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Abstract. In this paper we present some certain Lalescu type limits with

Fibonacci and Lucas numbers related to the golden ratio result.

Fibonacci sequence: (Fn)n≥0, F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn,∀n ∈ N.
Lucas sequence: (Ln)n≥0, L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln,∀n ∈ N.
Theorem 1.

If (an)n≥1 such that lim
n→∞

an+1

nan
= a ∈ R∗+, (Ln)n≥0 : L0 = 2, L1 = 1, Ln+2 = Ln+1+Ln

and m ∈ N∗, then lim
n→∞

( m(n+1)
√
an+1Ln+1 − mn

√
anLn) · n

m−1
m =

1

m

(aα
e

) 1
m

Proof. We have:

lim
n→∞

n
√
anLn

n
= lim

n→∞
n

√
anLn

nn
= lim

n→∞

an+1Ln+1

(n+ 1)n+1
· nn

anLn
=

= lim
n→∞

(an+1

nan

( n

n+ 1

)n+1Ln+1

Ln

)
=

= a · 1

e
· lim
n→∞

αn+1 + βn+1

αn + βn
=
aα

e
, where α =

√
5 + 1

2
, β =

1−
√

5

2
, Ln = αn + βn

We denote un =
m(n+1)

√
an+1Ln+1

mn
√
anLn

and we have lim
n→∞

un = 1, so lim
n→∞

un − 1

lnun
= 1 and

lim
n→∞

unn = lim
n→∞

(an+1Ln+1

anLn
· 1
n+1
√
an+1Ln+1

) 1
m

= lim
n→∞

(an+1

nan
·Ln+1

Ln
· n+ 1
n+1
√
an+1Ln+1

· n

n+ 1

) 1
m

=

=
(
a · α · e

aα
· 1
) 1
m

= e
1
m .

Hence lim
n→∞

( m(n+1)
√
an+1Ln+1− mn

√
anLn)n

m−1
m = lim

n→∞
( mn
√
anLn·n

m−1
m ·(un−1)) =

= lim
n→∞

(
mn
√
anLn · n

m−1
m · un − 1

lnun
· lnun

)
= lim

n→∞

( mn
√
anLn

n
1
m

· un − 1

lnun
· lnunn

)
=

= lim
n→∞

(( n
√
anLn

n

) 1
m · un − 1

lnun
· lnunn

)
=
(aα
e

) 1
m · 1 · ln e 1

m =
1

m

(aα
e

) 1
m

�
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2D.M. BĂTINEŢU-GIURGIU, MIHÁLY BENCZE, DANIEL SITARU, NECULAI STANCIU - ROMANIA

Theorem 2. If (an)n≥1 and (bn)n≥1 are positive real sequences such that

lim
n→∞

an+1

nran
= a ∈ R∗+ and lim

n→∞

bn+1

ns+1bn
= b ∈ R∗+ where r, s ∈ R+ then

lim
n→∞

( n
√
an · n+1

√
Fn+1

nr+s
−

n+1
√
an+1 · n

√
Fn

(n+ 1)r+s

)
n
√
bn =

abαs

er+s+1

Proof. We have:

lim
n→∞

n
√
an
nr

= lim
n→∞

n

√
an
nrn

= lim
n→∞

an+1

(n+ 1)r(n+1)
·n

rn

an
= lim

n→∞

an+1

nran

( n

n+ 1

)r(n+1)

=
a

er

and analogously lim
n→∞

n
√
bn

ns+1
=

b

es+1
. Also we have lim

n→∞
n
√
Fn = lim

n→∞

Fn+1

Fn
=

= lim
n→∞

αn+1 − βn+1

αn − βn
= α, where α =

√
5 + 1

2
, β =

1−
√

5

2
, Fn =

1√
5

(αn − βn)

We denote un =
n
√
an · n+1

√
Fn+1

nr+s
· (n+ 1)n+s

n+1
√
an+1 · n

√
Fn

and we have lim
n→∞

un = 1, so

lim
n→∞

un − 1

lnun
= 1 and lim

n→∞
unn = lim

n→∞

an
an+1

· Fn+1

Fn
·

n+1
√
an+1

n+1
√
Fn+1

·
(n+ 1

n

)n(r+s)

=

= er+s · α · 1

α
· lim
n→∞

ann
r

an+1
·
n+1
√
an+1

(n+ 1)r
·
(n+ 1

n

)r
= er+s · 1

a
· a
er

= es

Hence lim
n→∞

( n
√
an · n+1

√
Fn+1

nr+s
−

n+1
√
an+1 · n

√
Fn

(n+ 1)r+s

)
n
√
bn =

= lim
n→∞

( n
√
bn

ns+1
·
n+1
√
an+1

(n+ 1)r
· n
√
Fn·

un − 1

lnun
·lnunn·

( n

n+ 1

)s)
=

b

es+1
· a
er
·α·1·ln es =

abαs

er+s+1
.

�

Theorem 3. If (an)n≥1 and (bn)n≥1 are positive real sequences such that

lim
n→∞

an+1

nran
= a ∈ R∗+ and lim

n→∞

bn+1

ns+1bn
= b ∈ R∗+, where r, s ∈ R+, then

lim
n→∞

( n
√
an · n+1

√
Ln+1

nr+s
−

n+1
√
an+1 · n

√
Ln

(n+ 1)r+s

)
n
√
bn =

abαs

er+s+1
,

where (Ln)n≥0 is Lucas sequence i.e. (Ln)n≥0, L0 = 2, L1 = 1,
Ln+2 = Ln+1 + Ln,∀n ∈ N.

Proof. We have:

lim
n→∞

n
√
an
nr

= lim
n→∞

n

√
an
nrn

= lim
n→∞

an+1

(n+ 1)r(n+1)
·n

rn

an
= lim

n→∞

an+1

nran

( n

n+ 1

)r(n+1)

=
a

er

and analogously lim
n→∞

n
√
bn

ns+1
=

b

es+1
. Also we have lim

n→∞
n
√
Ln = lim

n→∞

Ln+1

Ln
=

= lim
n→∞

αn+1 + βn+1

αn + βn
= α, where α =

√
5 + 1

2
, β =

1−
√

5

2
, Ln = αn + βn.

We denote un =
n
√
an · n+1

√
Ln+1

nr+s
· (n+ 1)n+s

n+1
√
an+1 · n

√
Ln

and we have lim
n→∞

un = 1, so
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lim
n→∞

un − 1

lnun
= 1 and lim

n→∞
unn = lim

n→∞

an
an+1

· Ln+1

Ln
·

n+1
√
an+1

n+1
√
Ln+1

·
(n+ 1

n

)n(r+s)

=

= er+s · α · 1

α
· lim
n→∞

ann
r

an+1
·
n+1
√
an+1

(n+ 1)r
·
(n+ 1

n

)r
= er+s · 1

a
· a
er

= es

Hence lim
n→∞

( n
√
an · n+1

√
Ln+1

nr+s
−

n+1
√
an+1 · n

√
Ln

(n+ 1)r+s

)
n
√
bn =

= lim
n→∞

( n
√
bn

ns+1
·
n+1
√
an+1

(n+ 1)r
· n
√
Ln·

un − 1

lnun
·lnunn·

( n

n+ 1

)s)
=

b

es+1
· a
er
·α·1·ln es =

abαs

er+s+1
.

�

Theroem 4.

lim
n→∞

(
lim
n→∞

(
(Γ(x+ 2))

Fn
(x+1)Fn+1 − (Γ(x+ 1))

Fn
xFn+1

)
x
Fn−1
Fn+1

)
=

1

α · e 1
α

.

Proof.

We denote un =
Fn

Fn+1
, we have lim

n→∞
un = lim

n→∞

αn − βn

αn+1 − βn+1
=

1

α
, where

α =

√
5 + 1

2
, β =

1−
√

5

2
, Fn =

1√
5

(αn − βn). Also we have

lim
n→∞

(Γ(x+ 1))
1
x

x
= lim

n→∞

(Γ(n+ 1))
1
n

n
= lim

n→∞

n
√
n!

n
=

1

e

We denote v(x) =
(Γ(x+ 2))

Fn
(x+1)Fn+1

(Γ(x+ 1))
Fn

xFn+1

=

(
(Γ(x+ 2))

1
x+1

(Γ(x+ 1))
1
x

)un

, we have

lim
n→∞

v(x) = 1, so lim
n→∞

v(x)− 1

ln v(x)
= 1 and

lim
n→∞

(v(x))x = lim
n→∞

(Γ(x+ 2)

Γ(x+ 1)
· 1

(Γ(x+ 2))
1
x+1

)un
= lim

n→∞

( x+ 1

(Γ(x+ 2))
1
x+1

)un
= eun

therefore

lim
n→∞

( lim
n→∞

(v(x))x) = e
1
α . Hence: lim

n→∞

(
lim
n→∞

(
(Γ(x+2))

Fn
(x+1)Fn+1−(Γ(x+1))

Fn
xFn+1

)
x
Fn−1
Fn+1 =

= lim
n→∞

(
lim

n→∞

(
(Γ(x+ 2))

un
x+1 − (Γ(x+ 1))

un
x

)
x
Fn−1
Fn+1

)
=

= lim
n→∞

(
lim
n→∞

(
(Γ(x+ 2))

un
x+1 − (Γ(x+ 1))

un
x

)
x
Fn+1−Fn
Fn+1

)
=

= lim
n→∞

(
lim
n→∞

(
(Γ(x+ 1))

un
x

)
(v(x)− 1)x1−un

)
=

= lim
n→∞

(
lim

n→∞

(
(Γ(x+ 1))

un
x

)v(x)− 1

ln v(x)
x1−un ln v(x)

)
=

= lim
n→∞

(
lim
n→∞

( (Γ(x+ 1))
1
x

x

)un v(x)− 1

ln v(x)
ln(v(x))x

)
=

= lim
n→∞

((1

e

)un
· 1 · ln eun

)
=
(1

e

) 1
α

ln e
1
α =

1

α · e 1
α

�
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Theorem 5.

lim
n→∞

(
lim

n→∞

(
(Γ(x+ 2))

Ln
(x+1)Ln+1 − (Γ(x+ 1))

Ln
xLn+1

)
x
Ln−1
Ln+1

)
=

1

α · e 1
α

Proof.

We denote un =
Ln

Ln+1
, we have lim

n→∞
un = lim

n→∞

αn + βn

αn+1 + βn+1
=

1

α
, where

α =

√
5 + 1

2
, β =

1−
√

5

2
, Ln = αn + βn. Also we have

lim
n→∞

(Γ(x+ 1))
1
x

x
= lim

n→∞

(Γ(n+ 1))
1
n

n
= lim

n→∞

n
√
n!

n
=

1

e
.

We denote v(x) =
(Γ(x+ 2))

Ln
(x+1)Ln+1

(Γ(x+ 1))
Ln

xLn+1

=
( (Γ(x+ 2))

1
x+1

(Γ(x+ 1))
1
x

)un
, we have

lim
n→∞

v(x) = 1, so lim
n→∞

v(x)− 1

ln v(x)
= 1 and

lim
n→∞

(v(x))x = lim
n→∞

(Γ(x+ 2)

Γ(x+ 1)
· 1

(Γ(x+ 2))
1
x+1

)un
= lim

n→∞

( x+ 1

(Γ(x+ 2))
1
x+1

)un
= eun

therefore

lim
n→∞

( lim
n→∞

(v(x))x) = e
1
α . Hence:

lim
n→∞

(
lim
n→∞

(
(Γ(x+ 2))

Ln
(x+1)Ln+1 − (Γ(x+ 1))

Ln
xLn+1

)
x
Ln−1
Ln+1

)
=

= lim
n→∞

(
lim

n→∞

(
(Γ(x+ 2))

un
x+1 − (Γ(x+ 1))

un
x

)
x
Ln−1
Ln+1

)
=

= lim
n→∞

(
lim

n→∞
(Γ(x+ 2))

un
x+1 − (Γ(x+ 1))

un
x

)
x
Ln−1
Ln+1

)
=

= lim
n→∞

(
lim
n→∞

(
(Γ(x+ 2))

un
x+1 − (Γ(x+ 1))

un
x

)
x
Ln+1−Ln
Ln+1

)
=

= lim
n→∞

(
lim
n→∞

(
(Γ(x+ 1))

un
x

)
(v(x)− 1)x1−un

)
=

= lim
n→∞

(
lim

n→∞

(
(Γ(x+ 1))

un
x

)v(x)− 1

ln v(x)
x1−un ln v(x)

)
=

= lim
n→∞

(
lim
n→∞

( (Γ(x+ 1))
1
x

x

)un v(x)− 1

ln v(x)
ln(v(x))x

)
=

= lim
n→∞

((1

e

)un
· 1 · ln eun

)
=
(1

e

) 1
α

ln e
1
α =

1

αe
1
α

�

Theorem 6.

lim
n→∞

(
lim
n→∞

(f(x+ 1))
Fn

(x+1)Fn+1 − (f(x))
Fn

xFn+1

)
x
Fn−1
Fn+1

)
=
(a
e

) 1
α 1

α
(1 + ln a)

where f : R∗+ → R∗+ is a function which verify that lim
n→∞

f(x+ 1)

xf(x)
= a ∈ R∗+
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Proof.

We denote un =
Fn

Fn+1
, we have lim

n→∞
un = lim

n→∞

αn − βn

αn+1 − βn+1
=

1

α
, where

α =

√
5 + 1

2
, β =

1−
√

5

2
, Fn =

1√
5

(αn − βn). Also we have

lim
n→∞

(f(x))
1
x

x
= lim

n→∞

(f(n))
1
n

n
= lim

n→∞
n

√
f(n)

nn
= lim

n→∞

f(n+ 1)

(n+ 1)n+1
· n

n

f(n)
=

= lim
n→∞

f(n+ 1)

nf(n)

( n

n+ 1

)n+1

=
a

e

We denote v(x) =
(f(x+ 1))

Fn
(x+1)Fn+1

(f(x))
Fn

xFn+1

=
( (f(x+ 1))

1
x+1

(f(x))
1
x

)un
we have lim

n→∞
v(x) = 1, so

lim
n→∞

v(x)− 1

ln v(x)
= 1 and lim

n→∞
(v(x))x = lim

n→∞

(f(x+ 1)

f(x)
· 1

(f(x+ 1))
1
x+1

)un
=

= lim
n→∞

( x+ 1

(f(x+ 1))
1
x+1

)un
= (ae)un

therefore

lim
n→∞

( lim
n→∞

(v(x))x) = (ae)
1
α . Hence:

lim
n→∞

(
lim
n→∞

(
(f(x+ 1))

Fn
(x+1)Fn+1 − (f(x))

Fn
xFn+1

)
x
Fn−1
Fn+1

)
=

= lim
n→∞

(
lim
n→∞

(
(f(x+ 1))

un
x+1 − (f(x))

un
x

)
x
Fn−1
Fn+1

)
=

= lim
n→∞

(
lim
n→∞

(
(f(x+ 1))

un
x+1 − (f(x))

un
x

)
x
Fn+1−Fn
Fn+1

)
=

= lim
n→∞

(
lim
n→∞

(
(f(x))

un
x

)
(v(x)− 1)x1−un

)
=

= lim
n→∞

(
lim
n→∞

(
(f(x))

un
x

)v(x)− 1

ln v(x)
x1−un ln v(x)

)
=

= lim
n→∞

(
lim

n→∞

( (f(x))
1
x

x

)un v(x)− 1

ln v(x)
ln(v(x))x

)
=

= lim
n→∞

((a
e

)un
· 1 · ln(ae)un

)
=
(a
e

) 1
α

ln(ae)
1
α =

=
(a
e

) 1
α 1

α
(1 + ln a)

�

Theorem 7.

lim
n→∞

(
lim

n→∞

(
(f(x+ 1))

Ln
(x+1)Fn+1 − (f(x))

Ln
xLn+1

)
x
Ln−1
Ln+1

)
=
(a
e

) 1
α 1

α
(1 + ln a)

where f : R∗+ → R∗+ is a function which verify that lim
n→∞

f(x+ 1)

xf(x)
= a ∈ R∗+
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Proof.

We denote un =
Ln

Ln+1
, we have lim

n→∞
un = lim

n→∞

αn + βn

αn+1 + βn+1
=

1

α
, where

α =

√
5− 1

2
, β =

1−
√

5

2
, Ln = αn + βn. Also we have

lim
n→∞

(F (x))
1
x

x
= lim

n→∞

(f(n))
1
n

n
= lim

n→∞
n

√
f(n)

nn
= lim

n→∞

f(n+ 1)

(n+ 1)n+1
· n

n

f(n)
=

= lim
n→∞

f(n+ 1)

nf(n)

( n

n+ 1

)n+1

=
a

e

We denote v(x) =
(f(x+ 1))

Ln
(x+1)Fn+1

(f(x))
Ln

xLn+1

=
( (f(x+ 1))

1
x+1

(f(x))
1
x

)un
, we have

lim
n→∞

v(x) = 1, so lim
n→∞

v(x)− 1

ln v(x)
= 1 and lim

n→∞
(v(x))x = lim

n→∞

(f(x+ 1)

f(x)
· 1

(f(x+ 1))
1
x+1

)un
=

= lim
n→∞

( x+ 1

(f(x+ 1))
1
x+1

)un
= (ae)un , therefore lim

n→∞
( lim
n→∞

(v(x))x) = (ae)
1
α

Hence: lim
n→∞

(
lim
n→∞

(
(f(x+ 1))

Ln
(x+1)Ln+1 − (f(x))

Ln
xLn+1

)
x
Ln−1
Ln+1

)
=

= lim
n→∞

(
lim
n→∞

(
(f(x+ 1))

un
x+1 − (f(x))

un
x

)
x
Ln−1
Ln+1

)
=

= lim
n→∞

(
lim

n→∞

(
(f(x+ 1))

un
x+1 − (f(x))

un
x

)
x
Ln+1−Ln
Ln+1

)
=

= lim
n→∞

(
lim
n→∞

(
(f(x))

un
x

)
(v(x)− 1)x1−un

)
=

= lim
n→∞

(
lim
n→∞

(
(f(x))

un
x

)v(x)− 1

ln v(x)
x1−un ln v(x)

)
=

= lim
n→∞

(
lim

n→∞

( (f(x))
1
x

x

)un v(x)− 1

ln v(x)
ln(v(x))x

)
=

= lim
n→∞

((a
e

)un
· 1 · ln(ae)un

)
=
(a
e

) 1
α

ln(ae)
1
α =

(a
e

) 1
α 1

α
(1 + ln a).

�

Theorem 8.

lim
n→∞

(
lim
n→∞

(
(Γ(x+ 2))

F2
n+1

(x+1)F2n+1 − (Γ(x+ 1))
F2
n+1

xF2n+1

)
x

F2
n

F2n+1

)
=

1

α
√

5e
1

α
√

5

Proof.

We denote un =
F 2
n+1

F2n+1
, we have lim

n→∞
un = lim

n→∞

1√
5

(αn+1 − βn+1)2

α2n+1 − β2n+1
=

1

α
√

5

where α =

√
5 + 1

2
, β =

1−
√

5

2
, Fn =

1√
5

(αn − βn). Also, we have:

lim
n→∞

(Γ(x+ 1))
1
x

x
= lim

n→∞

(Γ(n+ 1))
1
n

n
= lim

n→∞

n
√
n!

n
=

1

e

We denote v(x) =
( (Γ(x+ 2))

1
x+1

(Γ(x+ 1))
1
x

)un
, we have lim

n→∞
v(x) = 1, so lim

n→∞

v(x)− 1

ln v(x)
= 1 and



NEW LIMITS OF LALESCU TYPE WITH FIBONACCI AND LUCAS SEQUENCES 7

lim
n→∞

(v(x))x = lim
n→∞

(Γ(x+ 2)

Γ(x+ 1)
· 1

(Γ(x+ 2))
1
x+1

)un
= lim

n→∞

( x+ 1

(Γ(x+ 2))
1
x+1

)un
= eun

therefore lim
n→∞

( lim
n→∞

(v(x))x) = e
1

α
√

5 . Hence:

lim
n→∞

(
lim

n→∞

(
(Γ(x+ 2))

F2
n+1

(x+1)F2n+1 − (Γ(x+ 1))
F2
n+1

xF2n+1

)
x

F2
n

F2n+1

)
= lim

n→∞

(
lim

n→∞

(
(Γ(x+ 2))

un
x+1 − (Γ(x+ 1))

un
x

)
x

F2
n

F2n+1

)
=

= lim
n→∞

(
lim
n→∞

(
(Γ(x+ 2))

un
x+1 − (Γ(x+ 1))

un
x

)
x
F2n+1−F

2
n+1

F2n+1

)
=

= lim
n→∞

(
lim
n→∞

(
(Γ(x+ 1))

un
x

)
(v(x)− 1)x1−un

)
=

= lim
n→∞

(
lim

n→∞

(
(Γ(x+ 1))

un
x

)v(x)− 1

ln v(x)
x1−un ln v(x)

)
=

= lim
n→∞

(
lim
n→∞

( (Γ(x+ 1))
1
x

x

)un v(x)− 1

ln v(x)
ln(v(x))x

)
=

= lim
n→∞

((1

e

)un
· 1 · ln eun

)
=
(1

e

) 1
α
√

5
ln e

1
α
√

5 =
1

α
√

5e
1

α
√

5

�

Theorem 9. Let the sequence (xn)n≥0 given by the recurrence
(xn)n≥0, x0 = 0, x1 = 1, xn+2 = (2n+ 5)xn+1 − (n2 − 4n+ 3)xn,∀n ∈ N. Then

lim
n→∞

( n+1
√
Ln+1xn+1 − n

√
Lnxn) =

α

e

Proof. We have xn+2 = (2n+ 5)xn+1 − (n2 + 4n+ 3)xn ⇔
xn+2 − (n+ 2)xn+1 = (n+ 3)(xn+1 − (n+ 1)xn)⇔ yn+1 = (n+ 3)yn where

yn = xn+1 − (n+ 1)xn, y0 = x1 − x0 = 1, y1 = x2 − 2x1 = 5− 2 · 1 = 3. Therefore

yk+1 = (k + 3)yk,∀k ∈ N, so

n∏
k=0

yk+1 =

n∏
k=0

(k + 3) ·
n∏

k=0

yk which yields

succesively to yn+1 = y0

n∏
k=0

(k + 3) =
(n+ 3)!

2
or yn =

(n+ 2)!

2
. Then we have

successively that xk+1 − (k + 1)xk = yk =
(k + 2)!

2
⇔

xk+1

(k + 1)!
− xk
k!

=
k + 2

2
=
k

2
+ 1⇔

n∑
k=0

xk+1

(k + 1)!
−

n∑
k=0

xk
k!

= n+ 1 +
1

2

n∑
k=0

k =

= n+ 1 +
n(n+ 1)

4
=

(n+ 1)(n+ 4)

4
⇔ xn+1

(n+ 1)!
=

(n+ 1)(n+ 4)

4
⇔

⇔ xn+1 =
(n+ 1)(n+ 4)

4
(n+ 1)!⇔ xn =

n(n+ 3)

4
· n!,∀n ∈ N∗. We have

lim
n→∞

Ln

Ln+1
= lim

n→∞

αn + βn

αn+1 + βn+1
=

1

α
, where α =

√
5 + 1

2
, β =

1−
√

5

2
, Ln = αn+βn

Now we obtain that lim
n→∞

n
√
Lnxn
n

= lim
n→∞

n

√
Lnxn
nn

= lim
n→∞

Ln+1xn+1

(n+ 1)n+1
· nn

Lnxn
=
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= lim
n→∞

Ln+1

Ln
· xn+1

(n+ 1)xn
·
( n

n+ 1

)n
=

=
α

e
lim
n→∞

xn+1

(n+ 1)xn
=
α

e
lim

n→∞

(n+ 1)(n+ 4)(n+ 1)!

4
· 4

(n+ 1)2(n+ 3)n!
=
α

e
·1 =

α

e
.

We denote un =
n+1
√
Ln+1xn+1

n
√
Lnxn

and we have lim
n→∞

un = 1, so lim
n→∞

un − 1

lnun
= 1

respectively lim
n→∞

unn = lim
n→∞

Ln+1xn+1

Lnxn
· 1
n+1
√
Ln+1xn+1

=

= lim
n→∞

Ln+1

Ln
· lim
n→∞

xn+1

(n+ 1)xn
· lim
n→∞

n+ 1
n+1
√
Ln+1xn+1

= α · 1 · e
α

= e.

Hence, lim
n→∞

( n+1
√
Ln+1xn+1 − n

√
Lnxn) = lim

n→∞

n
√
Lnxn
n

· un − 1

lnun
· lnunn =

=
α

e
· 1 · ln e =

α

e
�

Theorem 10. Let the sequence (xn)n≥0 given by the recurrence
(xn)n≥0, x0 = 0, x1 = 1, xn+2 = (2n+ 5)xn+1 − (n2 + 4n+ 3)xn,∀n ∈ N. Then

lim
n→∞

( n+1
√
Fn+1xn+1 − n

√
Fnxn) =

α

e
.

Proof. We have xn+2 = (2n+ 5)xn+1 − (n2 + 4n+ 3)xn ⇔
xn+2 − (n+ 2)xn+1 = (n+ 3)(xn+1 − (n+ 1)xn)⇔ yn+1 = (n+ 3)yn, where

yn = xn+1 − (n+ 1)xn, y0 = x1 − x0 = 1, y1 = x2 − 2x1 = 5− 2 · 1 = 3. Therefore

yk+1 = (k+3)yk,∀k ∈ N, so

n∏
k=0

yk+1 =

n∏
k=0

(k+3) ·
n∏

k=0

yk which yields successively

to yn+1 = y0

n∏
k=0

(k+3) =
(n+ 3)!

2
or yn =

(n+ 2)!

2
. Then we have successively that

xk+1 − (k + 1)xk = yk =
(k + 2)!

2
⇔

xk+1

(k + 1)!
− xk
k!

=
k + 2

2
=
k

2
+ 1⇔

n∑
k=0

xk+1

(k + 1)!
−

n∑
k=0

xk
k!

= n+ 1 +
1

2

n∑
k=0

k =

= n+ 1 +
n(n+ 1)

4
=

(n+ 1)(n+ 4)

4
⇔ xn+1

(n+ 1)!
=

(n+ 1)(n+ 4)

4
⇔

⇔ xn+1 =
(n+ 1)(n+ 4)

4
(n+ 1)!⇔ xn =

n(n+ 3)

4
· n!,∀n ∈ N∗. We have

lim
n→∞

Fn

Fn+1
= lim

n→∞

αn − βn

αn+1 − βn+1
=

1

α
, where α =

√
5 + 1

2
, β =

1−
√

5

2
,

Fn =
1√
5

. Now we obtain that

lim
n→∞

n
√
Fnxn
n

= lim
n→∞

n

√
Fnxn
nn

= lim
n→∞

Fn+1xn+1

(n+ 1)n+1
· n

n

Fnxn
= lim

n→∞

Fn+1

Fn
· xn+1

(n+ 1)xn
·
( n

n+ 1

)n
=

=
α

e
lim
n→∞

xn+1

(n+ 1)xn
=
α

e
lim

n→∞

(n+ 1)(n+ 4)(n+ 1)!

4
· 4

(n+ 1)2(n+ 3)n!
=
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=
α

e
· 1 =

α

e
. We denote un =

n+1
√
Fn+1xn+1

n
√
Fnxn

and we have lim
n→∞

un = 1, so

lim
n→∞

un − 1

lnun
= 1 respectively

lim
n→∞

unn = lim
n→∞

Fn+1xn+1

Fnxn
· 1
n+1
√
Fn+1xn+1

=

= lim
n→∞

Fn+1

Fn
· lim
n→∞

xn+1

(n+ 1)xn
· lim
n→∞

n+ 1
n+1
√
Ln+1xn+1

== α · 1 · e
α

= e

Hence, lim
n→∞

( n+1
√
Fn+1xn+1 − n

√
Fnxn) = lim

n→∞

n
√
Fnxn
n

· un − 1

lnun
· lnunn =

=
α

e
· 1 · ln e =

α

e
�

Theorem 11. Let the sequence (xn)n≥0 given by the recurrence
(xn)n≥0, x0 = 0, x1 = 1, xn+2 = (2n+ 5)xn+1 − (n2 + 4n+ 3)xn,∀n ∈ N. Then:

lim
n→∞

( n+1
√
Fn+1Ln+1xn+1 − n

√
FnLnxn) =

α2

e
.

Proof. We have xn+2 = (2n+ 5)xn+1 − (n2 + 4n+ 3)xn ⇔
xn+2 − (n+ 2)xn+1 = (n+ 3)(xn+1 − (n+ 1)xn)⇔ yn+1 = (n+ 3)yn

where yn = xn+1 − (n+ 1)xn, y0 = x1 − x0 = 1, y1 = x2 − 2x1 = 5− 2 · 1 = 3

Therefore, yk+1 = (k + 3)yk,∀k ∈ N, so

n∏
k=0

yk+1 =

n∏
k=0

(k + 3) ·
n∏

k=0

yk

which yields succesively to yn+1 = y0

n∏
k=0

(k + 3) =
(n+ 3)!

2
or yn =

(n+ 2)!

2

Then we have successively that xk+1 − (k + 1)xk = yk =
(k + 2)!

2
⇔

xk+1

(k + 1)!
− xk
k!

=
k + 2

2
=
k

2
+ 1⇔

n∑
k=0

xk+1

(k + 1)!
−

n∑
k=0

xk
k!

= n+ 1 +
1

2

n∑
k=0

k =

= n+ 1 +
n(n+ 1)

4
=

(n+ 1)(n+ 4)

4
⇔ xn+1

(n+ 1)!
=

(n+ 1)(n+ 4)

4
⇔

⇔ xn+1 =
(n+ 1)(n+ 4)

4
(n+ 1)!⇔ xn =

n(n+ 3)

4
· n!,∀n ∈ N∗

We have lim
n→∞

Fn

Fn+1
= lim

n→∞

αn − βn

αn+1 − βn+1
=

1

α
and

lim
n→∞

Ln

Ln+1
= lim

n→∞

αn + βn

αn+1 + βn+1
=

1

α
, where α =

√
5 + 1

2
, β =

1−
√

5

2

Fn =
1√
5

(αn − βn), Ln = αn + βn. Now we obtain that

lim
n→∞

n
√
FnLnxn
n

= lim
n→∞

n

√
FnLnxn
nn

= lim
n→∞

Fn+1Ln+1xn+1

(n+ 1)n+1
· nn

FnLnxn
=

= lim
n→∞

Fn+1

Fn
· Ln+1

Ln
· xn+1

(n+ 1)xn
·
( n

n+ 1

)n
=
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=
α2

e
lim

n→∞

xn+1

(n+ 1)xn
=
α2

e
lim

n→∞

(n+ 1)(n+ 4)(n+ 1)!

4
· 4

(n+ 1)2(n+ 3)n!
=
α2

e
·1 =

α2

e

We denote un =
n+1
√
Fn+1Ln+1xn+1

n
√
FnLnxn

and we have lim
n→∞

un = 1, so lim
n→∞

un − 1

lnun
= 1

respectively lim
n→∞

unn = lim
n→∞

Fn+1Ln+1xn+1

FnLnxn
· 1
n+1
√
Fn+1Ln+1xn+1

=

= lim
n→∞

Fn+1

Fn
· Ln+1

Ln
lim
n→∞

xn+1

(n+ 1)xn
· lim
n→∞

n+ 1
n+1
√
Fn+1Ln+1xn+1

= α2 · 1 · e
α2

= e

Hence, lim
n→∞

( n+1
√
Fn+1Ln+1xn+1− n

√
FnLnxn) = lim

n→∞

n
√
FnLnxn
n

· un − 1

lnun
· lnunn =

=
α2

e
· 1 · ln e =

α2

e
�
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[17] D.M. Bătineţu -Giurgiu, D. Sitaru, N. Stanciu, Two classes of Lalescu’s sequences, Octogon
Mathematical Magazine, Vol. 27, No. 2, October, 2019, 805-813.
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[25] D.M. Bătineţu -Giurgiu, N. Stanciu, Several results of some classes of sequences, The Pen-

tagon, Vol. 73, No. 2, Spring, 2014, 10-24.
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