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Abstract

In this article the logarithmic integrals of the following two classes in closed
forms ∫ π

2

0

ln(a2 cos2 x+ b2 sin2 x)dx = π ln

(
a+ b

2

)
· · · 1∫ π

2

0

ln

(
p4 cos4 x+

q4

16
sin4 2x

)
dx = 2π ln

(p
4

)
+
π

2
A(p, q) · · · 2

where A(p, q) = ln

(
1 +

√
1 +

q4

p4

)
+2 ln

√2 +

√√√√1 +

√
1 +

q4

p4

 for all a, b >

0, p > q > 0 are evaluated using the Maclaurin series of log(1+y) for y ∈ (−1, 1].

Introduction

The aforementioned formal integral, [1] is a classical integral that can be found
in book, Integrals, series and products (see page no 532, section:4.226) and latter
integral, [2] is a variant version (due to motivation) of the former integral. The
common technique to solve these integrals is Feynman technique however, this
paper presents the evaluation of these integrals by series of ln(1 + y) around y
= 0 that boils down to alternating sum with central binomial coefficients.

Theorems and Proofs

Theorem 1. For all a, b > 0, the following integral equality holds.∫ π
2

0

ln(a2 cos2 x+ b2 sin2 x)dx = π ln

(
a+ b

2

)
Before we develop the proof of Theorem 1 we need the following lemmas.
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Lemma 1.1. For |x| < 1
4 , the generating function of central binomial

coefficients

(
2n

n

)
for n ≥ 0 integer is given by

∞∑
n=0

(
2n

n

)
xn =

1√
1− 4x

Proof: Consider the function f(x) =
1√

1 + x
for all x ∈ (−1, 1] and by gener-

alized binomial theorem we write f(x) as

1√
1 + x

=

∞∑
n=0

(
− 1

2

n

)
xn =

∞∑
n=0

[
n∏
k=0

(
−k − 1

2

)]
xn

n!
=

∞∑
n=0

(−1)n
(2n− 1)!!

2nn!
xn

since (2n− 1)!! =
(2n)!

2nn!
and replacing x by −4x we have then

∞∑
n=0

(−1)n
(2n− 1)!!

4nn!
(−4x)n =

∞∑
n=0

(
2n

n

)
xn =

1√
1− 4x

Lemma 1.2. Let n ≥ 0 be integer then the following equality holds.∫ π
2

0

sin2n udu =

∫ π
2

0

cos2n udu =
π

2 · 4n

(
2n

n

)
Proof: Due to Euler’s integral of the first kind, Beta function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

with the substitution of t = sin2 u we obtain

B(x, y) = 2

∫ π
2

0

sin2x−1 u cos2y−1 udu

To obtain the desired integral we either set x = 1
2 or y = 1

2 and if y = 1
2 then

x = 2n+1
2 and vice versa.

B

(
2n+ 1

2
,

1

2

)
=

∫ π
2

0

sin2n udu =

∫ π
2

0

cos2n udu

since B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
and using the relation we obtain

∫ π
2

0

sin2n udu =

∫ π
2

0

cos2n udu =
Γ
(
n+ 1

2

)
Γ
(
1
2

)
2Γ(n+ 1)

=
π

2 · 4n

(
2n

n

)

since we used the relation Γ

(
n+

1

2

)
=

√
π

2n
(2n− 1)!! =

(2n)!

4nn!

√
π.

2



Proof of Theorem 1

Since sin
(
π
2 − x

)
= cosx and thus we write∫ π

2

0

ln(a2 cos2 x+ b2 sin2 x)dx =

∫ π
2

0

ln(a2 sin2 x+ b2 cos2 x)dx

Now for a > b > 0 we write a2 = (a2− b2) + b2 = k+ b2 so we write the integral

I(k, b) =

∫ π
2

0

ln(b2 + k cos2 x)dx = π ln b+

∫ π
2

0

ln

(
1 +

k

b2
cos2 x

)
dx

Now | cos2 x| < 1 for all x ∈ (0, π/2) and
a2 − b2

b2
< 1 implies

∣∣∣∣ kb2 cos2 x

∣∣∣∣ < 1

and hence

J (k, b) =

∫ π
2

0

ln

(
1 +

k

b2
cos2 x

)
dx =

∞∑
n=1

(−1)n+1

n

(
k

b2

)n ∫ π
2

0

cos2n xdx

Now by Lemma 1.2, the latter expression boils down to the following infinite
sum.

J (k, b) =
π

2

∞∑
n=0

(−1)n+1

4nn

(
k

b2

)(
2n

n

)
=
π

2

∞∑
n=1

(−1)n+1

n

(
k

4b2

)n(
2n

n

)
To obtain the last series we exploit the Lemma 1.1

∞∑
n=0

(
2n

n

)
xn =

1√
1− 4x

⇒
∞∑
n=1

(
2n

n

)
xn =

1√
1− 4x

− 1

Now by dividing by x and integrating from 0 to y we get

∞∑
n=1

(
2n

n

)
yn =

∫ y

0

1

x

(
1√

1− 4x
− 1

)
dx = −2 ln

(√
1− 4y + 1

2

)

Now setting y =
−k
4b2

= −a
2 − b2

b2

J (k, b) =
π

2

∞∑
n=1

(−1)n+1

n

(
k

4b2

)n(
2n

n

)
= π ln

(
a+ b

2

)
− π ln b

and hence

I(a, b) =

∫ π
2

0

ln(a2 cos2 x+ b2 sin2 x)dx = π ln

(
a+ b

2

)
and for the case of b > a we note that sin

(
π
2 − x

)
= cosx and replacing a by b

for k and vice versa the desired same result is obtained.
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Theorem 2. For all p > q > 0 the following integral equality holds∫ π
2

0

ln

(
p4 cos4 x+

q4

16
sin4 2x

)
dx = 2π ln

(p
4

)
+
A(p, q)

2
π

where A(p, q) = ln

(
1 +

√
1 +

q4

p4

)
+ 2 ln

√2 +

(
1 +

√
1 +

q4

p4

)1/2


To work with Theorem 2 we need the following lemma.

Lemma 2.1 For |x| < 1
16 , the generating function for the coefficients

(
4n

2n

)
for all n ≥ 0 is given by

∞∑
n=0

(
4n

2n

)
(−x)n =

1√
2

√
1 +
√

1 + 16x

1 + 16x

Proof: Let the function F(x) =
1√

1− 4x
=

∞∑
n=0

(
2n

n

)
xn by Lemma 1.1

and it is easy too see that

∞∑
n=0

(
4n

2n

)
(−x2)n = <

( ∞∑
n=0

(
2n

n

)
(ix)n

)
= <

(
1√

1− 4ix

)

Now to evaluate the real part,let
1√

1− 4ix
= reiθ and <(F(ix)) = r cos θ. Here

cos 2θ = r2 and sin 2θ = 4r2x and hence θ =
1

2
arctan 4x and r =

1
4
√

1 + 16x2
.

Therefore,

< (F(ix)) =
cos
(
1
2 arctan 4x

)
√

1 + 16x2
=

1√
2

√
1 + cos arctan 4x

4
√

1 + 16x2
=

1√
2

√
1 +
√

1 + 16x2√
1 + 16x2

we used cos (arctanx) =
1√

1 + x2
and on replacing x by 4x and simplification

gives us the equality right hand side. Moreover, replacing x2 by x yields the
desired result

∞∑
n=0

(
4n

2n

)
(−x)n =

1√
2

√
1 +
√

1 + 16x

1 + 6x

which completes the proof.
Remark:

∞∑
n=0

(
4n

2n

)
x2n =

F(x) + F(−x)

2
=

1

2

(
1√

1− 4x
+

1√
1 + 4x

)
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Lemma 2.2 We show that∫ π
2

0

ln(cosx)dx =

∫ π
2

0

ln(sinx)dx = −π
2

ln 2

Using the integral property

∫ b

a

f(x)dx =

∫ b

a

f(b+a−x)dx. We directly get the

result

∫ π
2

0

ln(cosx)dx =

∫ π
2

0

ln(sinx)dx. For all 0 ≤ x < π
2 we use the Fourier

series of ln(cosx) we have∫ π
2

0

ln(cosx)dx =

∫ π
2

0

(
− ln 2−

∞∑
k=1

(−1)k

k
cos(2kx)

)
= −π

2
ln 2− 0 = −π

2
ln 2

Since
∞∑
k=1

(−1)k

k

∫ π
2

0

cos(2kx)dx =

∞∑
k=1

(−1)k

k
sin(2kπ) = 0

as sin(2πk) = 0 for all k (integers).

Proof of Theorem 2

Since∫ π
2

0

ln

(
p4 cos4 x+

q4

16
sin4 2x

)
dx =

∫ π
2

0

ln(cos4 x)dx+

∫ π
2

0

ln
(
p4 + q4 sin4 x

)
dx

Since the formal integral

∫ π
2

0

ln(cos4 x)dx = 4

∫ π
2

0

ln(cosx)dx = −2π ln 2 by

Lemma 2.2. Note that∫ π
2

0

ln
(
p4 + q4 sin4 x

)
dx = 2π ln p+

∞∑
n=1

(−1)n+1

n

(
q4

p4

)n ∫ π
2

0

sin4n xdx

By the Lemma 1.2 we have

S(p, q) =
π

2

∞∑
n=1

(−1)n

n

(
q4

16p4

)n(
4n

2n

)
We now evaluate last sum by the use of the Lemma 2.1 by dividing x and
integrating from 0 to z.

∞∑
n=1

(−z)n

n

(
4n

2n

)
=

∫ z

0

1

x

√1 +
√

1 + 16x

1 + 16x
−
√

2

 dx√
2
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We evaluate the indefinite integral of latter result by making substitution 1 +
16x = y gives us

1√
2

∫ (
−
√

1 +
√
y +
√

2y

(1− y)
√
y

)
dy

u=
√
y︷︸︸︷

= − 2√
2

∫ √
1 + u−

√
2u

1− u2

further substitute
√

1 + u = w gives us

− 4√
2

∫
w2 −

√
2w3 +

√
2w

(w2 − 1)2 − 1
dw =

4√
2

∫
(
√

2w + 1)(w −
√

2)

w(w +
√

2)(w −
√

2)
=

4√
2

∫ √
2w + 1

w(w +
√

2)

and last integral on RHS

∫ √
2w + 1

w(w +
√

2)
=
√

2 ln

(
w√
2

+ w

)
and making undo

of each substitution made with simplification we yield

∫
1

x

√1 +
√

1 + 16x

1 + 16x
−
√

2

 dx√
2

= −2 ln

(√
1 +
√

1 + 16x+

√
1 + 16x+ 1√

2

)
+C

and applying the limits we get

∞∑
n=1

(−1)n+1

n

(
4n

2n

)
zn = 2 ln

(√
1 +
√

1 + 16z +

√
1 + 16z + 1√

2

)
︸ ︷︷ ︸

M

−3 ln 2

Also

M = ln
(
1 +
√

1 + 16z
)

+ 2 ln

(√
2 +

√
1 +
√

1 + 16x

)
− ln 2

for z =
q4

16p4
we obtain the closed form of S(p, q) =

π

2

ln

(
1 +

√
1 +

q4

p4

)
+ 2 ln

√2 +

√√√√1 +

√
1 +

q4

p4




︸ ︷︷ ︸
A(p,q)

−2π ln 2

Combining the result we obtain the result∫ π
2

0

ln

(
p4 cos4 x+

q4

16
sin4 x

)
dx = 2π ln

(p
4

)
+
A(p, q)

2
π

as required which completes the proof.

Remarkable Result from study

6



As we proved hat
∞∑
n=1

(−1)n+1

n

(
4n

2n

)
zn = M − 3 ln 2

It is interesting to note that sum on left hand attains the hypergeometric ex-
pression, namely

∞∑
n=1

(−1)n+1

n

(
4n

2n

)
zn = 64F3

(
1, 1,

5

4
,

7

4
;

3

2
, 2, 2;−16z

)
z

In other words 64F3

(
1, 1,

5

4
,

7

4
;

3

2
, 2, 2;−16z

)
z

= ln
(
1 +
√

1 + 16z
)

+ 2 ln

(√
2 +

√
1 +
√

1 + 16z

)
− 4 ln 2

As the hypergeometric expression seems to have cumbersome calculations and
with its complex form so the strategy used with series manipulation leads have
simpler form.
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