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where ®(z, s, a) is Lerch Transcendent function , Hy, is the Kth Harmonic num-
ber, 1! (z) is the trigamma function and ¢ is the Golden ratio.

Solution by proposer
Before we start with the problem we shall consider the integral of the form
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Now we consider the latter integral I(k) = / 2 In?(1 — z)dz for k > 0 which
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Integration by parts we see that
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Plugging the result from (1) to last integral we have
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Further note that nth partial sum of e k = ((2) — ' (k +2) giving us required
result of
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Telescoping

and by hence by algebra of sum and for for |z| < 1
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and finally we have D = 10) - (20> — In2. Here to evaluate this

expression D , we use the Gauss’s-Diagamma theorem, ie
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plugging r = 1, m = 10,20 we have
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and also D = I — k —In2 and on further simplification of the D we obtain that
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Further we have cot (210) = cot(9°). To evaluate cot(9° we shall be using
the fact that
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setting x = 3 we have the expression for cot 9° but then we will show that
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Note: This identity is proposed by Narendra Bhandari and is proved by
Sergio Esteban( beautiful geometry work) and Ahmed Hegazi(trigonometry
work). From half angle formula we have that
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now set ¢ = 6°. Giving us
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Now using compound angle formula we can get cos
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and hence we deduce easily that
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also cot (27) = cot(27° = cot(30 — 3) and using compound angle formula for
cot(a — b) we have
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we are done

and on simplification(rationalization) we have
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Surprisingly, it is note worthy that the polynomial equation

F(X) = 2" — 14423 + 66562% — 98304z + 65536 = 0



has root 36 — 4/5 — 41/30 + 6+/5 and

close approximation for In2
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