

Tribute to Ion Ionescu - who discovered with 22 years before Weitzenböck the inequality:

$$
a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S
$$

By D.M.Bătinețu-Giurgiu,Neculai Stanciu-Romania

The authors of this proposed problem demonstrated in Romanian Mathematical Gazette, No. 1/2013, pp. 1-10, that the Weitzenböck's inequality must be named the lonescuWeitzenböck's inequality.

Our proof is based on: Romanian Mathematical Gazette, Vol. III (15 September 1897 - 15 August 1898), No. 2 , 15 October 1897, on page 52, Ion Ionescu, the founder of Romanian Mathematical Gazette, published the problem:*273. Prove that there is no triangle for which the inequality: $4 S \sqrt{3}>a^{2}+b^{2}+c^{2}$ be satisfied. The solution of the problem 273 , apperead in Romanian Mathematical Gazette, Vol. III (15 September 1897 - 15 August 1898), No. 12 , 15 August 1898, on pages 281, 282 and 283.

In the year 1919, Roland Weitzenböck published in Mathematische Zeitschrift, Vol. 5, No. 12, pp. 137-146 the article Uber eine Ungleichung in der Dreiecksgeometrie, where he proof that: In any triangle $A B C$, with usual notations holds the inequality: $a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} S$.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Proposed problem for RMM

If $m \in R_{+}$, then in all triangle $A B C$, with usual notations (i.e. R =circumradius, r =inradius, the lengths of the sides are a, b, c and $S=$ the area of triangle $A B C$) the following inequality holds:

$$
\frac{a^{m+2}}{(b \cdot R+c \cdot r)^{m}}+\frac{b^{m+2}}{(c \cdot R+a \cdot r)^{m}}+\frac{c^{m+2}}{(a \cdot R+b \cdot r)^{m}} \geq \frac{4 \sqrt{3}}{(R+r)^{m}} S
$$

D.M. Bătineţu-Giurgiu, "Matei Basarab" National College, Bucharest, Romania and Neculai Stanciu, "George Emil Palade" School, Buzău, Romania

Solution. We have:

$$
W=\sum_{c y c} \frac{a^{m+2}}{(b \cdot R+c \cdot r)^{m}}=\sum_{c y c} \frac{a^{2(m+1)}}{(a b R+a c r)^{m}} \geq 2^{m} \cdot \sum_{c y c} \frac{\left(a^{2}\right)^{m+1}}{\left(\left(a^{2}+b^{2}\right) R+\left(a^{2}+c^{2}\right) r\right)^{m}}
$$

and applying the inequality of J. Radon we obtain:

$$
W \geq 2^{m} \cdot \frac{\left(\sum_{\text {ciclic }} a^{2}\right)^{m+1}}{\left(\sum_{\text {ciclic }} R\left(a^{2}+b^{2}\right)+\sum_{\text {ciclic }} r\left(a^{2}+c^{2}\right)\right)^{m}}=2^{m} \cdot \frac{\left(\sum_{\text {ciclic }} a^{2}\right)^{m+1}}{2^{m}(R+r)^{m} \cdot\left(\sum_{\text {ciclic }} a^{2}\right)^{m}}=\frac{\sum_{\text {ciclic }} a^{2}}{(R+r)^{m}} .
$$

By Ionescu- Weitzenböck's inequality, i.e. $\sum_{c y c} a^{2} \geq 4 S \sqrt{3}$, hence $W \geq \frac{4 S \sqrt{3}}{(R+r)^{m}}$, and the proof is complete.

