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1.In ∆��� the following relationship holds: 
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Proposed by George Apostolopoulos-Greece 

Solution by Marin Chirciu-Romania 
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Lemma 1. 2. In ∆��� the following relationship holds: 
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R. Kooistra, Item 2.27, Geometric Inequality, O.Bottema,1969 

Proof. Applying Jensen Inequality for concave function � → ��� �, � ∈ (�, �), we get: 
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Equality holds if and only if triangle is equilateral. 

Lemma 2. 3. In ∆��� the following relationship holds: 
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Proof. We have: 
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Equality holds if and only if triangle is equilateral.Let’s proof that inequality: 
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which result from � ≥ ��√� (Mitrinovic) and �� ≤ ��� + ��� + ��� (Gerretsen). 
It remains to prove that: 

�√��(� + �)� ≥ �√���(��� + ��� + ��� − �� − ���) ⇔ 
�(� + �)� ≥ �(��� + ���) ⇔ �� − ���� + ��� − ��� ≥ � ⇔ 

(� − ��)(�� + ��) ≥ � which is true from � ≥ �� (Euler). 
Equality holds if and only if triangle is equilateral. 
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Equality holds if and only if triangle is equilateral. 
 

4. In ∆��� the following relationship holds: 
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Proposed by Marin Chirciu-Romania 

Solution by proposer Inequality it can be rewritten as: 
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Lemma 1.  5. In ∆��� the following relationship holds: 
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R. Kooistra, Item 2.27, Geometric Inequality, O.Bottema,1969 

Proof. Applying Jensen Inequality for concave function � → ��� �, � ∈ (�, �), we have: 
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Equality holds if and only if triangle is equilateral. 

Lemma 2.  6. In ∆��� the following relationship holds: 
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Proof. From BCS inequality, we have: 
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Equality holds if and only if triangle is equilateral.Now, let’s prove that inequality: 
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Using Bergstrom inequality, we have: 

� ��������
�

�
���

= �
�����

�

���
�
�

���

≥
�∑ ������� �

�

∑
�

���
�
�

���

=
�

�
��

�

∑
�

���
�
�

���

≥
����� � �

�
��

�

� �
�
� + ��

≥
(�) ���

��
 

where (2)⇔ 
�

�

�
�

�

��
�

�
���

≥
���

�� ⇔
��

��

�(���)

�

≥
���

�� ⇔ ��� ≥ ����(� + �), which follows from 

�� ≥ ���� − ��� (Gerretsen). It remains to prove that: 

�(���� − ���) ≥ ����(� + �) ⇔ ���� − ���� − ���� ≥ � ⇔ 

(� − ��)(���� + ���) ≥ � which is true from � ≥ �� (Euler). 

Equality holds if and only if triangle is equilateral. 

7. In acute ∆��� the following relationship holds: 
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Proposed by Marin Chirciu-Romania 

Solution by proposer Using Bergstrom inequality, we have: 

� ��������
�

�
���

= �
�����

���
�
����

≥
�∑ ������� �

�

∑ ���
�
����

=
�

���
�� − (�� + �)��

�

∑ ���
�
����

≥
(�) ��√��

�

�� + �
�

= 

=
���

�� + �
≥
(�) ��√��

�
 

Where (�) ⇔
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Equality holds if and only if triangle is equilateral. 
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Proposed by Marin Chirciu-Romania 

Solution by proposer 

Using Bergstrom inequality, we have: 
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Equality holds if and only if triangle is equilateral. 
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