

Solution attempt by Long Huynh Huu (@erugli) for Dan Sitaru's inequality which was posted on Twitter by Nassim Taleb (@nntaleb) [1].
 October 18th 2020

1 Schur convexity

A classical application of Schur convexity goes as follows: If a sequence of positive real numbers x, y, z majorises another such sequence a, b, c , then

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \quad (1)$$

In this document I want to prove an extension of this result to integrals.

2 Extension to integrals

Theorem 1

Let $F : I \rightarrow \mathbb{R}$ be a convex Lipschitz function on an open interval $I \subset \mathbb{R}$.
 Let $u, v : [a, b] \rightarrow I$ be monotonically increasing Lipschitz functions on the interval $[a, b]$, such that

$$\int_a^b u(t) dt = \int_a^b v(t) dt \quad (2)$$

$$\int_a^x u(t) dt \leq \int_a^x v(t) dt \quad (x \in [a, b]) \quad (3)$$

Then

$$\int_a^b F(u(t)) dt \geq \int_a^b F(v(t)) dt \quad (4)$$

Proof. Let $n > 0$ be a natural number. Partition $(a, b]$ into n intervals $I_i = a + (b - a) \cdot \left(\frac{i-1}{n}, \frac{i}{n} \right]$ with $i \in [n]$. We get two increasing sequences

$$u_i = \int_{I_i} u(t) dt \quad (i \in [n])$$

$$v_i = \int_{I_i} v(t) dt \quad (i \in [n])$$

The conditions of Theorem 1 imply that the u_i majorise the v_i , so by Schur Majorisation Inequality (Problem 13.4 of [2]).

$$\begin{aligned} \sum_{i=1}^n F(nu_i) &\geq \sum_{i=1}^n F(nv_i) \\ \Leftrightarrow \sum_{i=1}^n F\left(n \int_{I_i} u(t) dt\right) &\geq \sum_{i=1}^n F\left(n \int_{I_i} v(t) dt\right) \end{aligned}$$

The theorem follows from proving the following limit for u (and the analogous version for v):

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n F\left(n \int_{I_i} u(t) dt\right) = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^n n \int_{I_i} F(u(t)) dt = \int_a^b F(u(t)) dt$$

Let $m(I_i) = a + (b - a) \frac{2i-1}{2n}$ be the midpoint of I_i . Let $L > 0$ be the Lipschitz constant for u and let K be the Lipschitz constant for F .

$$\left| n \int_{I_i} u(t) dt - u(m(I_i)) \right| \leq n \int_{I_i} |u(t) - u(m(I_i))| dt \leq \frac{L}{n} \quad (5)$$

$$\left| F\left(n \int_{I_i} u(t) dt\right) - F(u(m(I_i))) \right| \leq K \left| n \int_{I_i} u(t) dt - u(m(I_i)) \right| \leq \frac{KL}{n} \quad (6)$$

$$\left| n \int_{I_i} F(u(t)) dt - F(u(m(I_i))) \right| \leq n \int_{I_i} |F(u(t)) - F(u(m(I_i)))| dt \leq \frac{KL}{n} \quad (7)$$

Inequalities (5) and (7) are due to Lipschitz continuity of u , and $F \circ u$ respectively. Inequality (5) implies (6). Inequalities (6) and (7) together imply

$$\begin{aligned}
& \left| n \int_{I_i} F(u(t)) dt - nF \left(\int_{I_i} u(t) dt \right) \right| \\
& \leq \left| n \int_{I_i} F(u(t)) dt - F(u(m(I_i))) \right| + \left| F(u(m(I_i))) - nF \left(\int_{I_i} u(t) dt \right) \right| \\
& \leq \frac{2KL}{n}
\end{aligned} \tag{8}$$

Therefore

$$\frac{1}{n} \sum_{i=1}^n F \left(n \int_{I_i} u(t) dt \right) = \frac{1}{n} \sum_{i=1}^n n \int_{I_i} F(u(t)) dt + \mathcal{O} \left(\frac{2KL}{n} \right) = \int_a^b F(u(t)) dt + \mathcal{O} \left(\frac{2KL}{n} \right)$$

□

3 Simplifying the condition

Corollary 1

Let $F : I \rightarrow \mathbb{R}$ be a convex Lipschitz function on an open interval $I \subset \mathbb{R}_+$.

Let $f, g : [a, b] \rightarrow I$ be monotonically increasing Lipschitz functions on the interval $[a, b]$, such that

$$f(x)g(x) > 0 \quad (a < x < b) \tag{9}$$

$$\frac{\int_a^x f(s) ds}{\int_a^x g(s) ds} \text{ is non-decreasing with respect to } x \in (a, b) \tag{10}$$

Then

$$\int_a^b F \left(\frac{f(t)}{\int_a^b f(s) ds} \right) dt \geq \int_a^b F \left(\frac{g(t)}{\int_a^b g(s) ds} \right) dt \tag{11}$$

Proof. Set $u(x) = \frac{f(x)}{\int_a^b f(s) ds}$ and $v(x) = \frac{f(x)}{\int_a^b g(s) ds}$. By construction u and v satisfy equation (2).

The second condition (3) requires for $a < x < b$:

$$\begin{aligned} \frac{\int_a^x f(s) ds}{\int_a^b f(s) ds} &\leq \frac{\int_a^x g(s) ds}{\int_a^b g(s) ds} \\ \Leftrightarrow \frac{\int_a^x f(s) ds}{\int_a^x g(s) ds} &\leq \frac{\int_a^b f(s) ds}{\int_a^b g(s) ds} \end{aligned}$$

This inequality holds because the left-hand term is non-decreasing in x , while equality holds for $x = b$. Therefore Theorem 1 applies. \square

4 Application to Dan Sitaru's inequality

Dan Sitaru observed that

$$\int_a^b (\log x)^{\log x} dx \cdot \int_a^b (\log x)^{-\log x} dx \geq (b^2 - a^2) \log \sqrt{\frac{b}{a}} \quad (e \leq a \leq b) \quad (12)$$

which is equivalent to saying

$$\int_a^b \frac{\int_a^x (\log s)^{\log s} ds}{(\log x)^{\log x}} dx \geq \int_a^b \frac{\int_a^x s ds}{x} dx \quad (13)$$

This follows from Corollary 1 with $F(x) = \frac{1}{x}$, $f(x) = \log(x)^{\log(x)}$, and $g(x) = x$. Note that f and g are increasing functions on (e, ∞) . Because f and g are strictly positive for $x \geq e$, the positivity condition (9) is satisfied.

We will show the monotonicity condition (10) by taking the derivative.

$$\begin{aligned}
& \frac{\partial}{\partial x} \frac{\int_a^x \log(s)^{\log(s)} ds}{\int_a^x s ds} \geq 0 \\
\iff & \frac{\log(x)^{\log(x)} \frac{x^2 - a^2}{2} - x \int_a^x \log(s)^{\log(s)} ds}{\left(\int_a^x s ds \right)^2} \geq 0 \\
\iff & \log(x)^{\log(x)} \frac{x^2 - a^2}{2} \geq x \int_a^x \log(s)^{\log(s)} ds
\end{aligned} \tag{14}$$

Because $\log(s)^{\log(s)}$ is convex on (e, ∞) , the mean on $[a, x]$ is bounded by the mean of the values at the endpoints.

$$\frac{1}{x-a} \int_a^x \log(s)^{\log(s)} ds \leq \frac{\log(x)^{\log(x)} + \log(a)^{\log(a)}}{2} \tag{15}$$

Due to monotonicity of $\frac{\log(x)^{\log(x)}}{x}$ on (e, ∞) , we further get

$$\frac{\log(x)^{\log(x)} + \frac{a}{x} \log(a)^{\log(a)}}{2} \leq \frac{\log(x)^{\log(x)} + \frac{a}{x} \log(x)^{\log(x)}}{2} = \frac{x+a}{2x} \log(x)^{\log(x)} \tag{16}$$

$$\stackrel{(15),(16)}{\implies} x \int_a^x \log(s)^{\log(s)} ds \leq \frac{x+a}{2} (x-a) \log(x)^{\log(x)}$$

Hence we have proven inequality (14) to hold.

5 References

- [1] N. Taleb, *To kill time today. There must be a trick.*, <https://twitter.com/nntaleb/status/1316693195506548736> (2020).
- [2] J.M. Steele, *The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities* (Cambridge University Press, 2004).