

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

ABOUT AN INEQUALITY BY MARIAN URSĂRESCU-VIII

By Marin Chirciu – Romania

1) If I – incenter ΔABC , then:

$$[AIB][AIC] + [BIC] + [CIA][CIB] \leq r^2(R + r)^2$$

Proposed by Marian Ursărescu – Romania

Solution We prove the following Lemma:

Lemma.

2) If I – incenter, ΔABC , then:

$$[AIB][AIC] + [BIC][BIA] + [CIA][CIB] = \frac{r^2(s^2 + r^2 + 4Rr)}{4}$$

Proof.

We have $[BIC] = \frac{ar}{2}$ and the analogs. It follows

$$[AIB][AIC] + [BIC][BIA] + [CIA][CIB] = \frac{r^2}{4}(bc + ca + ab) = \frac{r^2(s^2 + r^2 + 4Rr)}{4}, \text{ which}$$

follows from the known identity in triangle $\sum bc = s^2 + r^2 + 4Rr$. Let's get back to the main problem. Using lemma the inequality can be written:

$$\frac{r^2(s^2 + r^2 + 4Rr)}{4} \leq r^2(R + r)^2 \Leftrightarrow s^2 \leq 4R^2 + 4Rr + 3r^2 \text{ (Gerretsen's inequality)}$$

Equality holds if and only if the triangle is equilateral.

Remark.

Let's get back to the main problem.

3) If I – incenter ΔABC , then:

$$[AIB][AIC] + [BIC][BIA] + [CIA][CIB] \geq 9r^4$$

Proposed by Marin Chirciu – Romania

Solution

Using lemma the inequality can be written:

$$\frac{r^2(s^2 + r^2 + 4Rr)}{4} \geq 9r^4 \Leftrightarrow s^2 \geq 35r^2 - 4Rr, \text{ which follows from Gerretsen's inequality}$$

$s^2 \geq 16Rr - 5r^2$. It remains to prove that:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$16Rr - 5r^2 \geq 35r^2 - 4Rr \Leftrightarrow R \geq 2r \text{ (Euler's inequality).}$$

Equality holds if and only if the triangle is equilateral.

Remark.

We can write the double inequality:

4) If I - incenter ΔABC , then:

$$9r^4 \leq [AIB][AIC] + [BIC][BIA] + [CIA][CIB] \leq r^2(R + r)^2$$

Solution

See inequalities 1) and 3). Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro