૝ࢇ + ૝࢈ → ૛ࢇ) + ૛ࢇ)(૛࢈ + (૛࢈ = ૝ࢇ + ૝࢈ → 

૛ࢇ૛ࢇ + ૛࢈૛ࢇ + ૛ࢇ૛࢈ + ૛࢈૛࢈ = ૝ࢇ +  ૝࢈

૝ࢇ− + ૛ࢇ૛ࢇ + ૛࢈૛ࢇ + ૛ࢇ૛࢈ + ૛࢈૛࢈ = ૝ࢇ− + ૝ࢇ +  ૝࢈

૙ + ૛࢈૛ࢇ + ૛ࢇ૛࢈ + ૛࢈૛࢈ = ૙ +  ૝࢈

૛࢈૛ࢇ + ૛ࢇ૛࢈ + ૛࢈૛࢈ + (૝࢈−) = ૝࢈ +  (૝࢈−)

→ ૛࢈૛ࢇ + ૛ࢇ૛࢈ = ૙ → ૛࢈૛ࢇ = ૛ࢇ૛࢈	ࢊ࢔ࢇ	૛ࢇ૛࢈− =  ૛࢈૛ࢇ−

And now, (࢈ࢇ)૛ = (࢈ࢇ)(࢈ࢇ) = ࢈(ࢇ࢈)ࢇ = (࢈࢈)(ࢇ−)ࢇ = ࢈࢈ࢇࢇ− = 

(∵ ࢇ࢈ = (ࢇ−)ࢇ;࢈ࢇ− =  (ࢇ(ࢇ−)

= ૛࢈૛ࢇ− = ૛ࢇ૛࢈ = ࢇࢇ࢈࢈ = ࢇ(ࢇ࢈)࢈ =  ࢇ(࢈ࢇ−)࢈

૛(࢈ࢇ) = (ࢇ࢈)(ࢇ−)࢈ = ࢇ࢈ࢇ࢈− = ૛(ࢇ࢈)− = −൫(−૚)(−૚)൯(࢈ࢇ)૛ = ૛(࢈ࢇ)− → 

૛(࢈ࢇ) + ૛(࢈ࢇ) = ૛(࢈ࢇ)− + ૛(࢈ࢇ) = ૙ → ૛(࢈ࢇ) = ૙ 

࡮,࡭	.291 ∈ ࡮࡭૜(ℂ),૛૙૛૚ࡹ = ૜ࡵ + ૛૙૛૙࡭࡮. Find: 

ષ = ࡮࡭))࢘ࢀ −  (૜(࡭࡮

Proposed by Marian Ursărescu – Romania  
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Solution by Ruxandra Daniela Tonila – Romania  
 

૛૙૛૚࡮࡭ = ૜ࡵ + ૛૙૛૙࡭࡮ ⇔ ૛૙૛૙࡮࡭ + ࡮࡭ = ૜ࡵ + ૛૙૛૙࡭࡮ 

⇔ ૛૙૛૙(࡮࡭− (࡭࡮ = ૜ࡵ − ࡮࡭ ⇔ ࡮࡭ ࡭࡮− = ૚
૛૙૛૙

૜ࡵ) −  (1)  (࡮࡭

૛૙૛૚࡮࡭ = ૜ࡵ + ૛૙૛૙࡭࡮ ⇔ ૛૙૛૚࡮࡭ = ૜ࡵ ࡭࡮− + ૛૙૛૚࡭࡮ 

⇔ ૛૙૛૚(࡮࡭− (࡭࡮ = ૜ࡵ − ࡭࡮ ⇔ ࡮࡭ ࡭࡮− = ૚
૛૙૛૚

૜ࡵ)  (2)  	(࡭࡮−

Let ࡯ = ࡮࡭  ࡭࡮−

From Cayley-Hamilton theorem we have: 

૜࡯ − ࡯࢘ࢀ ⋅ ૛࡯ + ∗࡯	࢘ࢀ ⋅ ࡯ − ࡯ܜ܍܌ ⋅ ૜ࡵ =  ૜ࡻ

⇔ ૜࡯ = ࡯	࢘ࢀ ⋅ ૛࡯ − ∗࡯	࢘ࢀ ⋅ ࡯ + ࡯ܜ܍܌ ⋅  ૜ࡵ

⇔ (૜࡯)	࢘ࢀ = ࡯	࢘ࢀ)	࢘ࢀ ⋅ ૛࡯ − ∗࡯	࢘ࢀ ⋅ ࡯ + ࡯ܜ܍܌ ⋅  (૜ࡵ

⇔ (૜࡯)	࢘ࢀ = 	࢘ࢀ ൬࢘ࢀ	࡯ ⋅ ૛࡯ −
૚
૛

࡯૛࢘ࢀ) − (૛࡯	࢘ࢀ ⋅ ࡯ + ࡯ܜ܍܌ ⋅  ૜൰ࡵ

⇔ (૜࡯)	࢘ࢀ = ࡯	࢘ࢀ ⋅ ૛࡯	࢘ࢀ −
૚
૛࢘ࢀ	࡯ ⋅ ࢘ࢀ

૛࡯ +
૚
૛ ࡯	࢘ࢀ	 ⋅ ࡯	࢘ࢀ

૛ + ૜࡯ܜ܍܌ 

⇔ (૜࡯)	࢘ࢀ = 	࡯	࢘ࢀ ቀ૜
૛
૛࡯	࢘ࢀ − ૚

૛
ቁ࡯૛࢘ࢀ + ૜ܜ܍܌ ࡯

࡯	࢘ࢀ = (࡭࡮−࡮࡭)	࢘ࢀ = ૙,∀࡮,࡭ ∈ ૜(ℝ)ࡹ
ቋ ⇒ (૜࡯)	࢘ࢀ = ૜(3)   ࡯ܜ܍܌ 

(1), (2) ⇒ ቐ
࡮࡭ ࡭࡮− = ૚

૛૙૛૙
૜ࡵ) − (࡮࡭

࡮࡭ ࡭࡮− = ૚
૛૙૛૚

૜ࡵ) (࡭࡮−
 

⇔

⎩
⎪
⎨

⎪
⎧ ࡮࡭)ܜ܍܌ (࡭࡮− =

૚
૛૙૛૙૜ ܜ܍܌

૜ࡵ) − (࡮࡭

࡮࡭)ܜ܍܌ (࡭࡮− =
૚

૛૙૛૚૜ ܜ܍܌
૜ࡵ) (࡭࡮−

૜ࡵ)ܜ܍܌ − (࡮࡭ = ૜ࡵ)ܜ܍܌ − (࡭࡮ ࡮,࡭∀, ∈ ૜(ℝ)ࡹ

 

⇒ ࡯ܜ܍܌ = ࡮࡭)ܜ܍܌ − (࡭࡮ = ૜ࡵ)ܜ܍܌ − (࡮࡭ ૜ࡵ)ܜ܍܌= (࡭࡮− = ૙ 

(3)⇒ ࡮࡭))	࢘ࢀ (૜(࡭࡮− = ૜࡮࡭)ܜ܍܌− (࡭࡮ = ૙ 

Therefore, ષ = ૙. 

292. If ࡭ ∈ (࡭)࢚࢘ such that (ࡾ)૛ࡹ + (࡭)࢚ࢋࢊ = ૙. Prove that: 

૛࡭)࢚ࢋࢊ + ૜࡭ + ૜ࡵ૛) + ૛࡭)࢚ࢋࢊ − ૜࡭ + ૜ࡵ૛) ≥ ૜૙࡭࢚ࢋࢊ 

Proposed by Marian Ursărescu-Romania 
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Solution 1 by proposer 

(࢞)࡭࢖ = ࢞૛ − ࢞(࡭࢚࢘) + ૚ࣅ,࡭࢚ࢋࢊ + ૛ࣅ = ૛ࣅ૚ࣅ,࡭࢚࢘ =  ࡭࢚ࢋࢊ

૛࡭)࢚ࢋࢊ + ૜࡭ + ૜ࡵ૛) = ൫ࣅ૚૛ + ૜ࣅ૚ + ૜൯൫ࣅ૛૛ + ૜ࣅ૛ + ૜൯ = 

= ૛૛ࣅ૚૛ࣅ + ૜ࣅ૚૛ࣅ૛ + ૜ࣅ૚૛ + ૜ࣅ૚ࣅ૛૛ + ૛ࣅ૚ࣅૢ + ૚ࣅૢ + ૜ࣅ૛૛ + ૛ࣅૢ + ૢ = 

= ૛(࡭࢚ࢋࢊ) + ૜࡭࢚ࢋࢊ ⋅ ࡭࢚࢘ + ૜((࢚࢘࡭)૛ − ૛࡭࢚ࢋࢊ) + ࡭࢚࢘ૢ + ࡭࢚ࢋࢊૢ + ૢ = 

= ૛(࡭࢚ࢋࢊ) − ૜(࡭࢚ࢋࢊ)૛ − ૜(࡭࢚ࢋࢊ)૛ − ૟࡭࢚ࢋࢊ − ࡭࢚ࢋࢊૢ + ࡭࢚ࢋࢊૢ + ૢ = 

= ૛(࡭࢚ࢋࢊ) − ૟࡭࢚ࢋࢊ + ૢ; (૚) 

૛࡭)࢚ࢋࢊ − ૜࡭ + ૜ࡵ૛) = ൫ࣅ૚૛ − ૜ࣅ૚ + ૜൯൫ࣅ૛૛ − ૜ࣅ૛ + ૜൯ = 

= ૛૛ࣅ૚૛ࣅ − ૜ࣅ૚૛ࣅ૛ + ૜ࣅ૚૛ − ૜ࣅ૚ࣅ૛૛ + ૛ࣅ૚ࣅૢ − ૚ࣅૢ + ૜ࣅ૛૛ − ૛ࣅૢ + ૢ = 

= ૛(࡭࢚ࢋࢊ) − ૜࡭࢚ࢋࢊ ⋅ ࡭࢚࢘ + ૜((࢚࢘࡭)૛ − ૛࡭࢚ࢋࢊ) + ࡭࢚࢘ૢ − ࡭࢚ࢋࢊૢ + ૢ = 

= ૛(࡭࢚ࢋࢊ) + ૜(࡭࢚ࢋࢊ)૛ + ૜(࡭࢚ࢋࢊ)૛ − ૟࡭࢚ࢋࢊ + ࡭࢚ࢋࢊૢ + ࡭࢚ࢋࢊૢ + ૢ = 

= ૠ(࡭࢚ࢋࢊ)૛ + ૚૛࡭࢚ࢋࢊ + ૢ; (૛) 

From (૚), (૛) it follows that: 

૛࡭)࢚ࢋࢊ + ૜࡭ + ૜ࡵ૛) + ૛࡭)࢚ࢋࢊ − ૜࡭ + ૜ࡵ૛) = ૡ(࡭࢚ࢋࢊ)૛ + ૟࡭࢚ࢋࢊ + ૚ૡ = 

= ૛(૝(࡭࢚ࢋࢊ)૛ + ૜࡭࢚ࢋࢊ + ૢ) ≥ ૜૙࡭࢚ࢋࢊ 

Solution 2 by Ruxandra Daniela Tonilă-Romania 

Let ࡭࢖ = ࡭)࢚ࢋࢊ − (૛ࡵ࢞ = ࢞૛ − ࢞(࡭࢚࢘) +  .࡭ be the characteristic polynomial of ࡭࢚ࢋࢊ

(࢞)࡭࢖ = ࢞૛ − +࢞(࡭࢚࢘) ࡭࢚ࢋࢊ
࡭࢚࢘ + ࡭࢚ࢋࢊ = ૙

ൠ → (࢞)࡭࢖ = ࢞૛ + +࢞(࡭࢚ࢋࢊ)  ࡭࢚ࢋࢊ

૛࡭)࢚ࢋࢊ + ૜࡭ + ૜ࡵ૛) + ૛࡭)࢚ࢋࢊ − ૜࡭ + ૜ࡵ૛) = 

= ૛࡭)࢚ࢋࢊ + ૜ࡵ૛ + ૜࡭) + ૛࡭)࢚ࢋࢊ + ૜ࡵ૛ − ૜࡭) = 

= ૛ቀ࡭)࢚ࢋࢊ૛ + ૜ࡵ૛) + ቁ(࡭૜)࢚ࢋࢊ ; (૚) 

૛࡭)࢚ࢋࢊ + ૜ࡵ૛) = ࡭൫࢚ࢋࢊ + ૛൯ࡵ૜√࢏ ⋅ ࡭൫࢚ࢋࢊ − ૛൯ࡵ૜√࢏ = ૜൯√࢏−൫࡭࢖ ⋅  ૜൯√࢏൫࡭࢖

૜൯√࢏−൫࡭࢖ = −૜ + ࡭࢚ࢋࢊ − (࡭࢚ࢋࢊ)૜√࢏
૜൯√࢏൫࡭࢖ = −૜ + ࡭࢚ࢋࢊ + (࡭࢚ࢋࢊ)૜√࢏

ቋ → 

૜൯√࢏−൫࡭࢖ ⋅ ૜൯√࢏൫࡭࢖ = (−૜ + ૛(࡭࢚ࢋࢊ − ૜൯√࢏૛൫(࡭࢚ࢋࢊ)
૛

 

↔ ૛࡭)࢚ࢋࢊ + ૜ࡵ૛) = ૝࢚ࢋࢊ(࡭૛) − ૟࡭࢚ࢋࢊ + ૢ 

From (૚) it follows that: 
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૛࡭)࢚ࢋࢊ + ૜࡭ + ૜ࡵ૛) + ૛࡭)࢚ࢋࢊ − ૜࡭ + ૜ࡵ૛) = 

= ૛ቀ૝࢚ࢋࢊ(࡭૛) − ૟࡭࢚ࢋࢊ + ૢ + ቁ(࡭૜)࢚ࢋࢊ = ૟࡭࢚ࢋࢊ + ૛(૝࢚ࢋࢊ(࡭૛) + ૢ) ≥⏞
ࡹࡳିࡹ࡭

 

≥ ૟࡭࢚ࢋࢊ + ૝ඥ૝࢚ࢋࢊ(࡭૛) ⋅ ૢ = ૟࡭࢚ࢋࢊ + ૛૝࡭࢚ࢋࢊ = ૜૙࡭࢚ࢋࢊ. 

 Solution 3 by Ravi Prakash-New Delhi-India 

࡭	࢚ࢋࡸ = ቀࢇ ࢈
ࢉ ቁࢊ ࡭࢚ࢋࢊ, = ࢊࢇ − ,ࢉ࢈ ࡭࢚࢘ = ࢇ + ࢊ =  ࢻ−

∵ ࡭࢚࢘ + ࡭࢚ࢋࢊ = ૙	ࢊ࢔ࢇ	࡭૛ − +࡭(࡭࢚࢘) ૛ࡵ(࡭࢚ࢋࢊ) = ૛ࡻ , −ࡴ)  (࡯

→ ૛࡭ + ࡭ࢻ + ૛ࡵࢻ = ૛ࡻ → ૛࡭ = −࡭ࢻ− ૛ࡵࢻ  

૛࡭,࢝࢕ࡺ + ૜࡭ + ૜ࡵ૛ = (૜ − +࡭(ࢻ (૜ − ૛ࡵ(ࢻ = (૜ − ࡭)࢚ࢋࢊ૛(ࢻ + (૛ࡵ → 

૛࡭)࢚ࢋࢊ + ૜࡭ + ૜ࡵ૛) = (૜ − +ࢇ)]૛(ࢻ ૚)(ࢊ+ ૚) − [ࢉ࢈ = 

= (૜ − −ࢻ)૛(ࢻ ࢻ + ૚) = (૜ −  ૛(ࢻ

૛࡭,࢕࢙࢒࡭ − ૜࡭ + ૛ࡵ = ࡭ࢻ− − ૛ࡵࢻ − ૜࡭ + ૜ࡵ૛ = ࢻ)− + ૜)࡭ + (૜ −  ૛ࡵ(ࢻ

૛࡭)࢚ࢋࢊ − ૜࡭ + ૜ࡵ૛) = +ࢻ) ૜)૛ࢻ− ૛ࢻ) − +ࢻ(ૢ (૜ − ૛(ࢻ = ૠࢻ૛ + ૚૛ࢻ+ ૢ 

૛࡭)࢚ࢋࢊ,࢝࢕ࡺ + ૜࡭ + ૜ࡵ૛) + ૛࡭)࢚ࢋࢊ − ૜࡭ + ૜ࡵ૛) = 

= ૠࢻ૛ + ૚૛ࢻ + ૢ + (૜ − ૛(ࢻ = ૡࢻ૛ + ૟ࢻ + ૚ૡ = 

= ૛(૛ࢻ − ૜)૛ + ૜૙ࢻ ≥ ૜૙ࢻ 

 

293. If ࢔ ∈ ࢔,ࡺ ≥ ૜,࢔-fixed. Solve for natural numbers∶ 

࢔ࢇ = ૚ି࢔ࢉ࢈ +  	૚ି࢔࢈ࢉ

 Proposed by Seyran Ibrahimov-Azerbaijan 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

࢔ࢇ =⏞
(∗)

૚ି࢔ࢉ࢈ +  	૚ି࢔࢈ࢉ

,૙,૙)	ࢊ࢔ࢇ	(૙,࢈,૙)	࢚ࢇࢎ࢚	࢘ࢇࢋ࢒ࢉ	࢙࢏	࢚ࡵ  .(∗)	ࢌ࢕	࢙࢔࢕࢏࢚࢛࢒࢕࢙	ࢋ࢘ࢇ	(ࢉ

࢚ࢇࢎ࢚	ࢋ࢓࢛࢙࢙ࢇ	ࢋ࢝,࢝࢕ࡺ ∶ ,࢈,ࢇ ࢉ ∈  ∗ࡺ

ࢊ	࢚ࢋࡸ = ,࢈)ࢊࢉࢍ (ࢉ → ࢗ,࢖∃ ∈ ࢈	࢚ࢇࢎ࢚	ࢎࢉ࢛࢙	∗ࡺ = ࢉ	ࢊ࢔ࢇ	ࢊ࢖ = (ࢗ,࢖)ࢊࢉࢍ	ࢊ࢔ࢇ	ࢊࢗ = ૚ 

→ (∗) ↔ ࢔ࢇ = ૛ି࢔࢖)࢔ࢊࢗ࢖ + (૛ି࢔ࢗ → ࢔ࢊ ⁄࢔ࢇ → ࢊ ⁄ࢇ  

࢓	࢚ࢋࡸ =
ࢇ
ࢊ
∈ ∗ࡺ → (∗) ࢔࢓↔ = ૛ି࢔࢖)ࢗ࢖ +  (૛ି࢔ࢗ
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(ࢗ,࢖)ࢊࢉࢍ	ࢋࢉ࢔࢏ࡿ = ૚ → (ࢗ,࢖)ࢊࢉࢍ = ૛ି࢔࢖,࢖)ࢊࢉࢍ + (૛ି࢔ࢗ = ૛ି࢔࢖)ࢊࢉࢍ + (ࢗ,૛ି࢔ࢗ = ૚ 

→ ∃࢘, ࢠ,࢙ ∈ ࢚ࢇࢎ࢚	ࢎࢉ࢛࢙	∗ࡺ ∶ ࢖ = ࢗ,࢔࢘ = ૛ି࢔࢖,࢔࢙ + ૛ି࢔ࢗ = ࢔ࢠ = ࢔(૛ି࢔࢘) +  ࢔(૛ି࢔࢙)

 	࢔࢕࢏࢚ࢇ࢛ࢗࢋ	ࢋࢎ࢚	࢚ࢇࢎ࢚	࢝࢕࢔࢑	ࢋ࢝	࢚࢛࡮

࢔࢞ + ࢔࢟ = ,࢔ࢠ ࢔) ≥ ૜),࢙ࢋ࢕ࢊ	࢚࢕࢔	࢚࢏࢓ࢊࢇ	ࢇ	࢔࢕࢏࢚࢛࢒࢕࢙	࢔࢕	ࡺ∗ 

ࡿ,ࢋ࢘࢕ࢌࢋ࢘ࢋࢎࢀ = {(૙,࢈,૙), (૙,૙, ,࢈|(ࢉ ࢉ ∈  .{ࡺ

294. Solve for real numbers: 
√࢞ + ૜ૠ + √૟ − ࢞ૠ = √ૢૠ  

 
Proposed by Daniel Sitaru-Romania 

Solution 1 by Serlea Kabay-Liberia 

Let ૢ࢛ૠ = ࢞ + ૜,࢛ ∈ ,ࡾ ૠૢ√࢛	࢔ࢋࢎ࢚ + √૟ − ૢ࢛ૠ + ૜ૠ = √ૢૠ  

࢛√ૢૠ + √ૢૠ ⋅ ඥ૚ − ࢛ૠૠ = √ૢૠ ⇔ ࢛ + ඥ૚ − ࢛ૠૠ = ૚ 

⇔ ඥ૚ − ࢛ૠૠ = ૚ − ࢛ ⇔ ૚ − ࢛ૠ = (૚ − ࢛)ૠ ⇔ 

ૠ࢛૟ − ૛૚࢛૞ + ૜૞࢛૝ − ૜૞࢛૜ + ૛૚࢛૛ − ૠ࢛ = ૙ 

ૠ࢛(࢛ − ૚)(࢛૛ − ࢛+ ૚)૛ = ૙.			ࢋࢉ࢔࢏ࡿ	࢛૛ − ࢛ + ૚ ∉ ,ࡾ ࢛	࢔ࢋࢎ࢚ ∈ {૙,૚} 

Therefore, ࢞ ∈ {−૜,૟} 

 Solution 2 by Surjeet Singhania-India 

Suppose ࢌ(࢟) = ඥ࢟ૠ + ඥ૚ − ࢟ૠ ,∀࢟ ∈  .ࡾ

࢟ will remain same for (࢟)ࢌ > ݕ	݀݊ܽ	1 < (࢟)݂	ݏܽ	0 = −૚)ࢌ ࢟). 

(࢟)ᇱࢌ =
൫ඥ૚ − ࢟ૠ ൯

૟
− ൫ඥ࢟ૠ ൯

૟

ቀඥ࢟ − ࢟૛ૠ ቁ
૟ < ݕ	ݎ݋݂	0 > ݕ	݀݊ܽ	1 ∈ ൬

૚
૛ ;૚൰ 

(࢟)ᇱࢌ > ݕ	ݎ݋݂	0 ∈ ൬૙,
૚
૛൰ 

Clearly for ࢟ > 1,݂(૚) > ݂(࢟) → (࢟)ࢌ < 1.ܵ݅݊ܿ݁	݂(࢟) = ૚)ࢌ − ࢟) 

(࢟)ࢌ < ݕ∀,1 ∈ (−∞,૙) ∪ (૚,∞)	ࢊ࢔ࢇ	࢘࢕ࢌ	૙ < ݕ < 1,݂(࢟) > 1 

Combining all these facts we get ࢌ(࢟) = ૚	࢘࢕ࢌ	࢟ ∈ {૙,૚} 

ࢌ ቀ࢚
ૢ
ቁ = ට࢚

ૢ
ૠ + ට૚ − ࢚

ૢ
ૠ = ૚	࢟࢒࢔࢕	࢘࢕ࢌ	࢚ ∈ {૙,ૢ}  

Therefore, ࢞ ∈ {−૜,૟} 
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Solution 3 by Christos Tsifakis-Greece 

For – ૜ ≤ ࢞ ≤ ࢞√	࢚ࢋ࢒	ૢ + ૜ૠ = ࢇ ≥ ૙	ࢊ࢔ࢇ	√૟ − ࢞ૠ = ࢈ ≥ ૙ → ൜ࢇ
ૠ = ࢞ + ૜
ૠ࢈ = ૟ − ࢞

 

→ ൜ࢇ+ ࢈ = √ૢૠ

ૠࢇ + ૠ࢈ = ૢ
→ ૠࢇ + ૠ࢈ = +ࢇ) ૠ(࢈ ⇔ 

ૠࢇ + ૠࢇ૟࢈+ ૛૚ࢇ૞࢈૛ + ૜૞ࢇ૝࢈૜ + ૜૞ࢇ૜࢈૝ + ૛૚ࢇ૛࢈૞ + ૠ࢈ࢇ૟ + ૠ࢈ = ૠࢇ + ૠ࢈ ⇔ 

ૠࢇ૟࢈ + ૛૚ࢇ૞࢈૛ + ૜૞ࢇ૝࢈૜ + ૜૞ࢇ૜࢈૝ + ૛૚ࢇ૛࢈૞ + ૠ࢈ࢇ૟ = ૙ ⇔ 

૞ࢇ൫ૠ࢈ࢇ + ૛૚ࢇ૝࢈ + ૜૞ࢇ૜࢈૛ + ૜૞ࢇ૛࢈૜ + ૛૚࢈ࢇ૝ + ૠ࢈૞൯ = ૙ 

ࢇ = ૙ → ࢞ = −૜ 

࢈ = ૙ → ࢞ = ૟ 

ૠࢇ૞ + ૛૚ࢇ૝࢈+ ૜૞ࢇ૜࢈૛ + ૜૞ࢇ૛࢈૜ + ૛૚࢈ࢇ૝ + ૠ࢈૞ > 0 

Therefore, ࢞ ∈ {−૜,૟} 

 Solution 4 by Fayssal Abdelli-Bejaia-Algerie 

√࢞ + ૜ૠ + √૟ − ࢞ૠ = √ૢૠ ;  (࡭)

Let ૢࢇૠ = ૟ − ࢞ → √૟ − ࢞ૠ = √ૢૠ ⋅ ࢇ → ࢞ + ૛ࢇૢ = ૟ → ࢞ + ૜ = ૢ −  ૠࢇૢ

√࢞ + ૜ૠ = ඥૢ(૚ − ૛)ૠࢇ  

(࡭) → ඥૢ(૚ − ૠ)ૠࢇ + √ૢૠ ⋅ ࢇ = √ૢૠ → ඥ૚ − ૠૠࢇ = ૚ − ࢇ → 

(૚ − +૚)(ࢇ ࢇ + ૛ࢇ + ⋯+ (૟ࢇ = (૚ − ૠ(ࢇ → 

૚ − ࢇ = ૙ → ࢞ = −૜	࢘࢕	૚ + +ࢇ ૛ࢇ + ⋯+ ૟ࢇ = ૙;  (࡮)

(࡮) → ૚ + ࢇ + ૛ࢇ + ⋯+ ૟ࢇ = ૟ࢇ − ૟ࢇ૞ + ૚૞ࢇ૝ − ૛૙ࢇ૜ − ૚૞ࢇ૛ + ૟ࢇ + ૚ 

−ૠࢇ૞ + ૚૝ࢇ૝ − ૛૚ࢇ૜ + ૚૝ࢇ૛ − ૠࢇ = ૙ → ࢇ = ૙ → ࢞ = ૟	࢘࢕	 

૝ࢇ − ૛ࢇ૜ + ૜ࢇ૛ − ૛ࢇ + ૚ = ૙;  (࡯)

ࢇ) ≠ ૙) → ૛ࢇ − ૛ࢇ+ ૜ −
૛
ࢇ +

૚
૛ࢇ = ૙ 

൬ࢇ૛ +
૚
૛൰ࢇ − ૛ ൬ࢇ +

૚
+൰ࢇ ૜ = ૙ 

Let ഥ࢞ = ࢇ + ૚
ࢇ
→ ഥ࢞૛ − ૛ = ૛ࢇ + ૚

૛ࢇ
 

(࡯) → (ഥ࢞૛ − ૛)− ૛ഥ࢞ + ૜ = ૙ → ഥ࢞૛ − ૛ഥ࢞ + ૚ = ૙ → (ഥ࢞ − ૚	)૛ = ૙ → ഥ࢞ = ૚ 

ഥ࢞ = ૚ → ࢇ +
૚
ࢇ = ૚ → ૛ࢇ − ࢇ + ૚ = ૙	(ઢ < ૛ࢇ	࢕࢙	(0 − ࢇ + ૚ ≠ ૙	 
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Therefore, ࢞ ∈ {−૜,૟} 

295. Solve for real numbers: 

⎩
⎪
⎨

⎪
⎧ ࢞,࢟, ࢠ > 0
࢞࢞ ⋅ ࢟࢟ ⋅ +൫ඥ࢞࢟ࢠࢠ ඥ࢟ࢠ + ൯࢞ࢠ√

ඥ࢞࢟ାࢠ ⋅ ା࢞ࢠ࢟ ⋅ ା࢟࢞ࢠ
= ૚

࢞ + ࢟ + ࢠ = ૚

 

Proposed by Daniel Sitaru – Romania  
Solution by Max Wong-Hong Kong 
 

ඥ࢞࢟ + ඥ࢟ࢠ + ࢞ࢠ√ ≤
ࡹࡳିࡹ࡭ ࢞ + ࢟

૛ +
࢟ + ࢠ
૛ +

ࢠ + ࢞
૛ = ࢞ + ࢟ + ࢠ = ૚ 

Equality holds iff ࢞ = ࢟ = ࢠ = ૚
૜
 

ࢠࢠ࢟࢟࢞࢞

ඥ࢞࢟ାࢠ࢟ࢠା࢞࢞ࢠା࢟
= ࢞࢞ି

࢟
૛ି

ࢠ
૛࢟࢟ି

࢞
ିࢠ

ࢠ
૛ିࢠࢠ

࢞
૛ି

࢟
૛ = ࢞

૜࢞
૛ ି

૚
૛࢟

૜࢟
૛ ି

૚
૛ࢠ

૜ࢠ
૛ ି

૚
૛ = ∑ࢋ

૜࢞ି૚
૛ࢉ࢟ࢉ  ࢞ܖܔ

Define ࢌ(࢞) = ૜࢞ି૚
૛

ܖܔ ࢞ :ࢌ, (૙,૚] → ℝ 

(࢞)ᇱࢌ = ൬
૜
૛ −

૚
૛࢞൰+

૜
૛ ܖܔ ࢞ 

(࢞)ᇱᇱࢌ =
૚
૛࢞૛ +

૜
૛࢞ =

૚
૛࢞૛

(૚ + ૜࢞) > ݔ∀,0 ∈ (૙,૚) 

∴  is convex ࢌ

∴ By Jensen’s inequality  

෍ࢌ(࢞)
ࢉ࢟ࢉ

≤ ቌ෍࢞ࢌ
ࢉ࢟ࢉ

ቍ = (૚)ࢌ = ૙ 

As ࢍ(࢞) = ൯(࢞)ࢌ൫ࢍ ,is strictly increasing ࢞ࢋ ≤ ൯(૚)ࢌ൫ࢍ = (૙)ࢍ = ૚ 

∴ ࢠࢠ࢟࢟࢞࢞

ඥ࢞࢟శࢠ࢟ࢠశ࢞࢞ࢠశ࢟
≤ ૚. Equality holds iff ࢞ = ࢟ = ࢠ = ૚

૜
 

∴ ൯࢞ࢠ√ାࢠ൫ඥ࢞࢟ାඥ࢟ࢠࢠ࢟࢟࢞࢞

ඥ࢞࢟శࢠ࢟ࢠశ࢞࢞ࢠశ࢟
= ૚ iff ࢞ = ࢟ = ࢠ = ૚

૜
 

Otherwise 
൯࢞ࢠ√ାࢠ൫ඥ࢞࢟ାඥ࢟ࢠࢠ࢟࢟࢞࢞

ඥ࢞࢟శࢠ࢟ࢠశ࢞࢞ࢠశ࢟
< 1 

Therefore ࢞ = ࢟ = ࢠ = ૚
૜
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,૚ࢠ	.296 ,૛ࢠ ૜ࢠ ∈ ∗࡯ −different in pairs, |૚ࢠ| = |૛ࢠ| = |૜ࢠ| = ૚,࡭(ࢠ૚),࡮(ࢠ૛),࡯(ࢠ૜) 

ෑห(ࢠ૚ − ૚ࢠ|(૛ࢠ − |૜ࢠ + ૚ࢠ) − ૚ࢠ|(૜ࢠ − ૛|หࢠ =⏞
(∗)

ቀ෍|ࢠ૚ − ૛|ቁࢠ
૜
→ ࡮࡭ = ࡯࡮ =  ࡭࡯

		Proposed by Marian Ursărescu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

࡯࡮࡭ࢤ ∈ ࡾ,ࡻ)࡯ = ૚),࡮࡭ = ૚ࢠ| − |૛ࢠ = ࡯࡮,ࢉ = ૛ࢠ| − |૜ࢠ = ࡭࡯,ࢇ = ૜ࢠ| − |૚ࢠ =  ࢈

ห(ࢠ૚ − ૚ࢠ|(૛ࢠ − |૜ࢠ + ૚ࢠ) − ૚ࢠ|(૜ࢠ − ૛|หࢠ = ૚ࢠ)࢈| − (૛ࢠ + ૚ࢠ)ࢉ − |(૜ࢠ = 

ࢇ)| + ࢈ + ૚ࢠ(ࢉ − ૚ࢠࢇ) + ૛ࢠ࢈ + |(૜ࢠࢉ = ૛࢙ ฬࢠ૚ −
૚ࢠࢇ + ૛ࢠ࢈ + ૜ࢠࢉ

ࢇ + +࢈ ࢉ ฬ = ૛࢙.  ࡭ࡵ

(∗) ↔ෑ(૛࢙. (࡭ࡵ = (૛࢙)૜ 	↔ෑ
࢘

ܖܑܛ ૛࡭
= ૚ ↔ ࢘૜.

૝ࡾ
࢘ = ૚ ↔ ૛࢘ = ૚ =  ࡾ

ࡾ	࢚ࢇࢎ࢚	࢝࢕࢔࢑	ࢋ࢝	࢚࢛࡮ ≥ ૛࢘	(࢘ࢋ࢒࢛ࡱ),࢝ࢎ࢚࢏	࢚࢟࢏࢒ࢇ࢛ࢗࢋ	࢟࢒࢔࢕	ࢌ࢏		࡯࡮࡭ࢤ	࢙࢏	࢒ࢇ࢘ࢋ࢚ࢇ࢒࢏࢛ࢗࢋ. 

 		,ࢋ࢘࢕ࢌࢋ࢘ࢋࢎࢀ

ෑห(ࢠ૚ − ૚ࢠ|(૛ࢠ − |૜ࢠ + ૚ࢠ) − ૚ࢠ|(૜ࢠ − ૛|หࢠ = ቀ෍|ࢠ૚ − ૛|ቁࢠ
૜

 

→ ࡮࡭ = ࡯࡮ =  ࡭࡯

297. If ࢔ ∈ ℕ then: 

෍
࢑)࢑ − ૚)
(࢑࣊)࢙࢕ࢉ

࢔

࢑ୀ૚

=
(૛࢔૛ − ૚)(࢔࣊)࢙࢕ࢉ + ૚

૝  

Proposed by Asmat Qatea-Afghanistan 
Solution 1 by Daniel Sitaru-Romania 
 

We will use mathematical induction: 

For ࢔ = ૚ → ૚(૚ି૚)
(૚∙࣊)࢙࢕ࢉ

= ൫૛∙૚૛ି૚൯࢙࢕ࢉ(࣊∙૚)ା૚
૝

↔ ૙ = ૙ 

෍	:(࢔)ࡼ
࢑)࢑− ૚)
(࢑࣊)࢙࢕ࢉ

࢔

࢑ୀ૚

=
(૛࢔૛ − ૚)(࢔࣊)࢙࢕ࢉ + ૚

૝  

Suppose (࢔)ࡼ-true. 
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࢔)ࡼ + ૚):	෍
࢑)࢑− ૚)
(࢑࣊)࢙࢕ࢉ

ା૚࢔

࢑ୀ૚

=
(૛(࢔+ ૚)૛ − ૚)࢔)࣊)࢙࢕ࢉ + ૚)) + ૚

૝  

࢔)ࡼ + ૚) −to prove. 

෍
࢑)࢑ − ૚)
(࢑࣊)࢙࢕ࢉ

ା૚࢔

࢑ୀ૚

= ෍
࢑)࢑− ૚)
(࢑࣊)࢙࢕ࢉ

࢔

࢑ୀ૚

+
+࢔) ૚)࢔

+࢔))࢙࢕ࢉ ૚)࣊) = 

=
(૛࢔૛ − ૚)(࢔࣊)࢙࢕ࢉ + ૚

૝ +
+࢔) ૚)࢔

࢔))࢙࢕ࢉ + ૚)࣊) =
(૛࢔૛ − ૚)(−૚)࢔ + ૚

૝ +
࢔) + ૚)࢔
(−૚)࢔ା૚ = 

=
(૛࢔૛ − ૚)(−૚)૛࢔ା૚ + (−૚)࢔ା૚ + ૝࢔)࢔+ ૚)

૝ ∙ (−૚)࢔ା૚ =
−૛࢔૛ + ૚ + ૝࢔૛ + ૝࢔ + (−૚)࢔ା૚

૝ ∙ (−૚)࢔ା૚ = 

=
૛࢔૛ + ૝࢔+ ૚ + (−૚)࢔ା૚

૝ ∙ (−૚)࢔ା૚ =
(−૚)࢔ା૚(૛࢔૛ + ૝࢔+ ૚) + (−૚)૛࢔ା૛

૝ ∙ (−૚)૛࢔ା૛ = 

=
(૛(࢔+ ૚)૛ − ૚)࢔)࣊)࢙࢕ࢉ+ ૚)) + ૚

૝  

(࢔)ࡼ → +࢔)ࡼ ૚) 

Solution 2 by Ahmed Yackoube Chach-Mauritania 

(࢞)࢔ࢌ = ෍
࢞࢑

(࢑࣊)࢙࢕ࢉ

࢔

࢑ୀ૚

= ෍
࢞࢑

࢑࣊࢏ࢋ

࢔

࢑ୀ૚

= ෍(−࢞)࢑
࢔

࢑ୀ૚

= ࢞ ⋅
࢔(࢞−) − ૚
࢞ + ૚  

ᇱ࢔ࢌ (࢞) =
࢔(࢞−)࢔

࢞ + ૚ +
࢔(࢞−)

(࢞ + ૚)૛ −
૚

(࢞ + ૚)૛ =
࢞)࢔ + ૚)(−࢞)࢔ − ૚ + ࢔(࢞−)

(࢞ + ૚)૛  

(࢞)ᇱᇱ࢔ࢌ =
൫࢔(࢞ + ૚)൫(࢔ − ૚)࢞ + ૚ + ൯࢔ − ૛࢞൯(−࢞)࢔

࢞(࢞ + ૚)૜ +
૛

(࢞ + ૚)૜ 

Hence, 

ᇱᇱ(૚)࢔ࢌ = ෍
࢑)࢑ − ૚)
(࢑࣊)࢙࢕ࢉ

࢔

࢑ୀ૚

=
(૝࢔૛ − ૛)(−૚)࢔

ૡ +
૚
૝ =

(૛࢔૛ − ૚)(࣊࢔)࢙࢕ࢉ + ૚
૝  

298. Solve for real numbers: 

⎩
⎨

⎧
࢞,࢟, ࢠ > 0

෍࢞૛૙૛૚ ቀ
࢟
ࢠ

+
ࢠ
࢞
ቁ

ࢉ࢟ࢉ

= ෍࢞૛૙૛૙(࢟ + (ࢠ
ࢉ࢟ࢉ

૜࢞ + ૝࢟ = ૞ࢠ

 

Proposed by Daniel Sitaru-Romania 
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Solution 1 by Adrian Popa-Romania 

෍࢞૛૙૛૚ ቀ
࢟
ࢠ +

ࢠ
࢞
ቁ

ࢉ࢟ࢉ

= ෍࢞૛૙૛૙(࢟ + (ࢠ
ࢉ࢟ࢉ

↔ 

෍࢞૛૙૛૚ ⋅
࢟
ࢠ

ࢉ࢟ࢉ

+ ෍࢞૛૙૛૙ ⋅ ࢠ
ࢉ࢟ࢉ

= ෍࢞૛૙૛૙ ⋅ ࢟
ࢉ࢟ࢉ

+ ෍࢞૛૙૛૙ ⋅ ࢠ
ࢉ࢟ࢉ

↔ 

෍࢞૛૙૛૛ ⋅ ࢟૛
ࢉ࢟ࢉ

= ෍࢞૛૙૛૚ ⋅ ࢟૛ ⋅ ࢠ
ࢉ࢟ࢉ

 

(૛૙૛૚,૛,૙) ⋟ (૛૙૛૚,૛,૚). Equality if ࢞ = ࢟ =  and from ࢠ

 ૜࢞ + ૝࢟ = ૞ࢠ → ࢞ = ࢟ = ࢠ = ૛. 

Solution 2 by Amrit Awasthi-India 

෍࢞૛૙૛૚ ቀ
࢟
ࢠ +

ࢠ
࢞
ቁ

ࢉ࢟ࢉ

= ෍࢞૛૙૛૙(࢟ + (ࢠ
ࢉ࢟ࢉ

↔ 

෍࢞૛૙૛૚ ⋅
࢟
ࢠ

ࢉ࢟ࢉ

+ ෍࢞૛૙૛૙ ⋅ ࢠ
ࢉ࢟ࢉ

= ෍࢞૛૙૛૙ ⋅ ࢟
ࢉ࢟ࢉ

+ ෍࢞૛૙૛૙ ⋅ ࢠ
ࢉ࢟ࢉ

 

Or, 

෍࢞૛૙૛૙࢟ ቀ
࢞
ࢠ − ૚ቁ

ࢉ࢟ࢉ

= ૚ ↔෍࢞૛૙૛૙ ቀ
࢟
ࢠ
ቁ (࢞ − (ࢠ

ࢉ࢟ࢉ

= ૙ 

The left hand summand become zero for ࢞ = ࢟ =  .ࢠ

Now, consider the equation ૞ࢠ = ૝࢟ + ૜࢞, taking log both sides with base 5 

ࢠ =
૜࢞)܏ܗܔ + ૝࢟)

૞܏ܗܔ  

The integer solutions of this equation is (࢞,࢟,ࢠ) = (૙,૚,૚) and using Fermat’s last 
theorem it is concluded that for ࢞ = ࢟ = ࢠ = ࢇ have only integer solutions for ࢇ = ૛ that 

is, 
(࢞,࢟, (ࢠ = (૙,૚,૚)	ܚܗ	(૛,૛,૛) and putting ࢞ = ࢟ = ࢠ =  in the equations yields ࢇ

ࢇ =
ࢇ૜)܏ܗܔ + ૝ࢇ)

૞܏ܗܔ  

Now, we need to check whether other real solutions exist or not. 
By considering two equations 

ࢅ = ࢅ,ࢇ =
ࢇ૜)܏ܗܔ + ૝ࢇ)

૞܏ܗܔ  

We can see that both are straight lines. 
Now, we know two straight lines either are parallel or coincident or intersect at one point. 
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But we also have one known solution at value 2 hence lines can not be parallel or 
coincident. This makes it right to conclude that these lines intersect at ࢇ = ૛ only. 

Hence the solution set is: 
(࢞,࢟, (ࢠ = (૛,૛,૛) 

 

299. Prove that, if the real	࢞,࢟,  :satisfy the relation	ࣅ,ࢠ

෍࢞૛ −෍࢞࢟ + ૜ࣅ)ࣅ − ࢞ + (ࢠ = ૙, 

࢞,࢟	and ࢠ	form an arithmetic progression. 
    Proposed by Denisa Lepădatu-Romania 

Solution 1 by Fayssal Abdelli-Bejaia-Algerie 

Suppose: ࢟ = ࢞ + ࢠ and ࢇ = ࢞ + ૛ࢇ,ࢇ ∈  ࡾ

෍࢞૛ −෍࢞࢟ + ૜ࣅ)ࣅ − ࢞ + (ࢠ = ૙; (∗) 

→ ࢞૛ + (࢞ + ૛(ࢇ + (࢞ + ૛ࢇ)૛ − ࢞(࢞ + (ࢇ − (࢞ + ࢞)(ࢇ + ૛ࢇ) − ࢞(࢞+ ૛ࢇ) + ૜ࣅ૛ − ૜࢞ࣅ

+ ૜ࣅ(࢞+ ૛ࢇ) = ૙ 

→ ૜ࢇ૛ + ૟ࣅࢇ + ૜ࣅ૛ = ૙ → +ࢇ) ૛(ࣅ = ૙ → ࢇ =  ࣅ−

So, ࢞૛ + ࢟૛ + ૛ࢠ − ࢞࢟ − ࢠ࢞ − ࢟࢞ + ૜ࣅ)ࣅ − ࢞ + (ࢠ = ૙ 

→ ࢇ = ࢟,ࣅ− = ࢞ − ࢠ,ࣅ = ࢞ − ૛ࣅ = ࢟ −  ࣅ

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

෍࢞૛ −෍࢞࢟ + ૜ࣅ)ࣅ − ࢞ + (ࢠ = ૙; (∗) 

(∗) ↔ ૜ࣅ૛ + ૜ࢠ)ࣅ − ࢞) +
૚
૛

[(࢞ − ࢟)૛ + (࢟ − ૛(ࢠ + ࢠ) − ࢞)૛] = ૙ 

࢞,࢟, ࢚࢙࢏࢞ࢋ	ࣅ,ࢠ ↔ ࢤ = ࢠ)ૢ − ࢞)૛ − ૝.૜.
૚
૛

[(࢞ − ࢟)૛ + (࢟ − ૛(ࢠ + ࢠ) − ࢞)૛] ≥ ૙ 
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↔ ૜(ࢠ − ࢞)૛ − ૟(࢞ − ࢟)૛ − ૟(࢟− ૛(ࢠ ≥ ૙

↔ [(࢞ − ࢟) + (࢟ − ૛[(ࢠ − ૛(࢞ − ࢟)૛ − ૛(࢟ − ૛(ࢠ ≥ ૙ 

↔ −(࢞− ࢟)૛ + ૛(࢞ − ࢟)(࢟ − (ࢠ − (࢟ − ૛(ࢠ ≥ ૙ ↔ −[(࢞ − ࢟) − (࢟ − ૛[(ࢠ ≥ ૙ 

→ (࢞ − ࢟) − (࢟ − (ࢠ = ૙ → ࢞ + ࢠ = ૛࢟. 

 ࢔࢕࢏࢙࢙ࢋ࢘ࢍ࢕࢘࢖	ࢉ࢏࢚ࢋ࢓ࢎ࢚࢏࢘ࢇ	࢔ࢇ	࢓࢘࢕ࢌ	ࢠ	ࢊ࢔ࢇ	࢟,࢞,ࢋ࢘࢕ࢌࢋ࢘ࢋࢎࢀ

Solution 3 by Bedri Hajrizi-Mitrovica-Kosovo 

Let ࢟ = ࢞ + ,ࢇ ࢠ = ࢞ + ࢈ → 

૜࢞૛ + ૛ࢇ + ૛࢈ + ૛࢞ࢇ + ૛࢞࢈ − ࢞(࢞ + (ࢇ − ࢞(࢞ + (࢈ − (࢞ + ࢞)(ࢇ + (࢈

+ ૜ࣅ)ࣅ− ࢞ + ࢞ + (࢈ = ૙ 

→ ૛ࢇ + ૛࢈ − ࢈ࢇ + ૜ࣅ૛ + ૜࢈ࣅ = ૙ 

→ ૜ࣅ૛ + ૜ࣅ࢈+ ૛ࢇ + ૛࢈ − ࢈ࢇ = ૙,ઢ = −૜(૛ࢇ − ૛(࢈ ≥ ૙⇔ ࢈ = ૛ࢇ 

So, ࢟ = ࢞ + ,ࢇ ࢠ = ࢞ + ૛ࢇ → ࢞,࢟,  .are terms of an arithmetic progression ࢠ

 Solution 4 by Manole Buican-Romania 

࢟૛ − (࢞ + ࢟(ࢠ + ࢞૛ + ૛ࢠ − ࢠ࢞ + ૜ࣅ૛ − ૜࢞ࣅ + ૜ࢠࣅ = ૙ and ઢ ≥ ૙ 

ઢ = (࢞+ ૛(ࢠ − ૝࢞૛ − ૝ࢠ૛ + ૝࢞ࢠ − ૚૛ࣅ૛ + ૚૛࢞ࣅ − ૚૛ࢠࣅ = 

= −૜(࢞− ૛(ࢠ − ૚૛ࣅ൫ࣅ + (࢞ − ൯(ࢠ ≥ ૙, let ࢚ = ࢞ − ࢠ → 

࢚૛ + ૝ࣅ)ࣅ+ ࢚) ≤ ૙ ⇔ (࢚ + ૛ࣅ)૛ ≤ ૙ ⇔ ࢚ + ૛ࣅ = ૙ → ઢ = ૙. 

So,࢟૚,૛ = ࢞ାࢠ
૛
→ ࢞,࢟,  .are terms of an arithmetic progression -ࢠ

Solution 5 by Amrit Awasthi-India 

Given, ࢞૛ + ࢟૛ + ૛ࢠ − ࢞࢟ − ࢠ࢟ − ࢞ࢠ + ૜ࣅ)ࣅ − ࢞ + (ࢠ = ૙ 

૚
૛

((࢞ − ࢟)૛ + (࢟ − ૛(ࢠ + ࢠ) − ࢞)૛) + ૜ࣅ)ࣅ − ࢞ + (ࢠ = ૙; (∗) 

Let ࢟ = ࢞,ࢻ = ࢻ − ࢑૚, ࢠ = ࢻ + ࢑૛ therefore equation (∗) becomes 

૚
૛ ൫࢑૚

૛ + ࢑૛૛ + (࢑૚ + ࢑૛)૛ + ૜ࣅ૛ + ૜࢑ࣅ૚ + ૜࢑ࣅ૛൯ = ૙ 

→ ࢑૚૛ + ࢑૛૛ + ࢑૚࢑૛ + ૜ࣅ૛ + ૜࢑ࣅ૚ + ૜࢑ࣅ૛ = ૙ 

Now, the equation so formed is irreducible so let’s assume ࢑૚ = ࢑૛ = ࢑, therefore the 

equation becomes ૜࢑૛ + ૟࢑ࣅ + ૜ࣅ૛ = ૙, solving for ࢑ we get ࢑ =  .ࣅ−
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→ ࢞,࢟,  .are terms of an arithmetic progression -ࢠ

300. 

(࢞)࣒	܎۷ = ෍
࢞࢑

(࢑)ࢊ

ஶ

࢑ୀ૚

 :ܖ܍ܐܜ	

෍
૚
࢔

ஶ

ୀ૚࢔

෍࣒ቌ
ࢋ
૛࣊࢑࢏
࢔

૛ ቍ
࢔

࢑ୀ૚

= ૚ 

where |࢞| < 1 and (࢔)ࢊ is the number of divisors of ࢔. 

Proposed by Angad Singh-Pune-India 

Solution by proposer 

Let the series expansion of ࢌ(࢞) be expressed as 

(࢞)ࢌ = ෍ ࢓࢞࢓ࢇ
ஶ

ୀ૚࢓

,  ܖ܍ܐܜ

ࢌ ൬࢞ࢋ
૛࣊࢑࢏
࢔ ൰ = ෍ ࢓ࢇ ൬࢞ࢋ

૛࣊࢑࢏
࢔ ൰

ஶ࢓

ୀ૚࢓

= ෍ ࢋ࢓࢞࢓ࢇ
૛࣊࢓࢑࢏

૛

ஶ

ୀ૚࢓

 

Summing it up from ࢑ = ૚ to ࢑ =  :we have ,࢔

෍ࢌ൬ࢋ
૛࣊࢑࢏
࢔ ൰

࢔

࢑ୀ૚

= ෍ ෍ ࢋ࢓࢞࢓ࢇ
૛࣊࢓࢑࢏

࢔

ஶ

ୀ૚࢓

࢔

࢑ୀ૚

= ෍ ࢓࢞࢓ࢇ
ஶ

ୀ૚࢓

෍ࢋ
૛࣊࢓࢑࢏

࢔

࢔

࢑ୀ૚

 

It can be easily shown that 

෍ࢋ
૛࣊࢓࢑࢏

࢔

࢔

࢑ୀ૚

= ൜ ࢓|࢔			,࢔
૙,				܍ܛܑܟܚ܍ܐܜܗ 

Hence, 

෍ࢌ൬࢞ࢋ
૛࣊࢑࢏
࢔ ൰

࢔

࢑ୀ૚

= ࢔ ෍ ࢔࢓࢞࢔࢓ࢇ
ஶ

ୀ૚࢓

→
૚
ࢋ൬࢞ࢌ෍࢔

૛࣊࢑࢏
࢔ ൰

࢔

࢑ୀ૚

= ෍ ࢔࢓࢞࢔࢓ࢇ
ஶ

ୀ૚࢓

 

Summing up both the sides from ࢔ = ૚ to ࢔ = ∞, we have: 

෍
૚
ࢋ൬࢞ࢌ෍࢔

૛࣊࢑࢏
࢔ ൰

࢔

࢑ୀ૚

ஶ

ୀ૚࢔

= ෍ ෍ ࢔࢓࢞࢔࢓ࢇ
ஶ

ୀ૚࢓

ஶ

ୀ૚࢔
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Observe that: 

෍ ෍ ࢔࢓࢞࢔࢓ࢇ
ஶ

ୀ૚࢓

ஶ

ୀ૚࢔

= ෍ቌ෍૚
࢔|࢑

ቍ࢔࢞࢔ࢇ
ஶ

ୀ૚࢔

= ෍࢔࢞࢔ࢇ(࢔)ࢊ
ஶ

ୀ૚࢔

 

Therefore, 

෍
૚
ࢋ൬࢞ࢌ෍࢔

૛࣊࢑࢏
࢔ ൰

࢔

࢑ୀ૚

ஶ

ୀ૚࢔

= ෍࢔࢞࢔ࢇ(࢔)ࢊ
ஶ

࢑ୀ૚

 

Substituting ࢔ࢇ = ૚
(࢔)ࢊ

, if |࢞| < 1, we get ࢌ(࢞) = ࣒(࢞), thus 

෍
૚
ࢋ෍࣒൬࢞࢔

૛࣊࢑࢏
࢔ ൰

࢔

࢑ୀ૚

ஶ

ୀ૚࢔

= ෍࢞࢔
ஶ

ୀ૚࢔

=
࢞

૚ − ࢞ 

Finally substituting ࢞ = ૚
૛
 completes the proof. 
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It’s nice to be important but more important it’s to be nice. 

At this paper works a TEAM. 

This is RMM TEAM. 

To be continued! 

Daniel Sitaru 
 

 

 


