

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

ABOUT AN INEQUALITY BY RAHIM SHAHBAZOV-V

By Marin Chirciu – Romania

1) In ΔABC the following inequality holds:

$$\sum \frac{r_a - h_a}{r_a + h_a} + \frac{2r}{R} \leq 1$$

Proposed by Rahim Shahbazov–Azerbaijan

Solution We prove the following lemma:

Lemma.

2) In ΔABC the following relationship holds:

$$\sum \frac{r_a - h_a}{r_a + h_a} = \frac{s^2 - 7r^2 - 10Rr}{s^2 + r^2 + 2Rr}$$

Proof. Using the formulas $r_a = \frac{s}{s-a}$ and $h_a = \frac{2s}{a}$ we obtain:

$$\begin{aligned} \sum \frac{r_a - h_a}{r_a + h_a} &= \sum \frac{\frac{s}{s-a} - \frac{2s}{a}}{\frac{s}{s-a} + \frac{2s}{a}} = \sum \frac{3a - 2s}{2s - a} = \sum \frac{2a - b - c}{b + c} = \sum \left(\frac{2a}{b + c} - 1 \right) = \\ &= 2 \sum \frac{a}{b + c} - 3 = 2 \cdot \frac{2(s^2 - r^2 - Rr)}{s^2 + r^2 + 2Rr} - 3 = \frac{s^2 - 7r^2 - 10Rr}{s^2 + r^2 + 2Rr} \end{aligned}$$

Let's get back to the main problem: Using the Lemma we write the inequality:

$$\frac{s^2 - 7r^2 - 10Rr}{s^2 + r^2 + 2Rr} + \frac{2r}{R} \leq 1 \Leftrightarrow s^2 \leq 6R^2 + 2Rr - r^2, \text{ which follows from Gerretsen's inequality}$$

$$s^2 \leq 4R^2 + 4Rr + 3r^2. \text{ It remains to prove that:}$$

$$4R^2 + 4Rr + 3r^2 \leq 6R^2 + 2Rr - r^2 \Leftrightarrow R^2 - Rr - 2r^2 \geq 0 \Leftrightarrow (R - 2r)(R + r) \geq 0,$$

obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

3) In ΔABC the following relationship holds:

$$\sum \frac{r_a - h_a}{r_a + h_a} + \frac{r}{R - r} \leq 1$$

Proposed by Marin Chirciu - Romania

Solution Using the Lemma we write the inequality:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$\frac{s^2-7r^2-10Rr}{s^2+r^2+2Rr} + \frac{r}{R-r} \leq 1 \Leftrightarrow s^2 \leq 12R^2 - 6Rr - 9r^2$, which follows from Gerretsen's inequality $s^2 \leq 4R^2 + 4Rr + 3r^2$. It remains to prove that:
 $4R^2 + 4Rr + 3r^2 \leq 12R^2 - 6Rr - 9r^2 \Leftrightarrow 4R^2 - 5Rr - 6r^2 \geq 0 \Leftrightarrow$
 $\Leftrightarrow (R-2r)(4R+3r) \geq 0$, obviously from Euler's inequality.
 Equality holds if and only if the triangle is equilateral.

Remark. Inequality 1) can be strengthened.

4) In ΔABC the following relationship holds:

$$\sum \frac{r_a - h_a}{r_a + h_a} + \frac{3r}{R+r} \leq 1$$

Proposed by Marin Chirciu - Romania

Solution: Using the Lemma the inequality can be written:

$\frac{s^2-7r^2-10Rr}{s^2+r^2+2Rr} + \frac{3r}{R+r} \leq 1 \Leftrightarrow s^2 \leq 12R^2 + 14Rr + 5r^2$, which follows from Gerretsen's inequality $s^2 \leq 4R^2 + 4Rr + 3r^2$. It remains to prove that:
 $3(4R^2 + 4Rr + 3r^2) \leq 12R^2 + 14Rr + 5r^2 \Leftrightarrow R \geq 2r$ (Euler's inequality)
 Equality holds if and only if the triangle is equilateral.

Remark. Inequality 4) is stronger than inequality 1).

5) In ΔABC the following relationship holds:

$$\sum \frac{r_a - h_a}{r_a + h_a} + \frac{2r}{R} \leq \sum \frac{r_a - h_a}{r_a + h_a} + \frac{3r}{R+r} \leq 1$$

Solution: See inequality 4) and $\frac{2r}{R} \leq \frac{3r}{R+r} \Leftrightarrow R \geq 2r$ (Euler's inequality). Equality holds if and only if the triangle is equilateral.

Remark. We can write the inequalities

6) In ΔABC the following inequality holds:

$$\sum \frac{r_a - h_a}{r_a + h_a} + \frac{r}{R-r} \leq \sum \frac{r_a - h_a}{r_a + h_a} + \frac{2r}{R} \leq \sum \frac{r_a - h_a}{r_a + h_a} + \frac{3r}{R+r} \leq 1$$

Solution: See inequalities 3) and 5). Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro