

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 ABOUT AN INEQUALITY BY DRAGOLJUB MILOSEVIC-I
 By Marin Chirciu - Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{h_{a}^{2}}{r_{a}} \geq 4 r\left(2-\frac{r}{R}\right)^{2}
$$

Proposed by Dragoljub Milosevic - Serbia
Solution We prove the following lemma:

Lemma.

2) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{h_{a}^{2}}{r_{a}}=\frac{s^{4}+s^{2}\left(2 r^{2}-12 R r\right)+r^{3}(4 R+r)}{4 R^{2} r}
$$

Proof.

$$
\begin{gathered}
\text { Using } h_{a}=\frac{2 S}{a} \text { and } r_{a}=\frac{s}{s-a} \text { we obtain: } \\
\sum \frac{h_{a}^{2}}{r_{a}}=\sum \frac{\left(\frac{2 S}{a}\right)^{2}}{\frac{s}{s-a}}=4 S \sum \frac{s-a}{a^{2}}=\frac{s^{4}+s^{2}\left(2 r^{2}-12 R r\right)+r^{3}(4 R+r)}{4 R^{2} r} \text {, which follows from: } \\
\sum \frac{s-a}{a^{2}}=\frac{s^{4}+s^{2}\left(2 r^{2}-12 R r\right)+r^{3}(4 R+r)}{16 R^{2} r^{2} s}
\end{gathered}
$$

Let's get back to the main problem:
Using the Lemma we write the inequality:

$$
\begin{aligned}
& \frac{s^{4}+s^{2}\left(2 r^{2}-12 R r\right)+r^{3}(4 R+r)}{4 R^{2} r} \geq 4 r\left(2-\frac{r}{R}\right)^{2} \Leftrightarrow \\
& \Leftrightarrow s^{2}\left(s^{2}+2 r^{2}-12 R r\right)+r^{3}(4 R+r) \geq 16 r^{2}(2 R-r)^{2}
\end{aligned}
$$

Which follows from Gerretsen's inequality: $s^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:

$$
\left(16 R r-5 r^{2}\right)\left(16 R r-5 r^{2}+2 r^{2}-12 R r\right)+r^{3}(4 R+r) \geq 16 r^{2}(2 R-r)^{2} \Leftrightarrow
$$

$$
\Leftrightarrow(2 R-r)^{2} \geq(2 R-r)^{2} \text { obviously with equality. }
$$

Equality holds if and only if the triangle is equilateral.
Remark.Let's emphasize and inequality having an opposite sense.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

3)In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{h_{a}^{2}}{r_{a}} \leq \frac{1}{r}(2 R-r)^{2}
$$

Proposed by Marin Chirciu - Romania

Solution Using the Lemma we write the inequality:

$$
\begin{aligned}
& \frac{s^{4}+s^{2}\left(2 r^{2}-12 R r\right)+r^{3}(4 R+r)}{16 R^{2} r^{2} s} \leq \frac{1}{r}(2 R-r)^{2} \Leftrightarrow \\
\Leftrightarrow & s^{2}\left(s^{2}+2 r^{2}-12 R r\right)+r^{3}(4 R+r) \leq 4 r^{\wedge} 2(2 R-r)^{2}
\end{aligned}
$$

$$
\text { which follows from Gerretsen's: } s^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$ It remains to prove that:

$$
\begin{gathered}
\left(4 R^{2}+4 R r+3 r^{2}\right)\left(4 R^{2}+4 R r+3 r^{2}+2 r^{2}-12 R r\right)+r^{3}(4 R+r) \leq 4 r^{2}(2 R-r)^{2} \Leftrightarrow \\
\Leftrightarrow 4 R^{2} r^{2} \geq 16 r^{4}, \text { which follows from Euler's inequality } R \geq 2 r . \\
\text { Equality holds if and only if the triangle is equilateral. }
\end{gathered}
$$

Remark.We can write the double inequality:
4) In $\triangle A B C$ the following relationship holds:

$$
4 r\left(2-\frac{r}{R}\right)^{2} \leq \sum \frac{h_{a}^{2}}{r_{a}} \leq \frac{1}{r}(2 R-r)^{2}
$$

Solution See inequalities 1) and 3). Equality holds if and only if the triangle is equilateral.
Remark. Switching between them h_{a} and r_{a} we propose:
5) In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{r}(2 R-r)^{2} \leq \sum \frac{r_{a}^{2}}{h_{a}} \leq \frac{9 R^{4}}{16 r^{3}}
$$

Proposed by Marin Chirciu - Romania
Solution We prove the following lemma:

Lemma.

6) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{r_{a}^{2}}{h_{a}}=\frac{8 R^{2}+2 R r-s^{2}}{r}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Proof. Using $h_{a}=\frac{2 S}{a}$ and $r_{a}=\frac{s}{s-a}$ we obtain:

$$
\begin{gathered}
\sum \frac{r_{a}^{2}}{h_{a}}=\sum \frac{\left(\frac{s}{s-a}\right)^{2}}{\frac{2 S}{a}}=\frac{s}{2} \sum \frac{a}{(s-a)^{2}}=\frac{8 R^{2}+2 R r-s^{2}}{r}, \text { which follows from: } \\
\sum \frac{a}{(s-a)^{2}}=\frac{2\left(8 R^{2}+2 R r-s^{2}\right)}{r^{2} s}
\end{gathered}
$$

Let's get back to the main problem: LHS inequality:
Using Lemma, LHS inequality can be written:

$$
\frac{8 R^{2}+2 R r-s^{2}}{r} \geq \frac{1}{r}(2 R-r)^{2} \Leftrightarrow s^{2} \leq 4 R^{2}+6 R r-r^{2}
$$

which follows from Gerretsen's inequality: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$
It remains to prove that:
$4 R^{2}+4 R r+3 r^{2} \leq 4 R^{2}+6 R r-r^{2} \Leftrightarrow R \geq 2 r$ (Euler's inequality)
Equality holds if and only if the triangle is equilateral RHS inequality: Using Lemma the RHS inequality can be written:

$$
\frac{8 R^{2}+2 R r-s^{2}}{r} \leq \frac{9 R^{4}}{16 r^{3}} \Leftrightarrow 16 r^{2}\left(8 R^{2}+2 R r-s^{2}\right) \leq 9 R^{4}
$$

which follows from Gerretsen's inequality: $s^{2} \geq 16 R r-5 r^{2}$.
It remains to prove that:

$$
\begin{gathered}
16 r^{2}\left(8 R^{2}+2 R r-\left(16 R r-5 r^{2}\right)\right) \leq 9 R^{4} \Leftrightarrow 9 R^{4}-128 R^{2} r^{2}+224 R r^{3}-80 r^{4} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)^{2}\left(9 R^{2}+36 R r-20 r^{2}\right) \geq 0, \text { obviously. }
\end{gathered}
$$

Equality holds if and only if the triangle is equilateral.
Remark. Between the sums $\sum \frac{h_{a}^{2}}{r_{a}}$ and $\sum \frac{r_{a}^{2}}{h_{a}}$ we can write the relationship:

7) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{h_{a}^{2}}{r_{a}} \leq \sum \frac{r_{a}^{2}}{h_{a}}
$$

Proposed by Marin Chirciu - Romania

Solution Using the sums:
$\sum \frac{h_{a}^{2}}{r_{a}}=\frac{s^{4}+s^{2}\left(2 r^{2}-12 R r\right)+r^{3}(4 R+r)}{4 R^{2} r}$ and $\sum \frac{r_{a}^{2}}{h_{a}}=\frac{8 R^{2}+2 R r-s^{2}}{r}$ the inequality can be written:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \frac{s^{4}+s^{2}\left(2 r^{2}-12 R r\right)+r^{3}(4 R+r)}{4 R^{2} r} \leq \frac{8 R^{2}+2 R r-s^{2}}{r} \Leftrightarrow \\
\Leftrightarrow & s^{2}\left(s^{2}+2 r^{2}-12 R r+4 R^{2}\right)+r^{3}(4 R+r) \leq 8 R^{3}(4 R+r)
\end{aligned}
$$

which follows from Gerretsen's inequality: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.
It remains to prove that:

$$
\begin{aligned}
& \left(4 R^{2}+4 R r+3 r^{2}\right)\left(4 R^{2}+4 R r+3 r^{2}+2 r^{2}-12 R r+4 R^{2}\right)+r^{3}(4 R+r) \leq \\
& \leq 8 R^{3}(4 R+r) \Leftrightarrow 2 R^{3}-3 R^{2} r-4 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(2 R^{2}+R r+2 r^{2}\right) \geq 0
\end{aligned}
$$

which follows from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.
Remark. We can write the sequence of inequalities:
8) In $\triangle A B C$ the following inequality holds:

$$
4 r\left(2-\frac{r}{R}\right)^{2} \leq \sum \frac{h_{a}^{2}}{r_{a}} \leq \frac{1}{r}(2 R-r)^{2} \leq \sum \frac{r_{a}^{2}}{h_{a}} \leq \frac{9 R^{4}}{16 r^{3}}
$$

Solution See inequalities 4) and 5). Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro

