

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

ABOUT AN INEQUALITY BY MARIAN URŠARESCU-VII

By Marin Chirciu – Romania

1) In ΔABC the following relationship holds:

$$\frac{R}{r} + \frac{r}{R} + 6 \sum \frac{r_a^2}{bc} \geq 16$$

Proposed by Marian Ursărescu – Romania

Solution

We prove the following lemma:

Lemma.

2) In ΔABC the following relationship holds:

$$\sum \frac{r_a^2}{bc} = \frac{2R(4R+r)-s^2}{2Rr}$$

Proof.

Using $r_a = \frac{s}{s-a}$ we obtain $\sum \frac{r_a^2}{bc} = \sum \frac{\frac{s^2}{(s-a)^2}}{bc} = \frac{s^2}{abc} \sum \frac{a}{(s-a)^2} = \frac{4R(4R+r)-s^2}{r^2s}$, which follows from

$$\sum \frac{a}{(s-a)^2} = \frac{4R(4R+r)-2s^2}{r^2s}.$$

Let's get back to the main problem.

Using Lemma the inequality from enunciation can be written:

$\frac{R}{r} + \frac{r}{R} + 6 \cdot \frac{2R(4R+r)-s^2}{2Rr} \geq 16 \Leftrightarrow 3s^2 \leq 25R^2 - 10Rr + r^2$ which follows from Gerretsen's

inequality: $s^2 \leq 4R^2 + 4Rr + 3r^2$. It remains to prove that:

$$3(4R^2 + 4Rr + 3r^2) \leq 25R^2 - 10Rr + r^2 \Leftrightarrow 13R^2 - 22Rr - 8r^2 \geq 0 \Leftrightarrow$$

$$\Leftrightarrow (R - 2r)(13R + 4r) \geq 0, \text{ obviously from Euler's inequality } R \geq 2r.$$

Equality holds if and only if the triangle is equilateral.

Remark. We can develop the inequality:

3) In ΔABC the following inequality holds:

$$\frac{R}{r} + \frac{r}{R} + n \sum \frac{r_a^2}{bc} \geq \frac{5}{2} + \frac{9n}{4}, \text{ where } n \geq 0.$$

Proposed by Marin Chirciu – Romania

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

Solution

We prove that: $\frac{R}{r} + \frac{r}{R} \geq \frac{5}{2}$ (1) and $\sum \frac{r_a^2}{bc} \geq \frac{9}{4}$ (2)

Indeed $\frac{R}{r} + \frac{r}{R} \geq \frac{5}{2} \Leftrightarrow 2R^2 - 5Rr + 2r^2 \geq 0 \Leftrightarrow (R - 2r)(2R + r) \geq 0$, obviously from

Euler's inequality $R \geq 2r$.

For the inequality $\sum \frac{r_a^2}{bc} \geq \frac{9}{4}$ we use the following Lemma and we write the inequality:

$\frac{2R(4R+r)-s^2}{2Rr} \geq \frac{9}{4} \Leftrightarrow 2s^2 \leq 16R^2 + 4Rr - 9r^2$, which follows from Gerretsen's inequality

$s^2 \leq 4R^2 + 4Rr + 3r^2$. It remains to prove that:

$2(4R^2 + 4Rr + 3r^2) \leq 16R^2 + 4Rr - 9r^2 \Leftrightarrow 8R^2 - 13Rr - 6r^2 \geq 0 \Leftrightarrow$

$\Leftrightarrow (R - 2r)(8R + 3r) \geq 0$, which follows from Euler's inequality $R \geq 2r$.

From (1), (2) and the condition from hypothesis $n \geq 0$ it follows the conclusion:

$$\frac{R}{r} + \frac{r}{R} + n \sum \frac{r_a^2}{bc} \geq \frac{5}{2} + \frac{9n}{4}$$

Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro