

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALITY BY ADIL ABDULLAYEV-XX
 By Marin Chirciu-Romania
 Edited by Florică Anastase-Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{b+c}{\sqrt{b^{2}+c^{2}}} \geq 6 \sqrt{\frac{R}{2}}
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan

Solution. Lemma(Băndilă) 2) In $\triangle A B C$ the following relationship holds:

$$
\frac{R}{r} \geq \frac{b}{c}+\frac{c}{b}
$$

Proof. Using Ravi substitution: $a=y+z, b=z+x, c=x+y$, we get:

$$
\begin{gathered}
R=\frac{(x+y)(y+z)(z+x)}{4 \sqrt{x y z(x+y+z)}}, r=\sqrt{\frac{x y z}{x+y+z}} \rightarrow \frac{R}{r}=\frac{(x+y)(y+z)(z+x)}{x y z} \\
\quad \text { Inequality can be written as: } \frac{(x+y)(y+z)(z+x)}{x y z} \geq \frac{z+x}{x+y}+\frac{x+y}{z+x} \Leftrightarrow
\end{gathered}
$$

$\frac{y+z}{4 x y z} \geq \frac{1}{(x+y)^{2}}+\frac{1}{(x+z)^{2}}$ which is true from: $\left\{\begin{array}{c}\frac{1}{(x+y)^{2}} \leq \frac{1}{4 x y} \\ \frac{1}{(x+z)^{2}} \leq \frac{1}{4 x z}\end{array}\right.$. Equality holds for $x=z$.
Equality if and only if triangle is equilateral. Let's get back to the main problem.
Using $\frac{R}{r} \geq \frac{b}{c}+\frac{c}{b} \rightarrow \frac{b c}{b^{2}+c^{2}} \geq \frac{r}{R}$. Using AM-GM inequality, we get:

$$
\begin{gathered}
L H S=\sum_{c y c} \frac{b+c}{\sqrt{b^{2}+c^{2}}} \geq \sum_{c y c} \frac{2 \sqrt{b c}}{\sqrt{b^{2}+c^{2}}}=2 \sum_{c y c} \sqrt{\frac{b c}{b^{2}+c^{2}}} \geq \\
\geq 2 \sum_{c y c} \sqrt{\frac{r}{R}}=2 \cdot 3 \sqrt{\frac{r}{R}}=6 \sqrt{\frac{r}{R}}=R H S
\end{gathered}
$$

Equality holds if and only if triangle is equilateral.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 3) In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \sqrt{\frac{b c}{b^{2}+c^{2}}} \geq 3 \sqrt{\frac{r}{R}}
$$

Proposed by Marin Chirciu-Romania

Solution. Lemma(Băndilă) 2) In $\triangle A B C$ the following relationship holds:

$$
\frac{R}{r} \geq \frac{b}{c}+\frac{c}{b}
$$

Proof. Using Ravi substitution: $a=y+z, b=z+x, c=x+y$, we get:

$$
\begin{gathered}
R=\frac{(x+y)(y+z)(z+x)}{4 \sqrt{x y z(x+y+z)}}, r=\sqrt{\frac{x y z}{x+y+z}} \rightarrow \frac{R}{r}=\frac{(x+y)(y+z)(z+x)}{x y z} \\
\text { Inequality can be written as: } \frac{(x+y)(y+z)(z+x)}{x y z} \geq \frac{z+x}{x+y}+\frac{x+y}{z+x} \Leftrightarrow
\end{gathered}
$$

$$
\frac{y+z}{4 x y z} \geq \frac{1}{(x+y)^{2}}+\frac{1}{(x+z)^{2}} \text { which is true from: }\left\{\begin{array}{l}
\frac{1}{(x+y)^{2}} \leq \frac{1}{4 x y} \\
\frac{1}{(x+z)^{2}} \leq \frac{1}{4 x z}
\end{array} \text {. qquality holds for } x=z\right.
$$

Equality if and only if triangle is equilateral. Let's get back to the main problem.
Using $\frac{R}{r} \geq \frac{b}{c}+\frac{c}{b} \rightarrow \frac{b c}{b^{2}+c^{2}} \geq \frac{r}{R}$. Using AM-GM inequality, we get:
$L H S=\sum_{c y c} \sqrt{\frac{b c}{b^{2}+c^{2}}} \geq \sum_{c y c} \sqrt{\frac{r}{R}}=3 \sqrt{\frac{r}{R}}=R H S$. Equality holds if and only if triangle is equilateral.
5) In $\triangle A B C$ the following relationship holds:

$$
3 \sqrt{\frac{r}{R}} \leq \sum_{c y c} \sqrt{\frac{b c}{b^{2}+c^{2}}}=\frac{3}{\sqrt{2}}
$$

Proposed by Marin Chirciu-Romania

Solution. For RHS using AM-GM inequality, we have: $\frac{b c}{b^{2}+c^{2}} \leq \frac{1}{2}$, equality when $b=c$.

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.roFor LHS, Lemma(Băndilă) 2) In $\triangle A B C$ the following relationship holds:

$$
\frac{R}{r} \geq \frac{b}{c}+\frac{c}{b}
$$

Proof. Using Ravi substitution: $a=y+z, b=z+x, c=x+y$, we get:

$$
\begin{gathered}
R=\frac{(x+y)(y+z)(z+x)}{4 \sqrt{x y z(x+y+z)}}, r=\sqrt{\frac{x y z}{x+y+z}} \rightarrow \frac{R}{r}=\frac{(x+y)(y+z)(z+x)}{x y z} \\
\quad \text { Inequality can be written as: } \frac{(x+y)(y+z)(z+x)}{x y z} \geq \frac{z+x}{x+y}+\frac{x+y}{z+x} \Leftrightarrow
\end{gathered}
$$

$$
\frac{y+z}{4 x y z} \geq \frac{1}{(x+y)^{2}}+\frac{1}{(x+z)^{2}} \text { which is true from: }\left\{\begin{array}{l}
\frac{1}{(x+y)^{2}} \leq \frac{1}{4 x y} \\
\frac{1}{(x+z)^{2}} \leq \frac{1}{4 x z}
\end{array} . \text { Equality holds for } x=z\right.
$$

Equality if and only if triangle is equilateral. Let's get back to the main problem.
Using $\frac{R}{r} \geq \frac{b}{c}+\frac{c}{b} \rightarrow \frac{b c}{b^{2}+c^{2}} \geq \frac{r}{R}$. Using AM-GM inequality, we get:

$$
L H S=\sum_{c y c} \sqrt{\frac{b c}{b^{2}+c^{2}}} \geq \sum_{c y c} \sqrt{\frac{r}{R}}=3 \sqrt{\frac{r}{R}}=R H S
$$

Equality holds if and only if triangle is equilateral.

REFERENCE:

ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro

