

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Romanian Mathematical Magazine

Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

REVERSE INEQUALITY OF HUYGENS and SOME FRAMING WITH MEANS

By Dorin Mărghidanu-Romania d.marghidanu@gmail.com

In this work we find a reverse inequality of Huygens inequality .
Frames with means are obtained for the Huygens product and other derived expressions . There are highlighted certain means that refines the inequalities of classical means.
Keywords and phrases : classical means, reverse inequality of Huygens, Huygens product, framing with means, refinement
2010 Mathematics Subject Classification : 26D15
A very elegant inequality - but unfortunately, an inequality still little known and used - is Huygens inequality, [2.] . It has a simple enunciation :

1. Proposition (Huygens inequality)

If $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers, then,

$$
\begin{equation*}
\left(1+a_{1}\right) \cdot\left(1+a_{2}\right) \cdot \ldots \cdot\left(1+a_{n}\right) \geq\left(1+\sqrt[n]{a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}}\right)^{n} \tag{1}
\end{equation*}
$$

Although several demonstrations are known, for the bibliographic independence we reproduce the following short demonstration here.

Proof

Applying twice the AM-GM inequality,

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gather*}
\frac{\sum_{k=1}^{n} \frac{1}{1+a_{k}}}{n} \geq \frac{1}{\sqrt[n]{\prod_{k=1}^{n}\left(1+a_{k}\right)}} \tag{2}\\
\frac{\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}}{n} \geq \frac{\sqrt[n]{\prod_{k=1}^{n} a_{k}}}{\sqrt[n]{\prod_{k=1}^{n}\left(1+a_{k}\right)}} \tag{3}
\end{gather*}
$$

by adding the two relations, we obtain :

$$
1 \geq \frac{1+\sqrt[n]{\prod_{k=1}^{n} a_{k}}}{\sqrt[n]{\prod_{k=1}^{n}\left(1+a_{k}\right)}}
$$

equivalent to the inequality in the statement.
Equality occurs if $a_{1}=a_{2}=\ldots=a_{n}$.
Looking for a complement to the left of the inequality in the relation (1), I found an expression as beautiful as like that the direct inequality of Huygens .

2. Proposition (reverse Huygens inequality)

If $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers, then ,

$$
\begin{equation*}
\left(1+\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}\right)^{n} \geq\left(1+a_{1}\right) \cdot\left(1+a_{2}\right) \cdot \ldots \cdot\left(1+a_{n}\right) \tag{4}
\end{equation*}
$$

The Proof will be revealed later, in a more general context (Theorem 7).
Relative to the vector $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}$, The following classic means of numbers $a_{1}, a_{2}, \ldots, a_{n}$ are well known :

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$\mathbf{A}_{n}[a]:=\frac{1}{n} \cdot \sum_{k=1}^{n} \boldsymbol{a}_{\boldsymbol{k}}$ (the arithmetical mean of numbers $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}$),
$\mathbf{G}_{n}[a]:=\sqrt[n]{\prod_{k=1}^{n} \boldsymbol{a}_{\boldsymbol{k}}}\left(\right.$ the geometric mean of numbers $\left.\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right)$,
$\mathbf{H}_{n}[a]:=\frac{n}{{\underset{k}{k=1}}_{n}^{n} \frac{1}{a_{k}}}$ (the harmonic mean of numbers $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$),
as well as the inequality between them, $\quad \mathbf{A}_{\mathrm{n}}[\boldsymbol{a}] \geq \mathbf{G}_{\mathrm{n}}[\boldsymbol{a}] \geq \mathbf{H}_{\mathrm{n}}[\boldsymbol{a}]$, (where equality occurs if and only if $\boldsymbol{a}_{1}=\boldsymbol{a}_{2}=\ldots=\boldsymbol{a}_{n}$).

We will also note the product from the inequalities in (1) and (4), which we can also call Huygens product ,

$$
\begin{equation*}
\operatorname{Huy}_{n}[a]:=\left(1+a_{1}\right) \cdot\left(1+a_{2}\right) \cdot \ldots \cdot\left(1+a_{n}\right) . \tag{9}
\end{equation*}
$$

With these notations, from Propositions 1 and 2 we obtain the following very beautiful framing for the Huygens product:

3. Proposition (of framing with means of Huygens product)

If $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers, then,

$$
\begin{equation*}
\left(1+\mathrm{G}_{n}[a]\right)^{n} \leq\left(1+a_{1}\right) \cdot\left(1+a_{2}\right) \cdot \ldots \cdot\left(1+a_{n}\right) \leq\left(1+\mathrm{A}_{n}[a]\right)^{n} \tag{10}
\end{equation*}
$$

4. Corollary

The expression $\sqrt[n]{\operatorname{Huy}_{n}[a]}-1$ is a mean of the numbers $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$. which refines the inequality AM-GM .

Proof

From the relation (10) we deduce,

$$
\begin{equation*}
\mathrm{G}_{n}[a] \leq \sqrt[n]{\left(1+a_{1}\right) \cdot\left(1+a_{2}\right) \cdot \ldots \cdot\left(1+a_{n}\right)}-1 \leq \mathrm{A}_{n}[a] \tag{11}
\end{equation*}
$$

so the conclusion follows .
We now present a framing for another product ,

$$
\begin{align*}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \mathbf{P}_{n}[\boldsymbol{x}]:=\left(\mathbf{1}+\frac{\mathbf{1}}{\boldsymbol{x}_{\mathbf{1}}}\right) \cdot\left(\mathbf{1}+\frac{\mathbf{1}}{\boldsymbol{x}_{\mathbf{2}}}\right) \cdot \ldots \cdot\left(\mathbf{1}+\frac{\mathbf{1}}{\boldsymbol{x}_{\boldsymbol{n}}}\right)
\end{align*}
$$

5. Proposition (of framing with means for $P_{n}[x]$)

If $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers , then,

$$
\begin{equation*}
\left(1+\frac{1}{\mathrm{G}_{n}[x]}\right)^{n} \leq\left(1+\frac{1}{x_{1}}\right) \cdot\left(1+\frac{1}{x_{2}}\right) \cdot \ldots \cdot\left(1+\frac{1}{x_{n}}\right) \leq\left(1+\frac{1}{\mathrm{H}_{n}[x]}\right)^{n} \tag{13}
\end{equation*}
$$

Proof

We apply the inequality from Proposition 3.
For real numbers $a_{1}, a_{2}, \ldots, a_{n}>\mathbf{0}$, we will note $\boldsymbol{x}_{\boldsymbol{k}}=\mathbf{1} / \boldsymbol{a}_{\boldsymbol{k}},(\forall) \boldsymbol{k}=\overline{\mathbf{1}, \boldsymbol{n}}$.
Obviously, $\boldsymbol{x}_{\boldsymbol{k}}>\mathbf{0}$, and $\mathbf{1}+\boldsymbol{a}_{\boldsymbol{n}}=\mathbf{1}+\frac{\mathbf{1}}{\boldsymbol{x}_{\boldsymbol{n}}},(\forall) \boldsymbol{k}=\overline{\mathbf{1}, \boldsymbol{n}}$. We also have :
$\mathrm{A}_{n}[a]:=\frac{1}{n} \cdot \sum_{k=1}^{n} a_{k}=\frac{1}{n} \cdot \sum_{k=1}^{n} \frac{1}{x_{k}}=\frac{1}{\mathbf{H}_{n}[x]}, \quad \mathrm{G}_{n}[a]:=\sqrt[n]{\prod_{k=1}^{n} a_{k}}=\sqrt[n]{\prod_{k=1}^{n} \frac{1}{x_{k}}}=\frac{1}{\mathrm{G}_{n}[x]}$.
By substituting these last three expressions in inequality (10), the inequality from the statement is obtained.

6. Corollary

The expression $\frac{1}{\sqrt[n]{\mathbf{P}_{n}[a]}-1}$ is a mean of the numbers $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$. which refines the inequality HM-GM .

Proof

Indeed, from relation (13) we deduce,

$$
\begin{equation*}
\mathbf{H}_{n}[a] \leq \frac{1}{\sqrt[n]{P_{n}[a]}-1} \leq \mathrm{G}_{n}[a] \tag{14}
\end{equation*}
$$

so the conclusion follows .
We will now present a generalization of the framing with means (10) for the generalized Huygens product,

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Huy, $g_{n}[x]:=\left(\alpha+\beta x_{1}\right) \cdot\left(\alpha+\beta x_{2}\right) \cdot \ldots \cdot\left(\alpha+\beta x_{n}\right)$,
associated with the vector $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}$, with $\alpha, \beta>0$.

7. Theorem (of framing with means of generalized Huygens product)

Let $\boldsymbol{\alpha}, \boldsymbol{\beta}$ positive real numbers. For real numbers $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}>\mathbf{0}$, there is double inequality,

$$
\begin{equation*}
\left(\alpha+\beta \mathbf{G}_{n}[x]\right)^{n} \leq\left(\alpha+\beta x_{1}\right) \cdot\left(\alpha+\beta x_{2}\right) \cdot \ldots \cdot\left(\alpha+\beta x_{n}\right) \leq\left(\alpha+\beta \mathbf{A}_{n}[x]\right)^{n} . \tag{16}
\end{equation*}
$$

with equality iff $x_{1}=x_{2}=\ldots=x_{n}$.

Proof

For the inequality on the left, we use the inequality of Huygens (1),

$$
\begin{aligned}
& \prod_{k=1}^{n}\left(\alpha+\beta x_{k}\right)=\prod_{k=1}^{n} \alpha \cdot\left(1+\frac{\beta}{\alpha} x_{k}\right)=\alpha^{n} \cdot \prod_{k=1}^{n}\left(1+\frac{\beta}{\alpha} x_{k}\right)^{(\text {Huygens })} \\
& \stackrel{(\text { Huygens })}{\geq} \alpha^{n} \cdot\left(1+\sqrt[n]{\prod_{k=1}^{n} \frac{\beta}{\alpha} x_{k}}\right)^{n}=\alpha^{n} \cdot\left(1+\frac{\beta}{\alpha} \cdot n \sqrt[n]{\prod_{k=1}^{n} x_{k}}\right)^{n}= \\
& =\left(\alpha+\beta \cdot n \sqrt[n]{\prod_{k=1}^{n} x_{k}}\right)^{n}=\left(\alpha+\beta G_{n}[x]\right)^{n} \cdot
\end{aligned}
$$

Equality occurs if $x_{1}=x_{2}=\ldots=x_{n}$.
For the right inequality, we have by using the GM-AM inequality :

$$
\begin{aligned}
& \prod_{k=1}^{n}\left(\alpha+\beta x_{k}\right) \leq\left(\frac{1}{n} \cdot \sum_{k=1}^{n}\left(\alpha+\beta x_{k}\right)\right)^{n}=\left(\alpha+\frac{1}{n} \cdot \sum_{k=1}^{n} \beta x_{k}\right)^{n}= \\
& =\left(\alpha+\beta \cdot \frac{1}{n} \cdot \sum_{k=1}^{n} x_{k}\right)^{n}=\left(\alpha+\beta \mathbf{A}_{n}[x]\right)^{n} .
\end{aligned}
$$

Equality occurs if :

$$
\alpha+\beta x_{1}=\alpha+\beta x_{2}=\ldots=\alpha+\beta x_{n} \Leftrightarrow x_{1}=x_{2}=\ldots=x_{n} .
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

8. Remark For $\alpha=\beta=\mathbf{1}$ the inequality of Huygens is obtained, both in the direct version and in the reverse version .

Because of (16) we deduce equivalently,

$$
\begin{equation*}
\mathbf{G}_{n}[a] \leq \frac{\sqrt[n]{H u y,}, \mathrm{~g}_{n}[x]}{\beta}-\alpha \mathbf{A}_{n}[a] \tag{17}
\end{equation*}
$$

so the following

9. Corollary

For $\boldsymbol{\alpha}, \boldsymbol{\beta}$ positive real numbers, the number $\frac{\sqrt[n]{H u y, g_{n}[x]}-\alpha}{\beta}$ is a mean of positive real numbers $\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$, which refines the $A M-G M$ inequality.

With replacement $\boldsymbol{x}_{\boldsymbol{k}} \rightarrow \mathbf{1} / \boldsymbol{x}_{\boldsymbol{k}},(\forall) \boldsymbol{k}=\overline{\mathbf{1}, \boldsymbol{n}}$, in relations (16), (17), we get the following:

10. Proposition

a) For $\alpha, \boldsymbol{\beta} ; \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ strictly positive real numbers, there is double inequality,

$$
\begin{align*}
& \left(\alpha+\frac{\beta}{\mathrm{G}_{n}[x]}\right)^{n} \leq\left(\alpha+\frac{\beta}{x_{1}}\right) \cdot\left(\alpha+\frac{\beta}{x_{2}}\right) \cdot \ldots \cdot\left(\alpha+\frac{\beta}{x_{n}}\right) \leq\left(\alpha+\frac{\beta}{\mathrm{H}_{n}[x]}\right)^{n} . \tag{18}\\
& \quad \text { b) } \quad \mathbf{H}_{n}[a] \leq \frac{\beta}{\sqrt[n]{\mathrm{P}_{n}[a]}-\alpha} \leq \mathrm{G}_{n}[a] \tag{19}
\end{align*}
$$

In the relations (10), (13), (16), (18) were highlighted the framing for different product - expressions . We conclude with the setting of some framing established for the sum - expressions. Thus in [3], the following two framing with means were presented and demonstrated :

11. Proposition

Let $\boldsymbol{a}, \boldsymbol{b}>\mathbf{0}$. For real numbers $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \in(\mathbf{0}, \boldsymbol{a} / \boldsymbol{b})$ and weights $p_{1}, p_{2}, \ldots, p_{n}>\mathbf{0}$, with $\sum_{k=1}^{n} p_{k}=\mathbf{1}$, there is double inequality,

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{equation*}
\frac{1}{a+b \mathbf{A}_{n}[x]} \leq \sum_{k=1}^{n} \frac{p_{k}}{a+b x_{k}} \leq \frac{1}{a+b \mathbf{G}_{n}[x]} \tag{20}
\end{equation*}
$$

with equality if $x_{1}=x_{2}=\ldots=x_{n}$.

12. Proposition

Let $\boldsymbol{a}, \boldsymbol{b}>\mathbf{0}$. For real numbers $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{n} \in(\boldsymbol{b} / \boldsymbol{a}, \infty)$ and weights $p_{1}, p_{2}, \ldots, p_{n}>0$, with $\sum_{k=1}^{n} p_{k}=1$, there is double inequality,

$$
\begin{equation*}
\frac{\mathrm{H}_{\mathrm{n}}[y]}{a \mathrm{H}_{\mathrm{n}}[y]+b} \leq \sum_{k=1}^{n} \frac{p_{k} y_{k}}{a y_{k}+b} \leq \frac{\mathrm{G}_{\mathrm{n}}[y]}{a \mathrm{G}_{\mathrm{n}}[y]+b} \tag{21}
\end{equation*}
$$

with equality if $\boldsymbol{y}_{1}=\boldsymbol{y}_{2}=\ldots=\boldsymbol{y}_{\boldsymbol{n}}$.
Two other beautiful framing with means were presented in [5] .
See also [1] and [4] :

13. Proposition

Let $\boldsymbol{n} \geq \mathbf{2}$ a natural number. For real numbers $a_{1}, a_{2}, \ldots, a_{n} \in(\mathbf{0}, \mathbf{2})$, there is double inequality,

$$
\begin{equation*}
\frac{n}{\sqrt{1+A_{n}[a]}} \leq \sum_{k=1}^{n} \frac{1}{\sqrt{1+a_{k}}} \leq \frac{n}{\sqrt{1+G_{n}[a]}} \tag{22}
\end{equation*}
$$

14. Proposition

For $\boldsymbol{n} \geq \mathbf{2}$ a natural number and for real numbers $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \in(\mathbf{1 / 2}, \infty)$ there is double inequality,

$$
\begin{equation*}
n \cdot \sqrt{\frac{H_{n}[x]}{1+H_{n}[x]}} \leq \sum_{k=1}^{n} \sqrt{\frac{x_{k}}{1+x_{k}}} \leq n \cdot \sqrt{\frac{G_{n}[x]}{1+G_{n}[x]}} \tag{23}
\end{equation*}
$$

Equality occurs if and only if $x_{1}=x_{2}=\ldots=x_{n}$.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

References

[1.] Bogomolny A., Inequality with Two Variables? Think Again. http://www.cut-theknot.org/arithmetic/algebra/MarghidanuGiugiuc.shtml?fbclid=IwAR2Zf2bpMFN5YirY6 Ct1WY3RVZGHwJyoxWFZx_1FXVgXnUONBkftodiUp8o
[2.] Huygens, Christiaan , "Oeuvres Completes 1888-1940". Société Hollondaise des Science, Haga, 1940.
[3.] Mărghidanu D., Două încadrări cu medii clasice, in "Revista de matematică şi informatică ", Constanţa, pp. 3-7, Anul XIV, nr. 1, ianuarie, 2015.
[4.] Marghidanu D., Giugiuc L.,https://www.facebook.com/photo.php?fbid=530478053756301 \&set=gm. $1511379709150085 \& t y p e=1 \&$ theater .
[5.] Marghidanu D., Giugiuc , Două încadrări şi o rafinare a inegalităţii mediilor clasice, in "Revista de matematică CARDINAL", Craiova, pp.1-5, Anul XXV, nr. 2 , 2014/2015.

