

Proposed by Narendra Bhandari, Bajura, Nepal and published by Romanian mathematical Magazine

Let $\Re(k) > 0$ and if

$$\sum_{1 \leq n \leq m \leq \infty} \frac{1}{n^2 m + m^2 n + k m n} = \frac{(H_{k+1})^2 - \psi^1(k + \alpha)}{k + \beta} + \frac{\pi^\alpha}{\lambda(k + \beta)} \text{ and}$$

$$\sum_{n=0}^{\infty} \sum_{q=0}^n \frac{x^n}{(q+b)\sqrt{q+b+1} + (q+b+1)\sqrt{q+b}} = \frac{1}{\sqrt{b}(1-x)} - \Phi\left(x, \frac{1}{\alpha}, b+1\right)$$

where $b \in \mathbf{N}$ and $|x| < 1$ then prove that $\Phi(\beta - \alpha, \beta, (\alpha + 2\beta + \lambda)^{-1}) =$

$$\frac{2\pi}{\sqrt{5}-1} + \sqrt{\phi+2} \log\left(\theta - \frac{8\theta}{4 + \sqrt{10-2\sqrt{5}} + \sqrt{15} + \sqrt{3}}\right) + 2^{-1} \sqrt{10-2\sqrt{5}} \log\left(\frac{\sqrt{3}\theta - 1}{\theta + \sqrt{3}}\right)$$

and

$$\theta = \sqrt{\frac{8 + \sqrt{10-2\sqrt{5}} + \sqrt{15} + \sqrt{3}}{8 - \sqrt{10-2\sqrt{5}} - \sqrt{15} - \sqrt{3}}} = \frac{8 + \sqrt{10-2\sqrt{5}} + \sqrt{15} + \sqrt{3}}{36 - 4\sqrt{5} - 4\sqrt{6(5+\sqrt{5})}}$$

where $\Phi(z, s, a)$ is Lerch Transcendent function, H_k is the Kth Harmonic number, $\psi^1(x)$ is the trigamma function and ϕ is the Golden ratio.

Solution by proposer

Before we start with the problem we shall consider the integral of the form $I(n) = \int_0^1 x^{n-1} \ln(1-x) dx = \frac{1}{n} \int_0^1 \frac{d}{dx} (x^n - 1) \ln(1-x) dx$ and by integration by parts we yield

$$\begin{aligned} I(n) &= \frac{1}{n} \left[\underbrace{(x^n - 1) \ln(1-x)}_0 \right]_0^1 - \frac{1}{n} \int_0^1 \frac{1-x^n}{1-x} dx \\ &= -\frac{1}{n} \int_0^1 \sum_{j=1}^n x^{j-1} dx = -\frac{1}{n} \sum_{j=1}^n \int_0^1 x^{j-1} dx = -\frac{1}{n} \sum_{j=1}^n \frac{1}{j} = -\frac{H_n}{n} \dots (1) \end{aligned}$$

Note that $D(k) = \frac{1}{n^2 m + m^2 n + k m n} = \frac{1}{mn} \int_0^1 x^{m+n+k-1} dx = \frac{x^{k-1}}{mn} \int_0^1 x^{m+n} dx$ and therefore

$$\sum_{1 \leq n \leq m \leq \infty} D(k) = \int_0^1 x^{k-1} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{x^n}{n} \cdot \frac{x^m}{m} dx = \int_0^1 x^{k-1} \ln^2(1-x) dx$$

Now we consider the latter integral $I(k) = \int_0^1 x^k \ln^2(1-x) dx$ for $k \geq 0$ which further can be written as $\frac{1}{k+1} \int_0^1 \frac{d}{dx} (x^{k+1} - 1) \ln^2(1-x) dx$ and hence on

Integration by parts we see that

$$\begin{aligned}
I(k) &= \frac{1}{k+1} \left[\underbrace{(x^{k+1} - 1) \ln^2(1-x)}_0 \right]_0^1 - \frac{2}{k+1} \int_0^1 \frac{1-x^{k+1}}{1-x} \ln(1-x) dx \\
&= -\frac{2}{k+1} \int_0^1 \sum_{n=1}^{k+1} x^{n-1} \ln(1-x) dx = -\frac{2}{k+1} \sum_{n=1}^{k+1} \int_0^1 x^{n-1} \ln(1-x) dx
\end{aligned}$$

Plugging the result from (1) to last integral we have

$$\frac{2}{k+1} \sum_{n=1}^{k+1} \frac{H_n}{n} = \frac{2}{k+1} \left(\frac{H_{k+1}^2 + H_{k+1}^{(2)}}{2} \right) = \frac{H_{k+1}^2 + H_{k+1}^{(2)}}{k+1}$$

Further note that nth partial sum of $H_{k+1}^{(2)} = \zeta(2) - \psi^1(k+2)$ giving us required result of

$$D(k) = \frac{H_{k+1}^2 - \psi^1(k+2)}{k+1} + \frac{\pi^2}{6(k+1)}$$

Now we notice that

$$\begin{aligned}
\frac{1}{(q+b)\sqrt{q+b+1} + (q+b+1)\sqrt{q+b}} &= \frac{(q+b)\sqrt{q+b+1} - (q+b+1)\sqrt{q+b}}{(q+b)\sqrt{q+b+1}(-1)} \\
&= \frac{1}{\sqrt{q+b}} - \frac{1}{\sqrt{q+b+1}}
\end{aligned}$$

and hence

$$\sum_{n=0}^{\infty} \sum_{q=0}^n x^n \left(\underbrace{\frac{1}{\sqrt{q+b}} - \frac{1}{\sqrt{q+b+1}}}_{\text{Telescoping}} \right) = \sum_{n=0}^{\infty} x^n \left(\frac{1}{\sqrt{b}} - \frac{1}{\sqrt{n+b+1}} \right)$$

and by hence by algebra of sum and for for $|x| < 1$

$$\sum_{n=0}^{\infty} \frac{x^n}{\sqrt{b}} - \sum_{n=0}^{\infty} \frac{x^n}{\sqrt{n+b+1}} = \frac{1}{\sqrt{b}(1-x)} - \Phi \left(x, \frac{1}{2}, 1 \right)$$

and we deduce that $\alpha = 2, \beta = 1, \gamma = 6$. Thus

$$\begin{aligned}
\Phi(\beta - \alpha, \beta, (\alpha + 2\beta\gamma)^{-1}) &= \Phi \left(-1, 1, \frac{1}{10} \right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n + \frac{1}{10})} = D \\
D &= \sum_{n=0}^{\infty} \frac{1}{(2n + 10^{-1})(2n + 10^{-1} + 1)} = \frac{1}{4} \sum_{n=0}^{\infty} \frac{1}{(n + 20^{-1})(n + 20^{-1} + 2^{-1})}
\end{aligned}$$

$$= 2^{-1} \left(\psi \left(\frac{1}{2} + \frac{1}{10} \right) - \psi \left(\frac{1}{20} \right) \right) = 2^{-1} \left(\psi \left(\frac{1}{10} \right) - 2\psi \left(\frac{1}{20} \right) - 2\ln 2 \right)$$

and finally we have $D = \psi \left(\frac{1}{10} \right) - \psi \left(\frac{1}{20} \right) - \ln 2$. Here to evaluate this expression D , we use the **Gauss's-Diagamma theorem**, ie

$$\psi \left(\frac{r}{m} \right) = -\gamma - \ln(2m) - \frac{\pi}{2} \cot \left(\frac{r\pi}{m} \right) + 2 \sum_{q=1}^{\lfloor \frac{m-1}{2} \rfloor} \cos \left(\frac{2\pi qr}{m} \right) \ln \sin \left(\frac{\pi q}{n} \right)$$

plugging $r = 1, m = 10, 20$ we have

$$I = \psi \left(\frac{1}{10} \right) = -\gamma - \ln(20) - \frac{\pi}{2} \cot \left(\frac{\pi}{10} \right) + 2 \sum_{q=1}^4 \cos \left(\frac{\pi q}{5} \right) \ln \sin \left(\frac{\pi q}{10} \right)$$

and

$$K = \psi \left(\frac{1}{20} \right) = -\gamma - \ln(40) - \frac{\pi}{2} \cot \left(\frac{\pi}{20} \right) + 2 \sum_{q=1}^9 \cos \left(\frac{\pi q}{10} \right) \ln \sin \left(\frac{\pi q}{20} \right)$$

and also $D = I - k - \ln 2$ and on further simplification of the D we obtain that

$$D = \frac{\pi}{4} \frac{1}{\sin \left(\frac{1}{20} \right) \cos \left(\frac{1}{20} \right)} + A \left(\log \cot \left(\frac{\pi}{20} \right) \right) + B \left(\log \cot \left(\frac{3\pi}{20} \right) \right)$$

$$\text{with } A = \sqrt{\frac{5+\sqrt{5}}{2}} = \sqrt{\phi+2} \text{ and } B = \sqrt{\frac{5-\sqrt{5}}{2}} = 2^{-1} \sqrt{10-2\sqrt{5}} \text{ and } \frac{\pi}{4} \frac{1}{\sin \left(\frac{\pi}{20} \right) \cos \left(\frac{\pi}{20} \right)} \\ = \frac{\pi}{2} \frac{1}{\sin(18^\circ)} = \frac{2\pi}{\sqrt{5}-1} \text{ since } \sin(18^\circ) = 4^{-1}(\sqrt{5}-1).$$

Further we have $\cot \left(\frac{\pi}{20} \right) = \cot(9^\circ)$. To evaluate $\cot(9^\circ)$ we shall be using the fact that

$$\cot(3x) = \frac{\cos(3x)}{\sin(3x)} = \frac{4\cos^3 x - 3\cos x}{3\sin x - 4\sin^3 x} = \frac{\cos x(1 - 4\sin^2 x)}{\sin x(3 - 4\sin^2 x)} = \cot x \left(1 - \frac{2}{3 - 4\sin^2 x} \right)$$

setting $x = 3$ we have the expression for $\cot 9^\circ$ but then we will show that

$$\sin 3^\circ = \frac{1}{4} \sqrt{8 - \sqrt{10 - 2\sqrt{5}} - \sqrt{15} - \sqrt{3}}$$

Note: This identity is proposed by **Narendra Bhandari** and is proved by **Sergio Esteban** (beautiful geometry work) and **Ahmed Hegazi** (trigonometry work). From half angle formula we have that

$$\sin \frac{\phi}{2} = \sqrt{\frac{1 - \cos \phi}{2}}$$

now set $\phi = 6^\circ$. Giving us

$$\sin 3^\circ = \sqrt{\frac{1 - \cos 6^\circ}{2}} = \sqrt{\frac{1 - \cos(36^\circ - 30^\circ)}{2}}$$

Now using compound angle formula we can get $\cos(36^\circ - 30^\circ) = \cos 36^\circ \cos 30^\circ + \sin 36^\circ \sin 30^\circ = \left(\frac{\sqrt{5} + 1}{4}\right) \frac{\sqrt{3}}{2} + \left(\frac{\sqrt{10 - 2\sqrt{5}}}{4}\right) \frac{1}{2} = \frac{\sqrt{10 - 2\sqrt{5}} + \sqrt{3} + \sqrt{15}}{8}$ putting in original equation

$$\sin 3^\circ = \frac{1}{\sqrt{2}} \left(\sqrt{1 - \frac{\sqrt{10 - 2\sqrt{5}} + \sqrt{3} + \sqrt{15}}{8}} \right) = \frac{1}{4} \left(\sqrt{8 - \sqrt{10 - 2\sqrt{5}} - \sqrt{3} - \sqrt{15}} \right)$$

and hence

$$\cos 3^\circ = \sqrt{1 - \sin^2 3^\circ} = \frac{1}{4} \sqrt{8 + \sqrt{10 - 2\sqrt{5}} + \sqrt{10} + \sqrt{3}}$$

and hence we deduce easily that

$$\cot 9^\circ = \cot 3^\circ \left(1 - \frac{8}{4 + \sqrt{10 - 2\sqrt{5}} + \sqrt{15} + \sqrt{3}} \right)$$

also $\cot\left(\frac{3\pi}{20}\right) = \cot(27^\circ) = \cot(30^\circ - 3^\circ)$ and using compound angle formula for $\cot(a - b)$ we have

$$\cot 27^\circ = \frac{\cot 3^\circ \cot 30^\circ - 1}{\cot 3^\circ + \cot 30^\circ} = \frac{\sqrt{3} \cot 3^\circ - 1}{\cot 3^\circ + \sqrt{3}}$$

and hence we have $D = \Phi(\beta - \alpha, \beta, (\alpha + 2\beta + \gamma)^{-1}$

$$= \frac{2\pi}{\sqrt{5} - 1} + \sqrt{\phi + 2} \log \left(\theta - \frac{8\theta}{4 + \sqrt{10 - 2\sqrt{5}} + \sqrt{15} + \sqrt{3}} \right) + 2^{-1} \sqrt{10 - 2\sqrt{5}} \log \left(\frac{\sqrt{3}\theta - 1}{\theta + \sqrt{3}} \right)$$

$$\text{and thus } \theta = \frac{\sqrt{8 + \sqrt{10 - 2\sqrt{5}} + \sqrt{15} + \sqrt{3}}}{\sqrt{8 - \sqrt{10 - 2\sqrt{5}} - \sqrt{15} - \sqrt{3}}}$$

we are done

and on simplification(rationalization) we have

$$\theta = \frac{8 + \sqrt{10 - 2\sqrt{5}} + \sqrt{15} + \sqrt{3}}{36 - 4\sqrt{5} - 4\sqrt{6(5 + \sqrt{5})}} = \frac{\cos^2 3^\circ}{36 - 4\sqrt{5} - 4\sqrt{6(5 + \sqrt{5})}}$$

Surprisingly, it is note worthy that the polynomial equation

$$F(X) = x^4 - 144x^3 + 6656x^2 - 98304x + 65536 = 0$$

has root $36 - 4\sqrt{5} - 4\sqrt{30 + 6\sqrt{5}}$ and

close approximation for $\ln 2$

$$(8 + \sqrt{10 - 2\sqrt{5}} + \sqrt{15} + \sqrt{3})(8 - \sqrt{10 - 2\sqrt{5}} - \sqrt{15} - \sqrt{3}) = 36 - 4\sqrt{5} - 4\sqrt{30 + 6\sqrt{5}} \sim \ln 2$$