

www.ssmrmh.ro

ABOUT AN INEQUALITY BY JOSE LUIS DIAZ BARRERO-I

By Marin Chirciu – Romania

1) In $\triangle ABC$ the following relationship holds:

$$\frac{a^{2} + bc}{b + c} + \frac{b^{2} + ca}{c + a} + \frac{c^{2} + ab}{a + b} \ge \frac{3abc}{2R} \sqrt[3]{\frac{1}{h_{a}h_{b}h_{c}}}$$

Proposed by Jose Luis Diaz-Barrero - Spain

Proof. We have

$$2)\sum \frac{a^2+bc}{b+c} = \frac{\sum (a^2+bc)(a+b)(a+b)}{\prod (b+c)} = \frac{5s^4-10s^2r^2+r^2(4R+r)^2}{2s(s^2+r^2+2Rr)}$$

which follows from

Let's get back to the main problem.

Using the Lemma and the known inequalities in triangle abc=4Rrs and $\prod h_a=\frac{2s^2r^2}{R}$

We prove the stronger inequality

3) In $\triangle ABC$ the following inequality holds:

$$\frac{a^2+bc}{b+c}+\frac{b^2+ca}{c+a}+\frac{c^2+ab}{a+b}\geq a+b+c$$

Solution $\frac{5s^4 - 10s^2r^2 + r^2(4R + r)^2}{2s(s^2 + r^2 + 2Rr)} \ge 2s \Leftrightarrow s^4 - s^2(8Rr + 14r^2) + r^2(4R + r)^2 \ge 0 \Leftrightarrow s^4 - s^2(8Rr + 14r^2) + r^2(4R + r)^2 \ge 0$

$$\Leftrightarrow s^{2}(s^{2} - 8Rr - 14r^{2}) + r^{2}(4R + r)^{2} \ge 0$$

We distinguish the following cases:

Case 1). If
$$(s^2 - 8Rr - 14r^2) \ge 0$$
, the inequality is obvious.

Case 2). If
$$(s^2 - 8Rr - 14r^2) < 0$$
, we rewrite the inequality:

 $r^2(4R+r)^2 \ge s^2(8Rr+14r^2-s^2)$, which follows from Gerretsen's inequality

$$16Rr - 5r^2 \le s^2 \le \frac{R(4R+r)^2}{2(2R-r)} \le 4R^2 + 4Rr + 3r^2.$$

It remains to prove that:

www.ssmrmh.ro

$$r^{2}(4R+r)^{2} \ge \frac{R(4R+r)^{2}}{2(2R-r)}(8Rr+14r^{2}-16Rr+5r^{2}) \Leftrightarrow$$

 $\Leftrightarrow 2r^2(2R-r) \leq R(-8Rr+19r^2) \Leftrightarrow 8R^2-15Rr-2r^2 \geq 0 \Leftrightarrow (R-2r)(8R+r) \geq 0,$ obviously from Euler's inequality $R \geq 2r$.

4) In $\triangle ABC$ the following inequality holds:

$$a+b+c\geq \frac{3abc}{2R}\sqrt[3]{\frac{1}{h_ah_bh_c}}$$

Solution We prove that:

$$a+b+c \ge \frac{3abc}{2R} \sqrt[3]{\frac{1}{h_a h_b h_c}} \Leftrightarrow 2s \ge \frac{3 \cdot 4Rrs}{2R} \sqrt[3]{\frac{R}{2s^2 r^2}} \Leftrightarrow 1 \ge 3r \cdot \sqrt[3]{\frac{R}{2s^2 r^2}} \Leftrightarrow$$

 $\Leftrightarrow 2s^2 \ge 27Rr$, which follows from Gerretsen's inequality $s^2 \ge 16Rr - 5r^2$. It remains to prove that:

$$2(16Rr - 5r^2) \ge 27Rr \Leftrightarrow R \ge 2r$$
. (Euler's inequality).

Equality holds if and only if the triangle is equilateral.

Remark.We can write:

5) In $\triangle ABC$ the following relationship holds:

$$\frac{a^{2} + bc}{b + c} + \frac{b^{2} + ca}{c + a} + \frac{c^{2} + ab}{a + b} \ge a + b + c \ge \frac{3abc}{2R} \sqrt[3]{\frac{1}{h_{a}h_{b}h_{c}}}$$

Solution See 3) and 4).

Equality holds if and only if the triangle is equilateral.

Remark. Let's find an inequality having an opposite sense:

6) In $\triangle ABC$ the following relationship holds:

$$\frac{a^2 + bc}{b+c} + \frac{b^2 + ca}{c+a} + \frac{c^2 + ab}{a+b} \le (a+b+c)\frac{R}{2r}$$

Proposed by Marin Chirciu - Romania

Solution Using the Lemma, the inequality can be written:

www.ssmrmh.ro

$$\frac{5s^4 - 10s^2r^2 + r^2(4R + r)^2}{2s(s^2 + r^2 + 2Rr)} \le s \cdot \frac{R}{r} \Leftrightarrow s^2[s^2(2R - 5r) + 2r(2R^2 + Rr + 5r^2)] \ge r^3(4R + r)^2.$$

We distinguish the following cases:

Case 1). If $(2R - 5r) \ge 0$, we use Gerretsen's inequality $s^2 \ge 16Rr - 5r^2 \ge \frac{r(4R+r)^2}{R+r}$. It remains to prove that:

$$\frac{r(4R+r)^2}{R+r}[(16Rr-5r^2)(2R-5r)+2r(2R^2+Rr+5r^2)] \ge r^3(4R+r)^2 \Leftrightarrow 36R^2-89Rr+34r^2 > 0. obviously, because in this case $2R > 5r$.$$

Case 2). If (2R - 5r) < 0, we rewrite the inequality:

$$s^2[2r(2R^2+Rr+5r^2)-s^2(5r-2R)] \ge r^3(4R+r)^2$$
, and we use Gerretsen's inequality
$$\frac{r(4R+r)^2}{R+r} \le 16Rr-5r^2 \le s^2 \le \frac{R(4R+r)^2}{2(2R-r)} \le 4R^2+4Rr+3r^2.$$

It remains to prove that:

$$\frac{r(4R+r)^2}{R+r} [2r(2R^2+Rr+5r^2) - (4R^2+4Rr+3r^2)(5r-2R)] \ge r^3(4R+r)^2 \Leftrightarrow \\ \Leftrightarrow 8R^3 - 8R^2r - 13Rr^2 - 6r^3 \ge 0 \Leftrightarrow (R-2r)(8R^2+8Rr+3r^2) \ge 0, \text{ obviously from} \\ \text{Euler's inequality } R \ge 2r.$$

Remark. We can write:

7) In $\triangle ABC$ the following relationship holds:

$$a+b+c \le \frac{a^2+bc}{b+c} + \frac{b^2+ca}{c+a} + \frac{c^2+ab}{a+b} \le (a+b+c)\frac{R}{2r}$$

Proposed by Marin Chirciu - Romania

Solution See 3) and 6). Equality holds if and only if the triangle is equilateral.

8) In $\triangle ABC$ the following relationship holds:

$$a + b + c \le \frac{a^2 + bc}{b + c} + \frac{b^2 + ca}{c + a} + \frac{c^2 + ab}{a + b} \le (a + b + c) \frac{R}{2r}$$

Proposed by Marin Chirciu - Romania

Solution We prove the following lemma:

www.ssmrmh.ro

Lemma.

In $\triangle ABC$ the following relationship holds:

$$\frac{a^2 + bc}{b + c} + \frac{b^2 + ca}{c + a} + \frac{c^2 + ab}{a + b} = \frac{5s^4 - 10s^2r^2 + r^2(4R + r)^2}{2s(s^2 + r^2 + 2Rr)}$$

Proof.

We have
$$\sum \frac{a^2+bc}{b+c} = \frac{\sum (a^2+bc)(a+b)(a+b)}{\prod (b+c)} = \frac{5s^2-10s^2r^2+r^2(4R+r)^2}{2s(s^2+r^2+2Rr)}$$
, which follows from
$$\sum (a^2+bc)(a+b)(a+b) = 5s^4-10s^2r^2+r^2(4R+r)^2 \text{ and }$$
$$\prod (b+c) = 2s(s^2+r^2+2Rr).$$

Let's get to the main problem.

LHS inequality. Using the Lemma the inequality can be written:

$$\frac{5s^4 - 10s^2r^2 + r^2(4R + r)^2}{2s(s^2 + r^2 + 2Rr)} \ge 2s \Leftrightarrow s^4 - s^2(8Rr + 14r^2) + r^2(4R + r)^2 \ge 0 \Leftrightarrow$$
$$\Leftrightarrow s^2(s^2 - 8Rr - 14r^2) + r^2(4R + r)^2 \ge 0$$

We distinguish the following cases:

Case 1). If
$$(s^2 - 8Rr - 14r^2) \ge 0$$
, the inequality is obvious.

Case 2). If
$$(s^2 - 8Rr - 14r^2) < 0$$
, the inequality rewrites itself:

$$r^2(4R+R)^2 \ge s^2(8R+14r^2-s^2)$$
, which follows from Gerretsen's inequality:

$$16Rr - 5r^2 \le s^2 \le \frac{R(4R+r)^2}{2(2R-r)} \le 4R^2 + 4Rr + 3r^2$$

It remains to prove that:

$$r^{2}(4R+r)^{2} \ge \frac{R(4R+r)^{2}}{2(2R-r)}(8Rr+14r^{2}-16Rr+5r^{2}) \Leftrightarrow$$

 $\Leftrightarrow 2r^{2}(2R-r) \le R(-8Rr+19r^{2}) \Leftrightarrow$

$$\Leftrightarrow 8R^2 - 15Rr - 2r^2 \ge 0 \Leftrightarrow (R - 2r)(8R + r) \ge 0$$
, obviously from Euler's inequality

 $R \geq 2r$. Equality holds if and only if the triangle is equilateral.

RHS inequality. Using the Lemma, the inequality rewrites itself:

$$\frac{5s^4 - 10s^2r^2 + r^2(4R + r)^2}{2s(s^2 + r^2 + 2Rr)} \le s \cdot \frac{R}{r} \Leftrightarrow s^2[s^2(2R - 5r) + 2r(2R^2 + Rr + 5r^2)] \ge r^3(4R + r)^2.$$

We distinguish the following cases:

www.ssmrmh.ro

Case 1). If $(2R - 5r) \ge 0$, we use Gerretsen's inequality $s^2 \ge 16Rr - 5r^2 \ge \frac{r(4R+r)^2}{R+r}$ It remain to prove that:

$$\frac{r(4R+r)^2}{R+r}[(16Rr-5r^2)(2R-5r)+2r(2R^2+Rr+5r^2)] \geq r^3(4R+r)^2 \Leftrightarrow \\ \Leftrightarrow 36R^2-89Rr+34r^2 \geq 0, \text{ obviously, because in this case } 2R \geq 5r. \\ \text{Case 2). If } (2R-5r) < 0, \text{ we rewrite the inequality} \\ s^2[2r(2R^2+Rr+5r^2)-s^2(5r-2R)] \geq r^3(4R+r)^2 \text{ and we use Gerretsen's inequality}$$

 $\frac{r(2R^2 + Rr + 5r^2) - s^2(5r - 2R)}{r(4R + r)^2} \ge r^3(4R + r)^2 \text{ and we use Gerretsen's}$ $\frac{r(4R + r)^2}{R + r} \le 16Rr - 5r^2 \le s^2 \le \frac{R(4R + r)^2}{2(2R - r)} \le 4R^2 + 4Rr + 3r^2$

 $\frac{r(4R+r)^2}{R+r}[2r(2R^2+Rr+5r^2)-(4R^2+4Rr+3r^2)(5r-2R)] \geq r^3(4R+r)^2 \Leftrightarrow 8R^3-8R^2r-13Rr^2-6r^3 \geq 0 \Leftrightarrow (R-2r)(8R^2+8Rr+3r^2) \geq 0, \text{ obviously from Euler's inequality } R \geq 2r. \text{ Equality holds if and only if the triangle is equilateral.}$

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro