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1) Prove that in any acute-angled triangle the following inequality holds: 
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Proposed by Marian Ursărescu – Romania 

Solution We prove the following lemma: 

2) In ���� the following relationship holds: 
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Proof.Using the following formulas: ℎ� =
��

�
 and �� =
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Let’s get back to the main problem: 

Using the Lemma it suffices to prove that: 
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⇔ ��(�� + 8�� − 46��) + ��(4� + �)� ≥ 0 

We distinguish the following cases: 

Case 1). If (�� + 8�� − 46��) ≥ 0, the inequality is obvious. 

Case 2). If (�� + 8�� − 46��) < 0, the inequality can be rewritten: 

��(4� + �)� ≥ ��(46�� − 8�� − ��), which follows from Blundon-Gerretsen’s inequality: 

16�� − 5�� ≤ �� ≤
�(����)�

�(����)
. It remains to prove that: 

��(4� + �)� ≥
�(4� + �)�

2(2� − �)
(46�� − 8�� − 16�� + 5��) ⇔ 24�� − 47�� − 2�� ≥ 0 ⇔ 

⇔ (� − 2�)(4� + �) ≥ 0, obviously from Euler’s inequality � ≥ 2�. 
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Equality holds if and only if the triangle is equilateral. 

Remark.  From the above proof, the condition of acute-angled triangle it is not necessary. 

Remark. Inequality can be strengthened: 

3) In ���� the following inequality holds: 
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Solution Using Lemma, it suffices to prove that: 

(∑ ��)�

4����
≥

6�

�
⇔

(�� + �� + 4��)�

4����
≥

6�

�
⇔ ��(�� + 2�� − 16��) + ��(4� + �)� ≥ 0 

We distinguish the following cases: 

Case 1). If  (�� + 2�� − 16��) ≥ 0, the inequality is obvious. 

Case 2). If (�� + 2�� − 16��) < 0, the inequality can be rewritten: 

��(4� + �)� ≥ ��(16�� − 2�� − ��), which follows from Blundon-Gerretsen’s inequality: 

16�� − 5�� ≤ �� ≤
�(����)�

�(����)
. It remains to prove that: 

��(4� + �)� ≥
�(����)�

�(����)
(16�� − 2�� − 16�� + 5��) ⇔ � ≥ 2� (Euler) 

Equality holds if and only if the triangle is equilateral. 

Remark. Inequality 3) is stronger than inequality 1) 

4) In ���� the following relationship holds: 
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Solution 

See inequality 3) and 
��

�
≥

����

�� ⇔ � ≥ 2� (Euler) 

Equality holds if and only if the triangle is equilateral. 

Remark. 

If we replace ℎ� with �� we propose: 

5) In ���� the following relationship holds: 
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Solution We prove the following lemma: 

Lemma. 

6) In ���� the following relationship holds: 
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Proof. Using the following formulas: �� =
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It follows ∑
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Let’s get back to the main problem. 

Using Lemma it suffices to prove that: ∑
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Using the identity in triangle: ∑
�

(���)� =
(����)�������

����  the inequality holds: 
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��
 we write ��� ⋅

(����)�������

���� ≥
��

��
⇔ 2(4� + �)� − 24��� ≥ 3��� ⇔ 

⇔ 2(4� + �)� ≥ 27���, it follows from Blundon-Gerretsen’s inequality. 

�� ≤
�(����)�

�(����)
. It remains to prove that: 

2(4� + �)� ≥ 27� ⋅
�(4� + �)�

2(2� − �)
⇔ 5�� − 8�� − 4�� ≥ 0 ⇔ 

⇔ (� − 2�)(5� + 2�) ≥ 0, obviously from Euler’s inequality � ≥ 2�. 

Equality holds if and only if the triangle is equilateral. 
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