Some Elementary Infinite products of
Trignometric Identities

by Syed Shahabudeen
August 29 , 2020

Abstract

In this paper I will be presenting some infinite products of trigno-
metric identities

1 Introduction

The infinite product for the trigonometric sine function[!],[2] was introduced
by the German mathematician leonhard Euler which is of the form
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similarly for cosine function[2] we have
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2 Infinite product for sinz + cosx, cscx + secx,
tanx + cotx

Theorem 1.
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Proof.
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(Apply Euler’s Sine product)

the sin x + cos x can also be presented in terms of cosine product i.e
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if we substitute 7z in Eq (1) we’ll get
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similarly in Eq (2) we’ll get
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when =z = 6 in Eq (3) and by rearranging it we can write the product as
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similarly in Eq (4) we get
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Theorem 2.
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if we substitute 7z in Eq (5) we get
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for Eg when = = 6 in Eq (6) and by rearranging we can write the product
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Theorem 3.
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Proof.

tan(x) + cot(z) = ) (Apply Euler sine product)
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If we substitute 7 in Eq (7) we’ll get
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for x = s in Eq (8) we have the product
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3 Infinite products of cosxz — cosy,sinz — siny
Theorem 4.
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when we substitute 7z and 7y in Eq (9) we get
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when substituting x = 1 and y = 3 in Eq (10) and on rearranging we get
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Theorem 5.
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when we substitute 7z and 7wy in Eq (11) we get
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g in Eq(12) and on rearranging we get
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let us substitute x = 3 and y =

4 Conclusion

In this paper we came to see some proofs of infinite products for basic trig-
nometric identities which are of the form sinx + cos z,tan x + cot z and so ,
as metioned in the paper.
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