

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

ABOUT AN INEQUALITY BY ADIL ABDULLAYEV-II

By Marin Chirciu – Romania

1) In ΔABC the following relationship holds:

$$3 + \sum \cos(B - C) \geq 6 \prod \frac{h_a}{m_a}$$

Proposed by Adil Abdullayev – Azerbaijan

Solution

We prove the following lemma:

Lemma.

2) In ΔABC , holds:

$$\prod \frac{h_a}{m_a} \leq \frac{32r^2}{s^2 + r^2 + 2Rr}$$

Proof.

Using $m_a \geq \frac{b+c}{2} \cos \frac{A}{2}$ we obtain:

$$\prod m_a \geq \prod \frac{b+c}{2} \cos \frac{A}{2} = \frac{\prod (b+c)}{8} \prod \cos \frac{A}{2} = \frac{2s(s^2 + r^2 + 2Rr)}{8} \cdot \frac{s}{4R} = \frac{s^2(s^2 + r^2 + 2Rr)}{16R} \quad (1)$$

$$\text{Using the known inequality in triangle } \prod h_a = \frac{2s^2r^2}{R} \quad (2)$$

$$\text{From (1) and (2) we obtain } \prod \frac{h_a}{m_a} \leq \frac{\frac{2s^2r^2}{R}}{\frac{s^2(s^2 + r^2 + 2Rr)}{16R}} = \frac{32r^2}{s^2 + r^2 + 2Rr}$$

Equality holds if and only if the triangle is equilateral.

Let's get back to the main problem.

Using Lemma and the identity $\sum \cos(B - C) = \frac{s^2 + r^2 + 2Rr}{2R^2} - 1$ it suffices to prove that:

$$3 + \frac{s^2 + r^2 + 2Rr}{2R^2} - 1 \geq 6 \cdot \frac{32r^2}{s^2 + r^2 + 2Rr} \Leftrightarrow (s^2 + r^2 + 2Rr)(s^2 + r^2 + 2Rr + 4R^2) \geq 384R^2r^2,$$

which follows from Gerretsen's inequality $s^2 \geq 16Rr - 5r^2$. It remains to prove that:

$$(16Rr - 5r^2 + r^2 + 2Rr)(16Rr - 5r^2 + r^2 + 2Rr + 4R^2) \geq 384R^2r^2 \Leftrightarrow$$

$$\Leftrightarrow 18R^3 - 19R^2r - 36Rr^2 + 4r^3 \geq 0 \Leftrightarrow (R - 2r)(18R^2 + 17Rr - 2r^2) \geq 0$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

obviously from Euler's inequality $R \geq 2r$. Equality holds if and only if the triangle is equilateral.

Remark. If we replace h_a with r_a we propose that:

3) In ΔABC the following inequality holds:

$$3 + \sum \cos(B - C) \geq \frac{12r}{R} \prod \frac{r_a}{m_a}$$

Proposed by Marin Chirciu - Romania

Solution We prove the following lemma:

Lemma.

4) In ΔABC the following relationship holds:

$$\prod \frac{r_a}{m_a} \leq \frac{16Rr}{s^2 + r^2 + 2Rr}$$

Proof. Using $m_a \geq \frac{b+c}{2} \cos \frac{A}{2}$ we obtain:

$$\prod m_a \geq \prod \frac{b+c}{2} \cos \frac{A}{2} = \frac{\prod(b+c)}{8} \prod \cos \frac{A}{2} = \frac{2s(s^2+r^2+2Rr)}{8} \cdot \frac{s}{4R} = \frac{s^2(s^2+r^2+2Rr)}{16R} \quad (1)$$

Using the known identity in triangle $\prod r_a = rs^2$ (2)

$$\text{From (1) and (2) we obtain } \prod \frac{r_a}{m_a} \leq \frac{rs^2}{s^2(s^2+r^2+2Rr)} = \frac{16Rr}{s^2+r^2+2Rr}$$

Equality holds if and only if the triangle is equilateral.

Let's get back to the main problem.

Using Lemma and the identity $\sum \cos(B - C) = \frac{s^2+r^2+2Rr}{2R^2} - 1$ it suffices to prove that:

$$3 + \frac{s^2 + r^2 + 2Rr}{2R^2} - 1 \geq \frac{12r}{R} \cdot \frac{16Rr}{s^2 + r^2 + 2Rr} \Leftrightarrow (s^2 + r^2 + 2Rr)(s^2 + r^2 + 2Rr + 4R^2) \geq 384R^2r^2$$

which follows from $(16Rr - 5r^2 + r^2 + 2Rr)(16Rr - 5r^2 + r^2 + 2Rr + 4R^2) \geq 384R^2r^2$

$$\Leftrightarrow 18R^3 - 19R^2r - 36Rr^2 + 4r^3 \geq 0 \Leftrightarrow (R - 2r)(18R^2 + 17Rr - 2r^2) \geq 0$$

Obviously from Euler's inequality $R \geq 2r$. Equality holds if and only if the triangle is equilateral.

Reference:

Romanian Mathematical Magazine-www.ssmrmh.ro