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ABSTRACT. In this paper we present some certain Lalescu type limits with
Fibonacci and Lucas numbers related to the golden ratio result.

Fibonacci sequence: (Fy,)n>0,Fo =0,F1 =1, Fy40 = Fppq1 + F,,Vn € N,

Lucas sequence: (Ly)n>0,Lo =2,L1 =1,Lp49 = Lpy1 + Ly, Vn e N
Theorem 1.

If (ap)p>1 such that lim —2FL =

a € Rj_, (Ln)nZO :Log=2,L1=1,Lyy2=Ly1+Ly
n—00 Ny,

n—oo

m— 1 raa\ m
and m € N*| then lim ( m("+1\>/an+1Ln+1 - m’\l/anLn) S = ( )

m\ e
Proof. We have:
. VanLy, . ) GnLy an—i—an—H n"
lim — = lim = lim . =
n—00 n n—00 nn n—00 (n =+ 1)"+1 anLy
n n+1 Ln
() )
n—oo\ na, \n+ 1 L,
1 n+1 n+1 5+1 1—+5
=a- ~lim%=%7wherea:f+ B = \[,Ln:a"—i-ﬂ"
e n—oo Q"+ [ e 2 2

mn+y) /o T
/ On+1Ln+41
We denote u,, = ~ n

. LU, — 1
= and we have lim u, =1,s0 lim =1 and
mn/anLn

n— o0 n—0o0 11N Uy

1 1
lim «” = lim (a"+1L"+1- 1 )E = lim (a""'l .L"'H. n+l _n )m
n—oo ' n—oo anLy, "+ a1 L1 n—oo\ na, L, 7t fans1Lns1 7+ 1

3
3

:(a~a-i-1)7/:e
aq

Hence lim (m(““\)/anJranJrl— ””Q/conLn)nmw:1 = lim ("Y/ anLn-n%~(un—1)) =
n—r oo

n—oo

mr oy — 1 S Tn uy — 1
= 1 (m,”/ L -n m .2 -1 >:1' ( n-n Yn 1 n):
nin;o Unfom 10 In Unp, 1 tn 7L1—>H<;lo n% In Up n
) YanLp\ v Up — 1 " aa\ w 1 1 /aa\w
= lim ( ) . “Inu, :(—) -1-lnem = (—)
n— oo n lnun e m\ e



».M. BATINETU—GIURGIU7 MIHALY BENCZE, DANIEL SITARU, NECULAI STANCIU - ROMANIA

Theorem 2. If (ay)n>1 and (b,),>1 are positive real sequences such that
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Theorem 3. If (an)n>1 and (b,)n>1 are positive real sequences such that
b
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where (L, )n>0 is Lucas sequence i.e. (Lp)n>0,Lo =2,L1 =1,
Ln+2 = Ln+1 + L,,¥Yn € N.
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