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where Φ(z, s, a) is Lerch Transcendent function , Hk is the Kth Harmonic num-
ber, ψ1(x) is the trigamma function and φ is the Golden ratio.

Solution by proposer
Before we start with the problem we shall consider the integral of the form

I(n) =

∫ 1

0
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Note thatD(k) =
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Now we consider the latter integral I(k) =

∫ 1
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xk ln2(1− x)dx for k ≥ 0 which

further can be written as
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Integration by parts we see that
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Plugging the result from (1) to last integral we have
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Further note that nth partial sum of H
(2)
k+1 = ζ(2)−ψ1(k+2) giving us required
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Now we notice that
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expression D , we use the Gauss’s-Diagamma theorem, ie
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plugging r = 1,m = 10, 20 we have
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and also D = I − k− ln 2 and on further simplification of the D we obtain that
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Further we have cot
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Note: This identity is proposed by Narendra Bhandari and is proved by
Sergio Esteban( beautiful geometry work) and Ahmed Hegazi(trigonometry
work). From half angle formula we have that
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now set φ = 6◦. Giving us
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√
1− cos 6◦

2
=

√
1− cos(36◦ − 30◦)

2

Now using compound angle formula we can get cos(36◦−30◦) = cos 36◦ cos 30◦+

sin 36◦ sin 30◦ =

(√
5 + 1

4

) √
3

2
+

(√
10− 2

√
5

4

)
1

2
=

√
10− 2

√
5 +
√

3 +
√

15

8
putting
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we are done

and on simplification(rationalization) we have
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Surprisingly, it is note worthy that the polynomial equation

F (X) = x4 − 144x3 + 6656x2 − 98304x+ 65536 = 0
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