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DOUCET’S INEQUALITY
In ∆ABC the following relationship holds:
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(2) ra + rb + rc = r + 4R

If x, y, z ∈ R then:

(3) 3(xy + yz + zx) ≤ (x + y + z)2

Replace in (3) : x = ra; y = rb; z = rc

3(rarb + rbrc + rcra) ≤ (ra + rb + rc)
2

By (1); (2):
3s2 ≤ (r + 4R)2
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Observation:
By Euler’s inequality: r ≤ R
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which is MITRINOVIC’S INEQUALITY
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