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Proof: Consider the integral,∫ 1

0

ln(x)ln(1 − x3)dx

This can be solved in two ways, first by expanding ln(1 − x3) and then in-
tegrating term by term, hence finding its closed form. Second way is to use
logarithmic and complex properties of cube root of unity and then form an
infinite series.
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Now summing both the sides, we obtain,∫ 1
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Second way:∫ 1
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Hence, using (1) and (2), we obtain,
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Finally,
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