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Solution attempt by Long Huynh Huu (@erugli) for Dan Sitaru’s inequality which
was posted on Twitter by Nassim Taleb (@nntaleb) [1].
October 18th 2020

1 Schur convexity

A classical application of Schur convexity goes as follows: If a sequence of positive
real numbers 𝑥, 𝑦, 𝑧majorises another such sequence 𝑎, 𝑏, 𝑐, then

1
𝑥
+
1
𝑦
+
1
𝑧
≥
1
𝑎
+
1
𝑏
+
1
𝑐

(1)

In this document I want to prove an extension of this result to integrals.

2 Extension to integrals

Theorem 1

Let 𝐹 : 𝐼 → ℝ be a convex Lipschitz function on an open interval 𝐼 ⊂ ℝ.
Let 𝑢, 𝑣 : [𝑎, 𝑏] → 𝐼 be monotonically increasing Lipschitz functions on the interval [𝑎, 𝑏],
such that

𝑏

�
𝑎

𝑢(𝑡) 𝑑𝑡 =
𝑏

�
𝑎

𝑣(𝑡) 𝑑𝑡 (2)

𝑥

�
𝑎

𝑢(𝑡) 𝑑𝑡 ≤
𝑥

�
𝑎

𝑣(𝑡) 𝑑𝑡 (𝑥 ∈ [𝑎, 𝑏]) (3)

Then

𝑏

�
𝑎

𝐹 (𝑢(𝑡)) 𝑑𝑡 ≥
𝑏

�
𝑎

𝐹 (𝑣(𝑡)) 𝑑𝑡 (4)

Proof. Let 𝑛 > 0 be a natural number. Partition (𝑎, 𝑏] into 𝑛 intervals 𝐼𝑖 = 𝑎 + (𝑏 −

𝑎) ⋅ � 𝑖−1𝑛 ,
𝑖
𝑛�with 𝑖 ∈ [𝑛]. We get two increasing sequences
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𝑢𝑖 = �
𝐼𝑖

𝑢(𝑡) 𝑑𝑡 (𝑖 ∈ [𝑛])

𝑣𝑖 = �
𝐼𝑖

𝑣(𝑡) 𝑑𝑡 (𝑖 ∈ [𝑛])

The conditions of Theorem 1 imply that the 𝑢𝑖 majorise the 𝑣𝑖, so by Schur Majori-
sation Inequality (Problem 13.4 of [2]).

𝑛

�
𝑖=1

𝐹 (𝑛𝑢𝑖) ≥
𝑛

�
𝑖=1

𝐹 (𝑛𝑣𝑖)

⟺
𝑛

�
𝑖=1

𝐹

⎛
⎜⎜⎜⎜⎜⎝𝑛�

𝐼𝑖

𝑢(𝑡) 𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠ ≥

𝑛

�
𝑖=1

𝐹

⎛
⎜⎜⎜⎜⎜⎝𝑛�

𝐼𝑖

𝑣(𝑡) 𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

The theorem follows from proving the following limit for 𝑢 (and the analogous
version for 𝑣):

lim
𝑛→∞

1
𝑛

𝑛

�
𝑖=1

𝐹

⎛
⎜⎜⎜⎜⎜⎝𝑛�

𝐼𝑖

𝑢(𝑡) 𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠ = lim

𝑛→∞

1
𝑛

𝑛

�
𝑖=1

𝑛�
𝐼𝑖

𝐹(𝑢(𝑡)) 𝑑𝑡 =
𝑏

�
𝑎

𝐹(𝑢(𝑡)) 𝑑𝑡

Let 𝑚(𝐼𝑖) = 𝑎 + (𝑏 − 𝑎)
2𝑖−1
2𝑛 be the midpoint of 𝐼𝑖. Let 𝐿 > 0 be the Lipschitz constant

for 𝑢 and let 𝐾 be the Lipschitz constant for 𝐹.

�
�
𝑛�

𝐼𝑖

𝑢(𝑡) 𝑑𝑡 − 𝑢(𝑚(𝐼𝑖))
�
�
≤ 𝑛�

𝐼𝑖

|𝑢(𝑡) − 𝑢(𝑚(𝐼𝑖))| 𝑑𝑡 ≤
𝐿
𝑛

(5)

�
�
𝐹

⎛
⎜⎜⎜⎜⎜⎝𝑛�

𝐼𝑖

𝑢(𝑡) 𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠ − 𝐹(𝑢(𝑚(𝐼𝑖)))

�
�
≤ 𝐾

�
�
𝑛�

𝐼𝑖

𝑢(𝑡) 𝑑𝑡 − 𝑢(𝑚(𝐼𝑖))
�
�

≤
𝐾𝐿
𝑛

(6)

�
�
𝑛�

𝐼𝑖

𝐹(𝑢(𝑡)) 𝑑𝑡 − 𝐹(𝑢(𝑚(𝐼𝑖)))
�
�
≤ 𝑛�

𝐼𝑖

|𝐹(𝑢(𝑡)) − 𝐹(𝑢(𝑚(𝐼𝑖)))| 𝑑𝑡 ≤
𝐾𝐿
𝑛

(7)

Inequalities (5) and (7) are due to Lipschitz continuity of 𝑢, and 𝐹 ∘ 𝑢 respectively.
Inequality (5) implies (6). Inequalities (6) and (7) together imply
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�
�
𝑛�

𝐼𝑖

𝐹(𝑢(𝑡)) 𝑑𝑡 − 𝑛𝐹

⎛
⎜⎜⎜⎜⎜⎝�
𝐼𝑖

𝑢(𝑡) 𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠
�
�

≤
�
�
𝑛�

𝐼𝑖

𝐹(𝑢(𝑡)) 𝑑𝑡 − 𝐹(𝑢(𝑚(𝐼𝑖)))
�
�
+
�
�
𝐹(𝑢(𝑚(𝐼𝑖))) − 𝑛𝐹

⎛
⎜⎜⎜⎜⎜⎝�
𝐼𝑖

𝑢(𝑡) 𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠
�
�

≤
2𝐾𝐿
𝑛

(8)

Therefore

1
𝑛

𝑛

�
𝑖=1

𝐹

⎛
⎜⎜⎜⎜⎜⎝𝑛�

𝐼𝑖

𝑢(𝑡) 𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠ =

1
𝑛

𝑛

�
𝑖=1

𝑛�
𝐼𝑖

𝐹(𝑢(𝑡)) 𝑑𝑡 + 𝒪 �
2𝐾𝐿
𝑛 � =

𝑏

�
𝑎

𝐹(𝑢(𝑡)) 𝑑𝑡 + 𝒪 �
2𝐾𝐿
𝑛 �

□

3 Simplifying the condition

Corollary 1

Let 𝐹 : 𝐼 → ℝ be a convex Lipschitz function on an open interval 𝐼 ⊂ ℝ+.
Let 𝑓, 𝑔 : [𝑎, 𝑏] → 𝐼 be monotonically increasing Lipschitz functions on the interval [𝑎, 𝑏],
such that

𝑓(𝑥)𝑔(𝑥) > 0 (𝑎 < 𝑥 < 𝑏) (9)
𝑥
∫
𝑎
𝑓(𝑠) 𝑑𝑠

𝑥
∫
𝑎
𝑔(𝑠) 𝑑𝑠

is non-decreasing with respect to 𝑥 ∈ (𝑎, 𝑏) (10)

Then

𝑏

�
𝑎

𝐹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓(𝑡)
𝑏
∫
𝑎
𝑓(𝑠) 𝑑𝑠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑑𝑡 ≥

𝑏

�
𝑎

𝐹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑔(𝑡)
𝑏
∫
𝑎
𝑔(𝑠) 𝑑𝑠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑑𝑡 (11)



4

Proof. Set 𝑢(𝑥) = 𝑓(𝑥)

∫𝑏
𝑎
𝑓(𝑠) 𝑑𝑠

and 𝑣(𝑥) = 𝑓(𝑥)

∫𝑏
𝑎
𝑔(𝑠) 𝑑𝑠

. By construction 𝑢 and 𝑣 satisfy

equation (2).
The second condition (3) requires for 𝑎 < 𝑥 < 𝑏:

𝑥
∫
𝑎
𝑓(𝑠) 𝑑𝑠

𝑏
∫
𝑎
𝑓(𝑠) 𝑑𝑠

≤

𝑥
∫
𝑎
𝑔(𝑠) 𝑑𝑠

𝑏
∫
𝑎
𝑔(𝑠) 𝑑𝑠

⟺

𝑥
∫
𝑎
𝑓(𝑠) 𝑑𝑠

𝑥
∫
𝑎
𝑔(𝑠) 𝑑𝑠

≤

𝑏
∫
𝑎
𝑓(𝑠) 𝑑𝑠

𝑏
∫
𝑎
𝑔(𝑠) 𝑑𝑠

This inequality holds because the left-hand term is non-decreasing in 𝑥, while
equality holds for 𝑥 = 𝑏. Therefore Theorem 1 applies. □

4 Application to Dan Sitaru’s inequality

Dan Sitaru observed that

𝑏

�
𝑎

(log 𝑥)log 𝑥 𝑑𝑥 ⋅
𝑏

�
𝑎

(log 𝑥)− log 𝑥 𝑑𝑥 ≥ (𝑏2 − 𝑎2) log
�

𝑏
𝑎

(𝑒 ≤ 𝑎 ≤ 𝑏) (12)

which is equivalent to saying

𝑏

�
𝑎

𝑏
∫
𝑎
(log 𝑥)log 𝑥 𝑑𝑥

(log 𝑥)log 𝑥
𝑑𝑥 ≥

𝑏

�
𝑎

𝑏
∫
𝑎
𝑥 𝑑𝑥

𝑥
𝑑𝑥 (13)

This follows from Corollary 1 with 𝐹(𝑥) = 1
𝑥 , 𝑓(𝑥) = log(𝑥)

log(𝑥), and 𝑔(𝑥) = 𝑥. Note
that 𝑓 and 𝑔 are increasing functions on (𝑒,∞). Because 𝑓 and 𝑔 are strictly positive
for 𝑥 ≥ 𝑒, the positivity condition (9) is satisfied.
We will show the monotonicity condition (10) by taking the derivative.



5

∂
∂𝑥

𝑥
∫
𝑎
log(𝑠)log(𝑠) 𝑑𝑠

𝑥
∫
𝑎
𝑠 𝑑𝑠

≥ 0

⟺
log(𝑥)log(𝑥) 𝑥

2−𝑎2

2 − 𝑥
𝑥
∫
𝑎
log(𝑠)log(𝑠) 𝑑𝑠

�
𝑥
∫
𝑎
𝑠 𝑑𝑠�

2 ≥ 0

⟺ log(𝑥)log(𝑥)
𝑥2 − 𝑎2

2
≥ 𝑥

𝑥

�
𝑎

log(𝑠)log(𝑠) 𝑑𝑠 (14)

Because log(𝑠)log(𝑠) is convex on (𝑒,∞), the mean on [𝑎, 𝑥] is bounded by the mean
of the values at the endpoints.

1
𝑥 − 𝑎

𝑥

�
𝑎

log(𝑠)log(𝑠) ≤
log(𝑥)log(𝑥) + log(𝑎)log(𝑎)

2
(15)

Due to monotonicity of 𝑙𝑜𝑔(𝑥)log(𝑥)

𝑥 on (𝑒,∞), we further get

log(𝑥)log(𝑥) + 𝑎
𝑎 log(𝑎)

log(𝑎)

2
≤
log(𝑥)log(𝑥) + 𝑎

𝑥 log(𝑥)
log(𝑥)

2
=
𝑥 + 𝑎
2𝑥

log(𝑥)log(𝑥) (16)

(15),(16)
⟹ 𝑥

𝑥

�
𝑎

log(𝑠)log(𝑠) ≤
𝑥 + 𝑎
2

(𝑥 − 𝑎) log(𝑥)log(𝑥)

Hence we have proven inequality (14) to hold.

5 References

[1] N. Taleb, To kill time today. There must be a trick., https://twit-
ter.com/nntaleb/status/1316693195506548736 (2020).

[2] J.M. Steele, The Cauchy-Schwarz master class: an introduction to the art of math-
ematical inequalities (Cambridge University Press, 2004).


