

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro ABOUT AN INEQUALITY BY MEHMET SAHIN-I

By Marin Chirciu – Romania

1) In $\triangle ABC$ the following relationship holds:

$$\sum \frac{b+c}{a} \cdot \frac{r_a}{h_a} \ge 6$$

Proposed by Mehmet Şahin – Ankara – Turkey

Solution We prove the following lemma:

Lemma.

2) In $\triangle ABC$ the following relationship holds:

$$\sum \frac{b+c}{a} \cdot \frac{r_a}{h_a} = 2\left(1+\frac{R}{r}\right)$$

Proof. Using $r_a = \frac{s}{s-a}$ and $h_a = \frac{2S}{a}$ we obtain:

 $\frac{r_a}{h_a} = \frac{\frac{s}{s-a}}{\frac{2S}{a}} = \frac{a}{2(s-a)'} \text{ wherefrom } \sum \frac{b+c}{a} \cdot \frac{r_a}{h_a} = \sum \frac{b+c}{a} \cdot \frac{a}{2(s-a)} = \frac{1}{2} \sum \frac{b+c}{s-a} = 2\left(1 + \frac{R}{r}\right), \text{ which}$

follows from the known identity in triangle $\sum_{s=a}^{b+c} = 4\left(1 + \frac{R}{r}\right)$. Let's get back to the main

problem. Using the Lemma the inequality can be rewritten:

 $2\left(1+\frac{R}{r}\right) \ge 6 \Leftrightarrow R \ge 2r$ (Euler's inequality)

Equality holds if and only if the triangle is equilateral.

Solution Let's find an inequality having an opposite sense:

3) In $\triangle ABC$ the following relationship holds:

$$\sum \frac{b+c}{a} \cdot \frac{r_a}{h_a} \le \frac{3R}{r}$$

Proposed by Marin Chirciu - Romania

Solution

Using Lemma we write the inequality:

$$2\left(1+\frac{R}{r}\right) \le \frac{3R}{r} \Leftrightarrow R \ge 2r$$
 (Euler's inequality)

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Equality holds if and only if the inequality is equilateral.

Remark.

We can write the double inequality:

4) In $\triangle ABC$ the following relationship holds:

$$6 \leq \sum \frac{b+c}{a} \cdot \frac{r_a}{h_a} \leq \frac{3R}{r}$$

Solution

See inequalities 1) and 3). Equality holds if and only if the triangle is equilateral.

Remark.

If we interchange r_a with h_a we propose:

5) In $\triangle ABC$ the following relationship holds:

$$6 \leq \sum \frac{b+c}{a} \cdot \frac{h_a}{r_a} \leq \left(\frac{2R}{r}\right)^2 - 10$$

Proposed by Marin Chirciu – Romania

Solution

We prove the following lemma:

Lemma.

6) In $\triangle ABC$ the following relationship holds:

$$\sum \frac{b+c}{a} \cdot \frac{h_a}{r_a} = \frac{s^2(s^2 + 2r^2 - 14Rr) + r^2(16R^2 + 2Rr + r^2)}{4R^2s^2}$$

Proof.

Using
$$h_a = \frac{2S}{a}$$
 and $r_a = \frac{S}{s-a}$ we obtain: $\frac{h_a}{r_a} = \frac{\frac{2S}{a}}{\frac{S}{s-a}} = \frac{2(s-a)}{a}$, wherefrom

$$\sum \frac{b+c}{a} \cdot \frac{h_a}{r_a} = \sum \frac{b+c}{a} \cdot \frac{2(s-a)}{a} = 2\sum \frac{(b+c)(s-a)}{a^2}$$

$$= \frac{s^2(s^2+2r^2-14Rr) + r^2(16R^2+2Rr+r^2)}{4R^2r^2}$$

which follows from the known identity in triangle

ROMANIAN MATHEMATICAL MAGAZINE $\sum \frac{(b+c)(s-a)}{a^2} = \frac{s^2 (s^2 + 2r^2 - 14Rr) + r^2 (16R^2 + 2Rr - r^2)}{8R^2 r^2} and$ $\sum b^2 c^2 (b+c)(s-a) = 2s^2 [s^2 (s^2 + 2r^2 - 14Rr) + r^2 (16R^2 + 2Rr + r^2)]$ Let's get back to the main problem. LHS inequality. Using the lemma the inequality can be written: $\frac{s^2(s^2 + 2r^2 - 14Rr) + r^2(16R^2 + 2Rr + r^2)}{4R^2r^2} \ge 6 \Leftrightarrow$ $\Leftrightarrow s^2(s^2 + 2r^2 - 14Rr) + r^2(16R^2 + 2Rr + r^2) \ge 24R^2r^2$, which follows from Gerretsen's inequality $s^2 \ge 16Rr - 5r^2$. It remains to prove that: $(16Rr - 5r^2)(16Rr - 5r^2 + 2r^2 - 14Rr) + r^2(16R^2 + 2Rr + r^2) \ge 24R^2r^2 \Leftrightarrow$ $\Leftrightarrow 3R^2 - 7Rr + 2r^2 \ge 0 \Leftrightarrow (R - 2r)(3R - r) \ge 0$, obviously from Euler's inequality $R \geq 2r$. Equality holds if and only if the triangle is equilateral. Using Lemma the inequality can be rewritten: $\frac{s^2(s^2 + 2r^2 - 14Rr) + r^2(16R^2 + 2Rr + r^2)}{AR^2r^2} \le \left(\frac{2R}{r}\right)^2 - 10 \Leftrightarrow$ $\Leftrightarrow s^2(s^2 + 2r^2 - 14Rr) + r^2(16R^2 + 2Rr + r^2) \le 4R^2r^2(4R^2 - 10r^2)$, which follows from Gerretsen's inequality $s^2 < 4R^2 + 4Rr + 3r^2$. It remains to prove that: $(4R^{2} + 4Rr + 3r^{2})(4R^{2} + 4Rr + 3r^{2} + 2r^{2} - 14Rr) + r^{2}(16R^{2} + 2Rr + r^{2}) \le 4R^{2}(4R^{2} - 10r^{2})$

 $\Leftrightarrow 3R^3 - 6R^2r + Rr^2 - 2r^3 \ge 0 \Leftrightarrow (R - 2r)(3R^2 + r^2) \ge 0, \text{ obviously from Euler's}$

inequality $R \ge 2r$. Equality holds if and only if the triangle is equilateral.

Remark.

Between $\sum \frac{b+c}{a} \cdot \frac{r_a}{h_a}$ and $\sum \frac{b+c}{a} \cdot \frac{h_a}{r_a}$ the following relationship holds:

7) In $\triangle ABC$ the following relationship holds:

$$\sum \frac{b+c}{a} \cdot \frac{h_a}{r} \ge \frac{2r}{R} \sum \frac{b+c}{a} \cdot \frac{r_a}{h_a}$$

Proposed by Marin Chirciu - Romania

Solution Using the lemmas from above, we write the inequality:

$$\frac{s^2(s^2 + 2r^2 - 14Rr) + r^2(16R^2 + 2Rr + r^2)}{4R^2r^2} \ge \frac{2r}{R} \cdot 2\left(1 + \frac{R}{r}\right) \Leftrightarrow$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

 $\Leftrightarrow s^{2}(s^{2} + 2r^{2} - 14Rr) + r^{2}(16R^{2} + 2Rr + r^{2}) \geq 16Rr^{2}(R + r), \text{ which follows from}$ Gerretsen's inequality $s^{2} \geq 16Rr - 5r^{2}$. It remains to prove that: $(16Rr - 5r^{2})(16Rr - 5r^{2} + 2r^{2} - 14Rr) + r^{2}(16R^{2} + 2Rr + r^{2}) \geq 16Rr^{2}(R + r) \Leftrightarrow$ $\Leftrightarrow 4R^{2} - 9Rr + 2r^{2} \geq 0 \Leftrightarrow (R - 2r)(4R - r) \geq 0, \text{ obviously from Euler's inequality}$ $R \geq 2r.$ Equality holds if and only if the triangle is equilateral.

Remark.

We write the double sequence of inequalities:

8) In $\triangle ABC$ the following inequality holds:

$$\frac{3R}{r} \ge \sum \frac{b+c}{a} \cdot \frac{h_a}{r_a} \ge \frac{2r}{R} \sum \frac{b+c}{a} \cdot \frac{r_a}{h_a} \ge \frac{12r}{R}$$

See inequalities 1), 4) and 8). Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro