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Abstract

We study the problem of finding the percentage of illumination of one
sphere by an another sphere in 3-dimensional space and vice versa. The
so-called law of reciprocity of light between two spheres states that the
sum of these two percents is always 100%. Two proofs are provided.

1 Introduction

Let us consider two disjoint spheres S1(O1, R1) and S2(O2, R2) in 3-dimensional
space such that R1+R2 < d; where d = |O1O2| is the central distance and R1,R2

are radii of spheres. We assume that centers of both spheres are fixed.
In the beginning, none of these spheres not emit light.
Let the first sphere start to emit light through its surface onto the second

sphere. We assume that light spreads radially through rays, in all directions.
Let the number P1,2 denote the area of the illuminated surface of the second

sphere, and let the number P2 denote the total area of the second sphere.
After some time, the first sphere stops to emit light and the second sphere

starts to emit light onto the first sphere. Similarly, the number P2,1 denotes the
area of the illuminated surface of the first sphere, and the number P1 denotes
the total area of the first sphere.
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Figure 1:

Our main result is the following theorem:

Theorem 1. (The law of reciprocity of light between two spheres )

P1,2

P2
+
P2,1

P1
= 1. (1)

Let the number p1,2% denote the percentage of illumination of the second
sphere by the first sphere, and let the number p2,1% denote the percentage of

illumination of the first sphere by the second sphere. Since p1,2 =
P1,2∗100

P2
and

p2,1 =
P2,1∗100

P1
, Theorem 1 is equivalent to the following equation

p1,2% + p2,1% = 100%. (2)

The problem of finding the percentage of a sphere that can be viewed from
an external point is a well-known [1, 2]. The problem of finding the percentage
of a sphere that can be viewed from an another sphere seems to be a less-known.

We give two proofs of Theorem 1. The similarity of triangles is used in both
proofs. The first proof relies on formula for the area of a spherical cap. The
second proof relies on the formula for the percentage of a sphere that can be
viewed from an external point [1, 2].

There is a possibility that our Theorem 1 is a new result.

2 The First Proof of Theorem 1

Let the first sphere emit light onto the second sphere, and let π be an arbitrary
plane such that contains centers of the both spheres.

In that case, let K1(O1, C) = π∩S(O1, R1) and K2(O2, A) = π∩S(O2, R2).
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Figure 2:

The circle K1(O1, C) will illuminate the arc ÂB (such that E ∈ ÂB or closer
to the K1(O1, C) ) of the circle K2(O2, A), where CA and GB are common
external tangents of those two circles.

Note that if R1 < R2, then the illuminated arc ÂB is a smaller one as it
is shown on Figure 2. If R1 > R2, then the illuminated arc is a greater one.
Finally, if R1 = R2, then the illuminated arc ÂB is half of the circumference of
the second circle K2(O2, A).

Let the plane π start to rotate around the line that passes through centers
O1 and O2 of the both spheres. Then the smaller arc ÂB of the circle K(O2, A)
describes a spherical cap of the second sphere which height is h2 = DE.

Also note that if R1 < R2, then 0 < h2 < R2 as it is shown on Figure 2. If
R1 > R2, then R2 < h2 < 2R2. Finally, if R1 = R2, then h2 = R2.

We assume that numbers R1, R2, and d are known. Let us determine the
height h2 as a function of R1, R2, and d.

Figure 3:
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From the similarity of triangles 4DO2A and 4ADO2, we have gradually

R2 − h2
R2 −R1

=
R2

d

R2(R2 −R1) = d(R2 − h2)

R2(R2 −R1) = dR2 − dh2
dh2 = dR2 +R2(R1 −R2)

h2 =
R2(d+R1 −R2)

d

From the last equation above, we obtain that

h2
R2

=
d+R1 −R2

d
. (3)

By dividing two well-known formulas [3],

P1,2 = 2R2πh2

P2 = 4R2
2π

we obtain that
P1,2

P2
=

h2
2R2

. (4)

By Eqns. (3) and (4), we conclude that

P1,2

P2
=
d+R1 −R2

2d
. (5)

By the analogy, it is not hard to prove that

P2,1

P1
=
d+R2 −R1

2d
. (6)

Finally, by adding Eqns. (5) and (6), we obtain the Eq. (1).
This completes the proof of Theorem 1.

Remark 2. The law of reciprocity holds in 2-dimensional space too.
Let K1(01, C) and K2(02, A) be two circles in an arbitrary plane π, as it

shown on Figure 2.
As it said before, the first circle K1(01, C) illuminate the arc ÂB (a smaller

one or closer to the first circle) of the second circle.

Similarly, the second circle K2(02, A) illuminate the arc ĜC (a greater one
or closer to the second circle) of the first circle.

It is readily verified that

|ÂB|
2R2π

+
|ĜC|
2R1π

= 1. (7)
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Remark 3. If we set R1 = 0, then the first sphere reduces to the center O1 and
the Eq. (5) becomes

P1,2

P2
=
d−R2

2d
. (8)

It is readily verified that the Eq. (8) is the formula for the percentage of the
second sphere S2(O2, R2) that can be viewed from the point O1 [1, 2].

3 The Second Proof of Theorem 1

If R1 = R2, then the first sphere illuminates exactly 50% of the another sphere
and vice versa. In this case, Theorem 1 easily follows.

Let us assume that R1 6= R2. Without loss of generality, let R1 < R2.
In that case the external center of similarity for spheres S1(O1, R1) and

S2(O2, R2) exists and we denote it by point O.

Figure 4:

The illuminated surface of the first sphere by the second sphere is equal to
the non-visible fraction of the first sphere from the point O. It is represented
as a shaded spherical cap of the first sphere on Figure 4.

The illuminated surface of the second sphere by the first sphere is equal to
the visible fraction of the second sphere from the point O (we assume that the
first sphere is removed, and there are no obstacles between the point O and the
second sphere). It is represented as a shaded spherical cap of the second sphere
on Figure 4.

Let PO1,1 and PO1,2 denote the visible fraction of the first and the second
sphere from the point O, respectively.

Then we have

P1,2 = PO1,2 (9)

P2,1 = 1− PO1,1. (10)

Let d1 denote |OO1| and let d2 denote |OO2|.
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By the Eq. (8), we know that

PO1,2 =
d2 −R2

2d2
(11)

PO1,1 =
d1 −R1

2d1
. (12)

See also [1, 2].
Let π be an arbitrary plane such that contains centers of the both spheres.
Again let K1(O1, C) = π ∩ S(O1, R1) , K2(O2, A) = π ∩ S(O2, R2);
where O −C −A and OA is the common external tangent for those circles.

Figure 5:

By similarity of triangles 4OO1C and 4OO2A , we have

R1

d1
=
R2

d2
= k. (13)

By Eqns. (11), (12), and (13) it follows that

PO1,2 =
1− k

2
= PO1,1.

By the last equation above, we obtain that

PO1,2 = PO1,1. (14)

Finally, by Eqns. (9), (10), and (14), it follows that

P1,2 + P2,1 = PO1,2 + (1− PO1,1) (by Eqns. (9) and (10))

= PO1,1 + (1− PO1,1) ( by the Eq. (14))

= 1.

The last equation above completes the second proof of Theorem 1.
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