Solution attempt by Long Huynh Huu (@erugli) for Dan Sitaru’s inequality which
was posted on Twitter by Nassim Taleb (@nntaleb) [1].
October 18 2020

1 Schur convexity

A classical application of Schur convexity goes as follows: If a sequence of positive
real numbers x, y, z majorises another such sequence 4, b, ¢, then
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In this document I want to prove an extension of this result to integrals.

2 Extension to integrals
Theorem 1

Let F : I — R be a convex Lipschitz function on an open interval I C R.
Let u,v : [a,b] — I be monotonically increasing Lipschitz functions on the interval [a, b],
such that
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f u(t) dt = f o(t) dt 2)
f u(t) dt < f o) dt (x € [a,b]) (3)
Then
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f F(u(t) dt > f F (o(t)) dt (4)

Proof. Letn > 0 be a natural number. Partition (a, b] into # intervals I; = a + (b —
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a)- (17, %] with i € [n]. We get two increasing sequences



= f u(®)dt (i € [n])
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v; = f oB)dt (€ [n])
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The conditions of Theorem 1 imply that the u; majorise the v;, so by Schur Majori-
sation Inequality (Problem 13.4 of [2]).
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The theorem follows from proving the following limit for u (and the analogous
version for v):
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Letm(l;) =a+ (b- a)zé—;l be the midpoint of I;. Let L > 0 be the Lipschitz constant
for u and let K be the Lipschitz constant for F.
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Inequalities (5) and (7) are due to Lipschitz continuity of u, and F o u respectively.
Inequality (5) implies (6). Inequalities (6) and (7) together imply
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3 Simplifying the condition
Corollary 1

Let F : I — R be a convex Lipschitz function on an open interval I C R,.
Let f,g : [a,b] — I be monotonically increasing Lipschitz functions on the interval [a, b],
such that

fx)g(x) >0 (a<x<b) 9)
[ f(s)ds
L is non-decreasing with respect to x € (a, b) (10)
[ g(s)ds
Then
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Proof. Set u(x) = bf ®  and u(x) = 1)

[} F)ds [} s6)ds

. By construction u and v satisfy

equation (2).
The second condition (3) requires for a < x < b:

f f(s)ds f g(s)ds
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This inequality holds because the left-hand term is non-decreasing in x, while
equality holds for x = b. Therefore Theorem 1 applies. |

4 Application to Dan Sitaru’s inequality

Dan Sitaru observed that
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b
f(log x)1o8% dx - f(logx)‘logxdx > (b* - a®)log \/j (e<a<b) (12)
a a a
which is equivalent to saying
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b f(log x)18% dx b fxdx
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This follows from Corollary 1 with F(x) = %, flx) = log(x)l‘)g(x), and g(x) = x. Note
that f and g are increasing functions on (e, o). Because f and g are strictly positive
for x > ¢, the positivity condition (9) is satisfied.

We will show the monotonicity condition (10) by taking the derivative.
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Because log(s)IOg(s) is convex on (g, o), the mean on [a, x] is bounded by the mean
of the values at the endpoints.
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Due to monotonicity of gT on (e, ), we further get

log(x)1°8™) + 2 log(a)'°8®  log(x)\8™) + ¢ log(x)l°8()
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f log(s)'°8®) < 2 (3 — ) log(x)los

Hence we have proven inequality (14) to hold.
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