A BEAUTIFUL EQUIVALENCE

DANIEL SITARU

ABSTRACT. In this paper we prove the equivalence of Gerretsen’s inequality
in triangle and the algebraic Schur’s inequality.

Gerretsen’s inequality: In AABC' the following relationship holds:

52 > 16Rr — 5r? (s - semiperimeter, r - in radii, R - circumradii)
Schur’s inequality: If x,y, z > 0 then:

23 P+ 2% 4 3y > wy(x +y) Fyzly + 2) + za(z + o)
The proof of equivalence:
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