

www.ssmrmh.ro

LEGENDRE FORMULA IN TERMS OF THE PRIME COUNTING FUNCTION-REVISITED

By Mohammed Bouras

University Sidi Mohamed Ben Abdellah, Faculty of Science, Fès-Morocco

Abstract:

Let $\pi(x)$ be the prime counting function that gives the number of primes less than or equal to x, Legendre conjectured an approximation which was very similar to $\pi(x)$. We propose an exact representation for the Legendre formula which is valid for infinitely many naturals numbers x. Our proof relies on using the expansion Taylor series at

 $x \to \infty$ for some new representations of the Legendre formula

We present the first representation:

$$\pi(x) = \frac{1}{\sqrt[x]{x \cdot e^{-a}} - 1} + \frac{1}{2}$$

And the second representation:

$$\pi(x) = \frac{1}{\sqrt[x]{x} - 1 - \frac{a}{x}} + \frac{1}{2}$$

where the Legendre constant a = 1.08633,

Keywords: Prime number, prime counting function, Legendre formula, Taylor series.

1. Introduction

This paper concerns some representations for the Legendre formula and the Gauss function for the prime counting function $\pi(x)$.

The prime density function, the gauss conjecture, states that:

$$\pi(x) \sim \frac{x}{\ln(x)} \text{ as } x \to \infty$$
 (1)

The Legendre's conjecture regarding the $\pi(x)$ states that :

www.ssmrmh.ro

$$\pi(x) = \frac{x}{\ln(x) - a} \tag{2}$$

where the Legendre constant a = 1.08633,...

Theorem 1: we will present now the first representation and the proof for the Legendre formula

$$\pi(x) = \frac{1}{\sqrt[x]{x \cdot e^{-a}} - 1} + \frac{1}{2} \quad as \ x \to \infty$$

Proof theorem 1. Taylor series of $\pi(x)$ as $x \to \infty$

I'm required to make a Taylor series expansion of a function $\pi(x)$ at $x\to\infty$. In order to do this I introduce new variable $x=\frac1y$, so that $x\to+\infty$ is the same as $y\to0^+$. Thus I can expand $\pi\left(\frac1y\right)$ at y=0:

$$\pi\left(\frac{1}{y}\right) = \frac{1}{y(-\ln(y) - a)} - \frac{1}{2} - \frac{y(\ln(y) + a)}{12} + O(y^2)$$

Taylor expansion at infinity

$$\pi(x) = \frac{x}{\ln(x) - a} - \frac{1}{2} + \frac{\ln(x) - a}{12x} + O\left(\frac{1}{x^2}\right)$$

We have

$$\lim_{x \to \infty} \frac{\ln(x) - a}{12x} = 0$$

So that

$$\pi(x) = \frac{x}{\ln(x) - a} - \frac{1}{2} \quad as \ x \to \infty$$

Hence

$$\frac{1}{\sqrt[x]{x \cdot e^{-a}} - 1} + \frac{1}{2} = \frac{x}{\ln(x) - a}$$
 (3)

The relation (3) give the new representation of the Legendre formula for a=1.08633, ,

Theorem 2: The second representation for the Legendre formula

$$\pi(x) = \frac{1}{\sqrt[x]{x} - 1 - \frac{a}{x}} + \frac{1}{2} \quad as \ x \to \infty$$

Proof theorem 2.

We use the same method of proof 1 , Taylor series of $\pi(x)$ as $x \to \infty$ and we find:

$$\pi(x) = \frac{x}{\ln(x) - a} - \frac{\ln(x)^2}{2(a - \ln(x))^2} + O\left(\frac{1}{x^2}\right)$$

We are looking for the Taylor series of $\pi(x)$, We have :

$$\frac{\ln(x)^2}{2(a-\ln(x))^2} \sim \frac{1}{2} \quad as \ x \to \infty$$

Hence

$$\frac{1}{\sqrt[x]{x} - 1 - \frac{a}{x}} = \frac{x}{\ln(x) - a} - \frac{1}{2} \quad as \ x \to \infty$$
 (4)

2. Main results:

Looking at the expression of (1), (3) and (4) above, for a=0 we obtain a new representation for the Gauss conjecture :

$$\pi(x) \sim \frac{1}{\sqrt[x]{x}-1} + \frac{1}{2} \quad as \ x \to \infty$$

Looking at the expression of (2), (3) and (4) above, for a=1.08633, we obtain some new representations for the legendre formula :

$$\pi(x) = \frac{1}{\sqrt[x]{x \cdot e^{-a}} - 1} + \frac{1}{2}$$

And

$$\pi(x) = \frac{1}{\sqrt[x]{x}-1-\frac{a}{x}}+\frac{1}{2}$$

This completes the proof. The table shows how the functions $\frac{1}{\sqrt[x]{x}-1-\frac{a}{x}}+\frac{1}{2}$, $\frac{1}{\sqrt[x]{x.e^{-a}}-1}+\frac{1}{2}$ and the Legendre formula compart at powers of 10. (for a=1.08633, ...)

www.ssmrmh.ro

x	$\frac{1}{\sqrt[x]{x}-1-\frac{a}{x}}+\frac{1}{2}$	$\frac{1}{\sqrt[x]{x \cdot e^{-a}} - 1} + \frac{1}{2}$	$\frac{x}{\ln(x)-a}$
10	$\frac{\sqrt{x-1-\frac{1}{x}}}{7}$	8	8
10 ²	28	28	28
10 ³	17 <mark>1</mark>	17 <mark>1</mark>	17 <mark>1</mark>
10 ⁴	1230	1230	1230
10 ⁵	959 <mark>0</mark>	9590	959 <mark>0</mark>
10 ⁶	78 55 <mark>9</mark>	78 55 <mark>9</mark>	78 55 <mark>9</mark>
10 ⁷	665 25 <mark>7</mark>	665 257	665 257
10 ⁸	5 768 89 <mark>2</mark>	5 768 89 <mark>2</mark>	5 768 89 <mark>2</mark>
10 ⁹	50 924 44 <mark>1</mark>	50 924 44 <mark>1</mark>	50 924 44 <mark>1</mark>
10^{10}	455 798 46 <mark>6</mark>	455 798 46 <mark>6</mark>	455 798 46 <mark>6</mark>
10^{11}	4 125 054 14 <mark>7</mark>	4 125 054 14 <mark>7</mark>	4 125 054 14 <mark>7</mark>
10^{12}	37 672 316 30 <mark>7</mark>	37 672 316 30 <mark>7</mark>	37 672 316 30 <mark>7</mark>
10^{13}	346 653 178 88 <mark>5</mark>	346 653 178 88 <mark>5</mark>	346 653 178 88 <mark>5</mark>
10^{14}	3 210 287 167 27 <mark>6</mark>	3 210 287 167 27 <mark>6</mark>	3 210 287 167 27 <mark>6</mark>
10^{15}	29 893 179 954 46 <mark>0</mark>	29 893 179 954 46 <mark>0</mark>	29 893 179 954 46 <mark>0</mark>
10^{16}	279 680 917 170 57 <mark>5</mark>	279 680 917 170 57 <mark>5</mark>	279 680 917 170 57 <mark>5</mark>
10^{17}	2 627 594 920 124 09 <mark>0</mark>	2 627 594 920 124 090	2 627 594 920 124 09 <mark>0</mark>
10^{18}	24 776 883 130 563 10 <mark>8</mark>	24 776 883 130 563 10 <mark>8</mark>	24 776 883 130 563 10 <mark>8</mark>
10^{19}	234 396 314 864 306 897	234 396 314 864 306 897	234 396 314 864 306 897
10 ²⁰	2 223 933 570 740 069 490	2 223 933 570 740 069 490	2 223 933 570 740 069 490

Table 1

We can see above at table 1 that the new representations gives exactly the values of Legendre's formula

REFERENCES:

- [1]: R. Farhadian and R. Jakimczuk, One more disproof for the Legendre's conjecture reading the prime counting function, Notes on Number theory and Discrete Mathematics, DOI: 10.7546/nntdm. 2018.24.3.84 91
- [2]: İ. Okumuş and E. Çelik, Improved of Approximating Function Li(x), International Journal of Engineering and Applied Sciences (IJEAS), ISSN: 2394 3661, Volume 5, Issue 4, April 2018
- [3]: T. Kotnik, The prime counting function and its analytic approximations, Springer science, Slovenia (2007).

www.ssmrmh.ro

- [4]: A. E. Patkowski, A note on the Gram Series, International Mathematical Forum (2008).
- [5]: J. R. Sousa, An Exact Formula for the prime counting function, Reaserchgate, S. Paulo Brazil (2019).
- [6]: M. Hassani, On the means of the values of prime counting function, Iranian journal of mathematical sciences and informatics, Iran (2018).