

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

ABOUT AN INEQUALITY BY RAHIM SHAHBAZOV-IV

By Marin Chirciu – Romania

1) Let be $x, y, z, t > 0$ such that $xyzt = 1$. Prove that:

$$\frac{x^2 + 1}{x^5 + 3} + \frac{y^2 + 1}{y^5 + 3} + \frac{z^2 + 1}{z^5 + 3} + \frac{t^2 + 1}{t^5 + 3} \leq 2$$

Proposed by Rahim Shabazov – Azerbaijan

Solution We prove the following lemma:

Lemma.

If $x > 0$ then:

$$\frac{x^2 + 1}{x^5 + 3} \leq \frac{2}{x + 3}$$

Proof.

Inequality $\frac{x^2 + 1}{x^5 + 3} \leq \frac{2}{x + 3}$ is equivalent with:

$2x^5 - x^3 - 3x^2 - x + 3 \geq 0 \Leftrightarrow (x - 1)^2(2x^3 + 4x^2 + 5x + 3) \geq 0$, obviously with equality for $x = 1$.

Let's get back to the main problem.

Using the Lemma we obtain:

$M_x = \sum \frac{x^2 + 1}{x^5 + 3} \stackrel{(1)}{\leq} \sum \frac{2}{x + 3} = M_d$, where (1) $\Leftrightarrow \sum \frac{1}{x + 3} \Leftrightarrow \sum \frac{x}{x + 3} \geq 1$, which follows from

Bergström's inequality:

$$\begin{aligned} \sum \frac{x}{x + 3} &= \sum \frac{(\sqrt{x})^2}{x + 3} \stackrel{(2)}{\geq} \frac{(\sum \sqrt{x})^2}{\sum (x + 3)} \stackrel{(2)}{\geq} 1, \text{ where (2) } \Leftrightarrow \\ &\Leftrightarrow \frac{x + y + z + t + 2\sqrt{xy} + 2\sqrt{xz} + 2\sqrt{xt} + 2\sqrt{yz} + 2\sqrt{yt} + 2\sqrt{zt}}{x + y + z + t + 12} \geq 1 \Leftrightarrow \end{aligned}$$

$\sqrt{xy} + \sqrt{xz} + \sqrt{xt} + 2\sqrt{yz} + \sqrt{yt} + \sqrt{zt} \geq 6$, which follows from means inequality and the condition from hypothesis $xyzt = 1$.

We deduce that the equality from enunciation holds, with equality if and only if

$$x = y = z = t = 1.$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Remark. The inequality can be developed

2) Let be $x, y, z, t > 0$ such that $xyzt = 1$ and $3 \leq n \leq 4$. Prove that:

$$\frac{x^2 + 1}{x^5 + n} + \frac{y^2 + 1}{y^5 + n} + \frac{z^2 + 1}{z^5 + n} + \frac{t^2 + 1}{t^5 + n} \leq \frac{8}{n+1}$$

Proposed by Marin Chirciu - Romania

Solution We prove the following lemma:

Lemma.

If $x > 0$ and $\frac{3}{2} \leq n \leq 4$ then:

$$\frac{x^2 + 1}{x^5 + n} \leq \frac{2}{x(4-n) + 2n - 3}$$

Proof. Inequality $\frac{x^2 + 1}{x^5 + n} \leq \frac{2}{x(4-n) + 2n - 3}$ is equivalent with:

$$\begin{aligned} 2x^5 + (n-4)x^3 + (3-2n)x^2 + (n-4)x + 3 &\geq 0 \Leftrightarrow \\ \Leftrightarrow (x-1)^2(2x^2 + 4x^2 + (n+2)x + 3) &\geq 0 \text{ obviously with equality for } x = 1. \end{aligned}$$

Let's get back to the main problem.

Using the Lemma we obtain:

$$\begin{aligned} M_x = \sum \frac{x^2 + 1}{x^5 + n} &\leq \sum \frac{2}{x(4-n) + 2n - 3} \stackrel{(1)}{\leq} \frac{8}{n+1} = M_d, \text{ where (1)} \\ \Leftrightarrow \sum \frac{1}{x(4-n) + 2n - 3} &\leq \frac{4}{n+1} \Leftrightarrow (4-n) \sum \frac{x}{x(4-n) + 2n - 3} \geq (4-n) \frac{4}{n+1}, \text{ which follows from} \end{aligned}$$

$(4-n) \geq 0$ and $\sum \frac{1}{x(4-n) + 2n - 3} \geq \frac{4}{n+1}$, true from Bergström's inequality:

$$\begin{aligned} \sum \frac{x}{x(4-n) + 2n - 3} &= \sum \frac{(\sqrt{x})^2}{x(4-n) + 2n - 3} \geq \frac{(\sum \sqrt{x})^2}{\sum (x(4-n) + 2n - 3)} \stackrel{(2)}{\geq} \frac{4}{n+1}, \text{ where (2)} \Leftrightarrow \\ \Leftrightarrow \frac{x+y+z+t+2\sqrt{xy}+2\sqrt{xz}+2\sqrt{xt}+2\sqrt{yz}+2\sqrt{yt}+2\sqrt{zt}}{(4-n)(x+y+z+t)+4(2n-3)} &\geq \frac{4}{n+1} \Leftrightarrow \end{aligned}$$

$$(n+1)(x+y+z+t+2\sqrt{xy}+2\sqrt{xz}+2\sqrt{xt}+2\sqrt{yz}+2\sqrt{yt}+2\sqrt{zt}) \geq$$

$$\geq 4(4-n)(x+y+z+t) + 16(2n-3) \Leftrightarrow$$

$$\Leftrightarrow (5n-15)(x+y+z+t) + (2n+2)(\sqrt{xy} + \sqrt{xz} + \sqrt{xt} + \sqrt{yz} + \sqrt{yt} + \sqrt{zt}) \geq 16(2n-3),$$

which follows from means inequality and the conditions $n \geq 3$, $xyzt = 1$, assured by the

hypothesis. We deduce that the inequality from enunciation holds, with equality if and only

if $x = y = t = 1$.

Note.

1) For $n = 3$ we obtain the proposed problem by Rahim Shahbazov în RMM 11/2019.

2) For $n = 4$ we obtain the inequality:

3) Let $x, y, z, t > 0$ such that $xyzt = 1$. Prove that:

$$\frac{x^2 + 1}{x^5 + 4} + \frac{y^2 + 1}{y^5 + 4} + \frac{z^2 + 1}{z^5 + 4} + \frac{t^2 + 1}{t^5 + 4} \leq \frac{8}{5}$$

Proposed by Marin Chirciu - Romania

Solution We prove the following lemma:

Lemma.

If $x > 0$ then:

$$\frac{x^2 + 1}{x^5 + 4} \leq \frac{2}{5}$$

Proof. Inequality $\frac{x^2 + 1}{x^5 + 4} \leq \frac{2}{5}$ is equivalent with:

$2x^5 - x^2 + 3 \geq 0 \Leftrightarrow (x - 1)^2(2x^3 + 4x^2 + 6x + 3) \geq 0$, obviously with equality for $x = 1$. Let's get back to the main problem. Using the Lemma we obtain:

$$M_x = \sum \frac{x^2 + 1}{x^5 + 4} \leq \sum \frac{2}{5} = 4 \cdot \frac{2}{5} = \frac{8}{5} = M_d$$

We deduce that the inequality from enunciation holds, with equality if and only if

$$x = y = z = t = 1.$$

Remark. Inequality can be reduced to three variables:

4) Let $x, y, z > 0$ such that $xyz = 1$ and $\frac{11}{4} \leq n \leq 4$. Prove that:

$$\frac{x^2 + 1}{x^5 + n} + \frac{y^2 + 1}{y^5 + n} + \frac{z^2 + 1}{z^5 + n} \leq \frac{6}{n + 1}$$

Proposed by Marin Chirciu - Romania

Solution

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Using the Lemma $\frac{x^2+1}{x^5+n} \leq \frac{2}{x(4-n)+2n-3}$, $x > 0$ and $\frac{3}{2} \leq n \leq 4$ we obtain:

$$M_x = \sum \frac{x^2+1}{x^5+n} \leq \sum \frac{2}{x(4-n)+2n-3} \stackrel{(1)}{\leq} \frac{6}{n+1} = M_d, \text{ where (1)}$$

$$\Leftrightarrow \sum \frac{1}{x(4-n)+2n-3} \leq \frac{3}{n+1} \Leftrightarrow (4-n) \sum \frac{x}{x(4-n)+2n-3} \geq (4-n) \frac{3}{n+1}, \text{ which follows from}$$

$(4-n) \geq 0$ and $\sum \frac{1}{x(4-n)+2n-3} \geq \frac{3}{n+1}$, true from Bergström's inequality:

$$\sum \frac{x}{x(4-n)+2n-3} = \sum \frac{(\sqrt{x})^2}{x(4-n)+2n-3} \geq \frac{(\sum \sqrt{x})^2}{\sum (x(4-n)+2n-3)} \stackrel{(2)}{\geq} \frac{3}{n+1}, \text{ where (2)} \Leftrightarrow$$

$$\Leftrightarrow \frac{x+y+z+2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}}{(4-n)(x+y+z)+3(2n-3)} \geq \frac{3}{n+1} \Leftrightarrow$$

$$(n+1)(x+y+z+2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}) \geq 3(4-n)(x+y+z)+12(2n-3) \Leftrightarrow$$

$$\Leftrightarrow (4n-11)(x+y+z)+(2n+2)(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}) \geq 12(2n-3)$$

which follows from means inequality and the conditions $n \geq \frac{11}{4}$, $xyz = 1$, assured by the enunciation. We deduce that the inequality from enunciation holds, with equality if and only if $x = y = z = 1$.

Remark. Inequality can be strengthened to five variables:

5) Let $x_1, x_2, x_3, x_4, x_5 > 0$ such that $x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_5 = 1$ and

$$\frac{19}{6} \leq n \leq 4. \text{ Prove that:}$$

$$\frac{x_1^2+1}{x_1^5+n} + \frac{x_2^2+1}{x_2^5+n} + \frac{x_3^2+1}{x_3^5+n} + \frac{x_4^2+1}{x_4^5+n} + \frac{x_5^2+1}{x_5^5+n} \leq \frac{10}{n+1}$$

Proposed by Marin Chirciu - Romania

Solution Using the Lemma $\frac{x^2+1}{x^5+n} \leq \frac{2}{x(4-n)+2n-3}$, $x > 0$ and $\frac{3}{2} \leq n \leq 4$ we obtain:

$$M_x = \sum \frac{x_1^2+1}{x_1^5+n} \leq \sum \frac{2}{x_1(4-n)+2n-3} \stackrel{(1)}{\leq} \frac{10}{n+1} = M_d, \text{ where (1)}$$

$$\Leftrightarrow \sum \frac{1}{x_1(4-n)+2n-3} \leq \frac{5}{n+1} \Leftrightarrow (4-n) \sum \frac{x_1}{x_1(4-n)+2n-3} \geq (4-n) \frac{5}{n+1}, \text{ which follows from}$$

$(4-n) \geq 0$ and $\sum \frac{1}{x_1(4-n)+2n-3} \geq \frac{5}{n+1}$ true from Bergström's inequality:

$$\sum \frac{x_1}{x_1(4-n)+2n-3} = \sum \frac{(\sqrt{x_1})^2}{x_1(4-n)+2n-3} \geq \frac{(\sum \sqrt{x_1})^2}{\sum (x_1(4-n)+2n-3)} \stackrel{(2)}{\geq} \frac{5}{n+1}, \text{ where (2)} \Leftrightarrow$$

$$\Leftrightarrow \frac{\sum x_1 + 2 \sum \sqrt{x_1 x_2}}{(4-n) \sum x_1 + 5(2n-3)} \geq \frac{5}{n+1} \Leftrightarrow$$

$$\Leftrightarrow (n+1) \left(\sum x_1 + 2 \sum \sqrt{x_1 x_2} \right) \geq 5(4-n) \sum x_1 + 25(2n-3) \Leftrightarrow$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$(6n - 19) \sum x_1 + (2n + 2) \sum x_1 x_2 \geq 25(2n - 3)$$

which follows from means inequality and the condition $n \geq \frac{19}{6}$, $x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_5 = 1$, assured by the enunciation.

We obtain $(6n - 19) \sum x_1 + (2n + 2) \sum x_1 x_2 \geq (6n - 19) \cdot 5 + (2n + 2) \cdot 10 = 25(2n - 3)$

We deduce that the inequality from enunciation holds, with equality if and only if

$$x_1 = x_2 = x_3 = x_4 = x_5 = 1$$

Remark. We can generalize the inequality:

6) Let $x_1, x_2, \dots, x_k > 0$ such that $x_1 \cdot x_2 \cdot \dots \cdot x_k = 1$ and $\frac{4k-1}{k+1} \leq n \leq 4$.

Prove that:

$$\frac{x_1^2 + 1}{x_1^5 + n} + \frac{x_2^2 + 1}{x_2^5 + n} + \dots + \frac{x_k^2 + 1}{x_k^5 + n} \leq \frac{2k}{n+1}$$

Proposed by Marin Chirciu - Romania

Solution Using the Lemma $\frac{x^2 + 1}{x^5 + n} \leq \frac{2}{x(4-n) + 2n - 3}$, $x > 0$ and $\frac{3}{2} \leq n \leq 4$ we obtain:

$$M_x = \sum \frac{x_1^2 + 1}{x_1^5 + n} \leq \sum \frac{2}{x_1(4-n) + 2n - 3} \stackrel{(1)}{\leq} \frac{2k}{n+1} = M_d, \text{ where (1)}$$

$$\Leftrightarrow \sum \frac{1}{x_1(4-n) + 2n - 3} \leq \frac{k}{n+1} \Leftrightarrow (4-n) \sum \frac{x}{x_1(4-n) + 2n - 3} \geq (4-n) \frac{k}{n+1}, \text{ which follows from}$$

$(4-n) \geq 0$ and $\sum \frac{1}{x_1(4-n) + 2n - 3} \geq \frac{k}{n+1}$, true from Bergström's inequality:

$$\begin{aligned} \sum \frac{x_1}{x_1(4-n) + 2n - 3} &= \sum \frac{(\sqrt{x_1})^2}{x_1(4-n) + 2n - 3} \geq \frac{(\sum \sqrt{x_1})^2}{\sum (x_1(4-n) + 2n - 3)} \stackrel{(2)}{\geq} \frac{k}{n+1}, \text{ where (2)} \Leftrightarrow \\ &\Leftrightarrow \frac{\sum x_1 + 2 \sum \sqrt{x_1 x_2}}{(4-n) \sum x_1 + k(2n-3)} \geq \frac{k}{n+1} \Leftrightarrow \end{aligned}$$

$$\Leftrightarrow (n+1) \left(\sum x_1 + 2 \sum \sqrt{x_1 x_2} \right) \geq k(4-n) \sum x_1 + k^2(2n-3) \Leftrightarrow$$

$$\Leftrightarrow (n(k+1) + 1 - 4k) \sum x_1 + (2n+2) \sum x_1 x_2 \geq k^2(2n-3)$$

which follows from means inequality and the conditions $n \geq \frac{4k-1}{k+1}$, $x_1 \cdot x_2 \cdot \dots \cdot x_k = 1$,

assured by the enunciation.

We deduce that the inequality from enunciation holds, with equality if and only if

$$x_1 = x_2 = \dots = x_k = 1.$$

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro