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Abstract. In this paper we prove the equivalence of Gerretsen’s inequality
in triangle and the algebraic Schur’s inequality.

Gerretsen’s inequality: In ∆ABC the following relationship holds:
s2 ≥ 16Rr − 5r2 (s - semiperimeter, r - in radii, R - circumradii)
Schur’s inequality: If x, y, z > 0 then:

x3 + y3 + z3 + 3xyz ≥ xy(x + y) + yz(y + z) + zx(z + x)

The proof of equivalence:
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(x + y + z)[(x + y)(y + z) + (y + z)(z + x) + (z + x)(x + y)] + 4xyz ≥

≥ 5(x + y)(y + z)(z + x)

Let p = x + y + z, q = xy + yz + zx, r = xyz

(1)⇔ p(p2 + q) + 4r ≥ 5(pq − r)⇔ p3 + 9r ≥ 4pq

⇔ p3 − 3pq + 3r + 3r ≥ pq − 3r

x3 + y3 + z3 = p3 − 3pq + 3r

xy(x + y) + yz(y + z) + zx(z + x) = pq − 3r

x3 + y3 + z3 + 3xyz ≥ xy(x + y) + yz(y + z) + zx(z + x)
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