A dazzling identity

Narendra Bhandari,Bajura,Nepal
E-mail: narenbhandari04@gmail.com
Schooling: Far- West Secondary School,Dhangadhi,Kailali
High School: National Academy of Science and Technology, Dhangadhi,Kailali, Pokhara University

June 6, 2020

Abstract: In this paper we shall be deriving an identity (main result) which was an inspiration from Prof. Daniel Sitaru's proposal. The identity is in fact the variant version of inspired problem that uses the Faulhaber's Formula and elementary algebraic identities.

Theorem(Main result): For positive integers M, N and p such that $M \leq N$ the following holds

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{j=M}^{N}\left(\sum_{k=1}^{j}\left(\sum_{l=1}^{k} \frac{1}{k} \sqrt[n l]{G(n, l)}\right)^{n}\right)^{p}\binom{N-M+1}{1}^{-1}=\frac{1}{2} \sum_{q=1}^{p} \frac{N^{p}(M-1)^{q}}{N^{q}(M-1)} \\
& +\frac{1}{p+1} \sum_{q=1}^{p+1} N^{p+1-q}(M-1)^{q-1}+\sum_{j=2}^{p} \sum_{q=1}^{p-j+1} \frac{B_{j}}{j}\binom{p}{j-1} N^{p-j+1-q}(M-1)^{q-1}
\end{aligned}
$$

where $G(n, l)=1+(-1)^{l+1} \frac{\sqrt[n l]{n l}}{n l}$ and B_{n} is nt Bernoulli number.
Motivation : Before we get to derive the main result, let's shed the light on the original motivating proposed problem of Prof. Daniel Sitaru published by Romanian Mathematical Magazine. The problem was to find

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{1}{2}\left(1+\frac{\sqrt[n]{n}}{n}\right)^{\frac{1}{n}}+\frac{1}{2}\left(1-\frac{\sqrt[n]{n}}{n}\right)^{\frac{1}{n}}\right)^{n}
$$

The limit for the above problem is 1 . To crack the problem we can observe that limit has 1^{∞} form.

We shall derive the following lemma.
Lemma: For all $n, l \in \mathbf{N}$ if $\bar{G}(n, l)=\left(1 \pm \frac{\sqrt[n l]{n l}}{n l}\right)$, then

$$
\lim _{n \rightarrow \infty} \sqrt[n l]{\bar{G}(n, l)}=1
$$

Proof for lemma

Proof

It is trival to show that for all $n, l \geq 1,0<\frac{1}{n l} \leq 1$ so by Bernoulli inequality we deduce that

$$
\begin{gathered}
0<\sqrt[n l]{\bar{G}(n, l)}=\sqrt[n l]{1 \pm \frac{\sqrt[n l]{n l}}{n l}} \leq 1 \pm \frac{\sqrt[n l]{n l}}{(n l)^{2}} \\
\sqrt[n l+1]{n l+1} \leq \sqrt[n l]{n l} \leq 1 \stackrel{\text { Bernoulli }}{\Rightarrow} 1+\frac{1}{n l(n l+1)} \leq \sqrt[n l]{n l} \leq 1
\end{gathered}
$$

Now as $n \rightarrow \infty$ our sequence $\sqrt[n l]{n l}$ converges to 1 by Squeeze theorem and hence

$$
\lim _{n \rightarrow \infty} \sqrt[n l]{\bar{G}(n, l)}=1+\lim _{n \rightarrow \infty} \frac{\sqrt[n l]{n l}}{n l}=1+0=1
$$

this completes the proof for the Lemma.
Using the lemma and setting $l=1$ we have then the case of proposed problem giving us

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{2}\right)^{n}=1^{\infty}
$$

But then the 1^{∞} is an indeterminate form so we are not done to show that the limit is 1 .

Since we showed that $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n}}{n}=0<1$ or for $n \in \mathbf{N}$ by induction it is easy to verify that $\sqrt[n]{n} \leq \sqrt[n]{n!} \leq n$ which implies $\frac{\sqrt[n]{n}}{n}<1, \forall n>$ 1 and by fractional binomial theorem

$$
\frac{1}{2}\left(\sum_{r=0}^{\infty}\binom{\frac{1}{n}}{r}\left(\frac{\sqrt[n]{n}}{n}\right)^{r}+\left(-\frac{\sqrt[n]{n}}{n}\right)^{r}\right)=\frac{1}{2}\left(2+2 \sum_{r=0}^{\infty}\binom{\frac{1}{n}}{2 r}\left(\frac{\sqrt[n]{n}}{n}\right)^{2 r}\right)
$$

$=\frac{1}{2}(2+2 R(n))=1+R(n)$ where $R(n)$ is the latter infinite sum. Therefore,

$$
\Omega=\lim _{n \rightarrow \infty}(1+R(n))^{n}=\exp \left(\lim _{n \rightarrow \infty} R(n)\right) \stackrel{R(n) \rightarrow 0}{=} e^{0}=1
$$

we are done. Now what if we are interested to determine the limits of

$$
\begin{aligned}
& \left(\left(1+\frac{\sqrt[n]{n}}{n}\right)^{\frac{1}{n}}\right)^{n},\left(\frac{1}{2}\left(1+\frac{\sqrt[n]{n}}{n}\right)^{\frac{1}{n}}+\frac{1}{2}\left(1-\frac{\sqrt[2 n]{2 n}}{2 n}\right)^{\frac{1}{2 n}}\right)^{n} \\
& \left(\frac{1}{3}\left(1+\frac{\sqrt[n]{n}}{n}\right)^{\frac{1}{2 n}}+\frac{1}{3}\left(1-\frac{\sqrt[2 n]{2 n}}{2 n}\right)^{\frac{1}{2 n}}+\frac{1}{3}\left(1+\frac{\sqrt[3 n]{3 n}}{3 n}\right)^{\frac{1}{3 n}}\right)^{n}
\end{aligned}
$$

and soon. We shall show the limits for the above sequences converges to 1 in the following proof of the main result.

Proof for the theorem

Proof. For all $n, l \in \mathbf{N}$ we define $F(n, l)=(-1)+\frac{\sqrt[n l]{n l}}{n l}$ and $G(n, l)=1+F(n, l)$ then

$$
\lim _{n \rightarrow \infty} \frac{1}{k} \sum_{l=1}^{k} \sqrt[n l]{G(n, l)}=\lim _{n \rightarrow \infty} \frac{1}{k} \sum_{l=1}^{k} \sqrt[n l]{1+F(n, l)} \overbrace{=}^{\text {Lemma }} \sum_{l=1}^{k} k^{-1}=1
$$

which follows that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{k} \sum_{l=1}^{k} \sqrt[n l]{G(n, l)}\right)^{n}=\lim _{n \rightarrow \infty} 1^{n}=1^{\infty}
$$

giving us the 1^{∞} form. Though we have 1^{∞} but to deal with it we are unknown with function $J(n)$ (say) such that $\exp \left(\lim _{n \rightarrow \infty} J(n)\right)$ is properly handled(like that of motivated problem resolution).

To obtain the function $J(n)$ we express $J(n)$ as

$$
\frac{1}{k} \sum_{l=1}^{k} \sqrt[n l]{G(n, l)}=\frac{1}{k} \sum_{l=1}^{k} \sqrt[n l]{1+F(n, l)}=\frac{1}{k} \sum_{l=1}^{k} \sum_{r=0}^{\infty}\binom{\frac{1}{n l}}{r} F^{r}(n, l)
$$

in the latter expression we uses the fractional binomial theorem for $\sqrt[n l]{1+F(n, l)}$. It's valid to use as $|F(n, l)|<1$. Further on expansion of the latter binomial series we can note that

$$
\begin{aligned}
& \frac{1}{k} \sum_{l=1}^{k} \sum_{r=0}^{\infty}\binom{\frac{1}{n l}}{r} F^{r}(n, l)=\frac{1}{k} \sum_{l=1}^{k}\left(F^{0}(n, l)+F^{1}(n, l)+O\left(n^{-3}\right)\right) \\
& =\frac{1}{k} \sum_{l=1}^{k}\left(1+F^{1}(n, l)\right)=1+\frac{1}{k} \sum_{l=1}^{k}(-1)^{l+1} \frac{\sqrt[n l]{n l}}{(n l)^{2}}=1+y(n, k)
\end{aligned}
$$

where $O($.$) is Big O$ notation and since we are interested in limit guving us the $J(n)=y(n, k)$ in terms of $n \rightarrow \infty$. Therefore, we deduce the limit

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left(\frac{1}{k} \sum_{l=1}^{k} \sqrt[n l]{G(n, k)}\right)^{n}=\lim _{n \rightarrow \infty}(1+y(n, k))^{n}=\exp \left(\lim _{n \rightarrow \infty} y(n, k)\right)= \\
\exp \left(\lim _{n \rightarrow \infty} \frac{1}{k n^{2}} \sum_{l=1}^{k} \frac{(-1)^{l+1} \sqrt[n l]{n l}}{l^{2}}\right)=e^{0}=1 .
\end{gathered}
$$

and hence for $p \geq 1$, we deduce that
$\lim _{n \rightarrow \infty} \sum_{j=M}^{N}\left(\sum_{k=1}^{j}\left(\frac{1}{k} \sum_{l=1}^{k} \sqrt[n l]{G(n, l)}\right)^{n}\right)^{p}=\sum_{J=M}^{N}\left(\sum_{k=1}^{j} k^{-1} \times k\right)^{p}=\sum_{j=M}^{N} j^{p}$.
It is easy to observe the latter sum appears as the Faulhaber's formula however, the sum begins from any $1 \leq j=M \leq N$ so the direct application formula is not appropriate.

$$
\begin{aligned}
& \text { Call } X(M, N, p)=\sum_{j=M}^{N} j^{p} \text { then we can notice that } \\
& X(M, N, p)=X(1, N, p)-X(1, M-1, p)=\sum_{j=1}^{N} j^{p}-\sum_{j=1}^{M-1} j^{p}
\end{aligned}
$$

Recall that (Faulhaber's formula)

$$
\sum_{j=1}^{N} j^{p}=\frac{N^{p+1}}{p+1}+\frac{N^{p}}{2}+\sum_{j=2}^{p} \frac{B_{j} p!}{j!} \frac{N^{p-j+1}}{(p-j+1)!} \cdots(i)
$$

and now for $M-1$

$$
\begin{equation*}
\sum_{j=1}^{M-1} j^{p}=\frac{(M-1)^{p+1}}{p+1}+\frac{(M-1)^{p}}{2}+\sum_{j=2}^{p} \frac{B_{j} p!}{j!} \frac{(M-1)^{p-j+1}}{(p-j+1)!} \cdots \tag{ii}
\end{equation*}
$$

subtracting $(i)-(i i)$ it's yields the following

$$
\begin{gathered}
X(M, N, p)=\frac{N^{p+1}-(M-1)^{p+1}}{p+1}+\frac{N^{p}-(M-1)^{p}}{2}+ \\
+\sum_{j=2}^{p} \frac{B_{j}}{j!p!(p-j+1)!}\left(N^{p-j+1}-(M-1)^{p-j+1}\right)
\end{gathered}
$$

for the simplification of the above identity we have elementary algebraic identity

$$
a^{n}-b^{n}=(a-b) \sum_{q=0}^{N} a^{N-q-1} b^{q}=(a-b) \sum_{q=1}^{n} a^{n-q} b^{q-1}
$$

and thus $X(M, N, p)=$

$$
\begin{gathered}
\frac{(N-M+1)}{p+1} \sum_{q=1}^{p+1} N^{p+1-q}(M-1)^{q-1}+\frac{N-M+1}{2} \sum_{q=1}^{p} N^{p-q}(M-1)^{q-1} \\
\quad+(N-M+1) \sum_{j=2}^{p} \sum_{q=1}^{p-j+1} \frac{B_{j} p!N^{p-j+1-q}(M-1)^{q-1}}{j!(p-j+1)} \\
X(M, N, p)\binom{N-M+1}{1}^{-1}=\frac{1}{2} \sum_{q=1}^{p} N^{p-q}(M-1)^{q-1}+ \\
\frac{1}{p+1} \sum_{q=1}^{p+1} N^{p+1-q}(M-1)^{q-1}+\sum_{j=2}^{p} \sum_{q=1}^{p-j+1} \frac{B_{j}}{j}\binom{p}{j-1} N^{p-j+1-q}(M-1)^{q-1}
\end{gathered}
$$ which completes the proof.

Corollaries

1.Show that

$$
\lim _{n \rightarrow \infty} \sum_{j=M}^{N} \sum_{k=1}^{j}\left(\frac{1}{k} \sum_{l=1}^{k} \sqrt[n l]{G(n, l)}\right)^{n}=\frac{N+M}{2}(N-M+1)
$$

this result is immediately followed by setting $p=1$
2. Prove that

$$
\lim _{n \rightarrow \infty} \sum_{j=M}^{N}\left(\sum_{k=1}^{j}\left(\frac{1}{k} \sum_{l=1}^{k} \sqrt[n l]{G(n, l)}\right)^{n}\right)^{2}=X(M, N, 2)
$$

$=\frac{N-M+1}{3}\left(N^{2}+N M+\frac{N}{2}+M^{2}-\frac{M}{2}\right)$ is the particular case of the main result for $p=2$

The particular case for $p=2$ is can be found as proposed problem which is published by Romanian Mathematical Magazine.

References

[1] Faulhaber's formula,https://en.m.wikipedia.org/wiki/Faulhaber.
[2] Fractional binomial theorem,https://brilliant.org/wiki/fractional-binomial-theorem/.
[3] Big O notation,https://en.m.wikipedia.org/wiki/Big O notation.

