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ABSTRACT 

This formula helps us to find easily all integrals of forms  

∫𝒙𝒂𝒆𝒃𝒙𝒄𝒐𝒔𝒏𝒄𝒙𝒅𝒙 ou ∫𝒙𝒂𝒆𝒃𝒙𝒔𝒊𝒏𝒏𝒄𝒙𝒅𝒙 pour tous (𝒂, 𝒃, 𝒄, 𝒏)𝝐ℕ𝟒 

 

It helps also to find the residue to a multiple pole of all product of a rational 

function and an usual function (exponential, logarithmic,…)   

𝐑𝐞𝐬(𝒇(𝒛), 𝒛𝒌) =
𝟏

(𝒎−𝟏)!
𝐥𝐢𝐦
𝒛→𝒛𝒌

𝝏𝒎−𝟏

𝝏𝒙𝒎−𝟏
[(𝒛 − 𝒛𝒌)

𝒎𝒇(𝒛)]  
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« La vie n’est bonne qu’à deux choses : 

découvrir les Mathématiques et enseigner les 

Mathématiques » 

S.D Poisson 

« La vie n’est bonne qu’à étudier et enseigner les 

Mathématiques » 

     B. PASCAL 
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  NOTATIONS  

 

⌊𝑥⌋: 𝑝𝑎𝑟𝑡𝑖𝑒 𝑒𝑛𝑡𝑖è𝑟𝑒 𝑑𝑢 𝑛𝑜𝑚𝑏𝑟𝑒 𝑥  

 

(𝑥, 𝑦): 𝑙𝑎 𝑓𝑜𝑟𝑚𝑢𝑙𝑒 𝑛𝑢𝑚é𝑟𝑜 𝑦 𝑠𝑒 𝑡𝑟𝑜𝑢𝑣𝑎𝑛𝑡 𝑠𝑢𝑟 𝑙𝑎 𝑝𝑎𝑔𝑒 𝑥  

 

(
𝑛
𝑘
) = 𝐶𝑛

𝑘 =
𝑛!

𝑘!(𝑛−𝑘)!
  

 

𝐴𝑛
𝑘 =

𝑛!

(𝑛−𝑘)!
= 𝑘! (

𝑛
𝑘
)  

 

∑ 𝑈𝑘 = ∑ 𝑈2𝑘 + ∑ 𝑈2𝑘+1

⌊
𝑛−1

2
⌋

𝑘=0

⌊
𝑛

2
⌋

𝑘=0
𝑛
𝑘=𝑜     (5.0) 
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INTRODUCTION 

La résolution des certains intégrales généralisées a toujours  causé un sérieux 

problème  chez les  élèves de l’école secondaire, les étudiants du supérieur, voir même chez 

certains enseignants des mathématiques et de physique. 

Voici quelques intégrales généralisées qui constitueront la première partie de notre 

travail : 

𝐼 = ∫𝑥𝑎𝑒𝑏𝑥 𝑑𝑥 

 

𝐼 = ∫𝑥𝑎 sin(𝑏𝑥)𝑑𝑥     𝑒𝑡    𝐼 = ∫𝑥𝑎 cos(𝑏𝑥)𝑑𝑥 

 

𝐼 = ∫𝑒𝑎𝑥 sin(𝑏𝑥)𝑑𝑥    𝑒𝑡   𝐼 = ∫𝑒𝑎𝑥 cos(𝑏𝑥)𝑑𝑥 

 

𝐼 = ∫𝑥𝑎𝑒𝑏𝑥 sin(𝑐𝑥)𝑑𝑥    𝑒𝑡   𝐼 = ∫𝑥𝑎 𝑒𝑏𝑥 cos(𝑐𝑥)𝑑𝑥 

 

𝐼 = ∫𝑥𝑎𝑙𝑛𝑏 𝑥𝑑𝑥 

 

Les résolutions de ces dernières nous conduiront à résoudre d’autres qui sont encore  

plus complexes comme par exemple : 

 

𝐼 = ∫𝑃(𝑥) 𝑒𝑎𝑥𝑠𝑖𝑛𝑏(𝑐𝑥)𝑑𝑥 

 

Avec 𝑃(𝑥) un polynôme  

Pour résoudre facilement ces intégrales, nous allons utiliser la formule de LEIBNIZ de 

la dérivée nième du produit de deux fonctions. Cette formule est donnée par : 

Soit 𝑓 𝑒𝑡 𝑔 deux fonctions de variable 𝑥 

 

(𝑓. 𝑔)(𝑛) = ∑ (
𝑛
𝑘
)𝑓(𝑛−𝑘). 𝑔(𝑘)

𝑛

𝑘=0
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On peut encore la noter comme : 

 

𝑑𝑛

𝑑𝑥𝑛
(𝑓. 𝑔) = ∑ (

𝑛
𝑘
)

𝑑𝑛−𝑘

𝑑𝑥𝑛−𝑘
(𝑓)

𝑛

𝑘=0

.
𝑑𝑘

𝑑𝑥𝑘
(𝑔) 

 

Cette formule intervient aussi dans l’application du théorème de résidus dans la 

résolution de quelques intégrales réelles, cas de pole multiple d’ordre n. 

 

𝑅𝑒𝑠(𝑓, 𝑧0) =
1

(𝑛 − 1)!
lim
𝑧→𝑧0

𝑑𝑛−1

𝑑𝑧𝑛−1
[(𝑧 − 𝑧0)𝑓(𝑧)] 

 

On peu noter encore : 

 

𝑅𝑒𝑠(𝑓, 𝑧0) =
1

(𝑛 − 1)!
lim
𝑧→𝑧0

[(𝑧 − 𝑧0)𝑓(𝑧)](𝑛−1) 

 

C’est ceux qui vont constituer la deuxième partie de notre travail. 

Notre travail a pour but de développer l’esprit de recherche chez les jeunes passionnés 

de mathématiques dans le calcul intégral. Les lecteurs de notre travail peuvent utiliser les 

intégrales qui seront traitées dans la conception des petits logiciels de calcul. 

Notre travail est subdivisé à deux trois chapitres qui sont : 

• Formule de Leibniz 

• Intégrales des quelques fonctions modulées 

• Applications du théorème de résidus dans la résolution de quelques intégrales 

réelles. 
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CHAPITRE PREMIER : FORMULE DE LEIBNIZ 

 

1.1 DERIVEE nième D’UNE FONCTION 

 

La dérivée d’ordre n (dérivée nième) d’une fonction 𝑓(𝑥) est notée 

 

𝑑𝑛𝑓(𝑥)

𝑑𝑥𝑛
  𝑜𝑢 𝑓(𝑛)(𝑥)  

 

Voici les dérivées d’ordre n de quelques fonctions usuelles et peut trouver facilement : 

 

1.  
𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑥𝑎) = 𝐴𝑛

𝑎𝑥𝑎−𝑛    𝑎𝑣𝑒𝑐 𝑎𝜖ℕ 𝑒𝑡 𝑎 < 𝑛                                    (7.1) 

 

2.  
𝑑𝑛𝑦

𝑑𝑥𝑛
(𝑥𝑎) =

Γ(𝑛 + 1)

Γ(𝑛 − 𝑎 + 1 +)
𝑥𝑎−𝑛    𝑎𝑣𝑒𝑐 𝑎𝜖ℝ                              (7.2) 

 

3.  
𝑑𝑛

𝑑𝑥𝑛
(

1

𝑥 + 𝑎
) =

(−1)𝑛𝑛!

(𝑥 + 𝑎)𝑛+1
                                                               (7.3) 

 

4.
𝑑𝑛

𝑑𝑥𝑛
(

1

𝑎𝑥 + 𝑏
) =

(−1)𝑛𝑎𝑛𝑛!

(𝑎𝑥 + 𝑏)𝑛+1
                                                              (7.4) 

 

5.
𝑑𝑛

𝑑𝑥𝑛
(sin 𝑎𝑥) = 𝑎𝑛 sin (𝑎𝑥 +

𝜋

2
𝑛)                                                        (7.5) 

 

6.
𝑑𝑛

𝑑𝑥𝑛
(cos 𝑎𝑥) = 𝑎𝑛 cos (𝑎𝑥 +

𝜋

2
𝑛)                                                      (7.6) 

 

Les deux dernières sont  aussi appelées « formules de Leibniz »  

 

7.
𝑑𝑛

𝑑𝑥𝑛
(𝑒𝑎𝑥) = 𝑎𝑛𝑒𝑎𝑥                                                                                 (7.7) 
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8.
𝑑𝑛

𝑑𝑥𝑛
(𝑎𝑏𝑥) = 𝑏𝑛𝑎𝑥𝑙𝑛𝑛(𝑥)                                                                     (7.8) 

 

 

1.2 DECOMPOSITION D’UNE FONCTION RATIONNELLE EN UNE 

SOMME DES FONCTIONS 

 

1.2.1 THEOREME DE D’ALEMBERT-GAUSS 

  

Tout polynôme 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥
2 + 𝑎2𝑥

2 + ⋯+ 𝑎𝑛𝑥𝑛 = ∑𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

 

 

à n zéros   𝑥1, 𝑥2,, … , 𝑥𝑛 se factorise en : 

 

𝑓(𝑥) = 𝑎𝑛 ∏(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 

 

Soit une fonction rationnelle         

 

 

ℎ(𝑥) =
𝑓(𝑥)

𝑔(𝑥)
  𝑑𝑎𝑛𝑠 ℂ 

Avec  

 

𝑓(𝑥) = ∑𝑎𝑖𝑥
𝑛

𝑛

𝑖=0

 𝑒𝑡 𝑔(𝑥) = ∑ 𝑏𝑗𝑥
𝑗

𝑚

𝑗=1

 

 

étant deux polynômes dans ℂ, on sait que 𝑔(𝑥) peut s’écrire comme 

 

𝑔(𝑥) = 𝑏𝑚 ∏(𝑥 − 𝑥𝑗)

𝑚

𝑗=1

 

 

Avec les 𝑥𝑗 les solutions de l’équation 𝑔(𝑥) = 0  

 

⇒ ℎ(𝑥) =
𝑓(𝑥)

𝑔(𝑥)
 

 
1è cas : 𝒏 < 𝑚 

On pose 
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∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0

𝑏𝑛  ∏ (𝑥 − 𝑥𝑗)
𝑚
𝑗=1

=
1

𝑏𝑚
∑

𝐴𝑗

(𝑥 − 𝑥𝑗)

𝑚

𝑗=1

                                   (9.9) 

 
Après avoir mis au même dénominateur. Ces derniers étant le même aux deux membres 

de l’égalité nous conduit à obtenir un système de n+1 équations à n+1 inconnues (les 𝐴𝑗) 

après l’identification. 

 

2è cas : 𝒏 ≥ 𝒎 

 

 On fait d’abord la division euclidienne avant de faire la même procédure que dans le 

cas précédent. En divisant 𝑓(𝑥) 𝑝𝑎𝑟 𝑔(𝑥), on a : 

 

𝑓(𝑥)

𝑔(𝑥)
= 𝑞(𝑥) +

𝑟(𝑥)

𝑔(𝑥)
 

 

Avec 𝑞(𝑥) 𝑒𝑡 𝑔(𝑥) respectivement le quotient et le reste. 

 

La même procédure va s’appliquer à la fonction 

 

𝑘(𝑥) =
𝑟(𝑥)

𝑔(𝑥)
 

 

 

1.2.2 THEOREME 

 

      En prenant (7.3) et (9.9), on voit qu’on peut trouver facilement la dérivée nè de toute 

fonction rationnelle. 

 
1.2.3 FORMULE DE LEIBNIZ 

 

Les dérivées successives de 𝑓. 𝑔 sont : 

(𝑓𝑔)(0) = 𝑓𝑔                                                                                                                                

 

(𝑓𝑔)(1) = 𝑓(1)𝑔 + 𝑓𝑔(1)                                                                                                             

 

(𝑓𝑔)(2) = [𝑓(1)𝑔 + 𝑓𝑔(1)]
(1)

                                                                                                         

                      = 𝑓(2)𝑔 + 2𝑓(1) + 𝑓𝑔(2)                                                                                          

           = (
2
0
)𝑓(2−0)𝑔(0) + (

2
1
)𝑓(2−1)𝑔(1) + (

2
2
)𝑓(2−2)                                        
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(𝑓𝑔)(3) = [𝑓(2)𝑔 + 2𝑓(1)𝑔(1) + 𝑓𝑔(2)]
(1)

                                                                                    

               = 𝑓(3)𝑔 + 3𝑓(2)𝑔(1) + 3𝑓(1)𝑔(2) + 𝑓𝑔(3)                                                                       

= (
3
0
)𝑓(3−0)𝑔(0) + (

3
1
)𝑓(3−1)𝑔(1) + (

3
2
)𝑓(3−2)𝑔(2) + (

3
3
)𝑓(3−3)𝑔(3) 

    

    

 

On voit qu’il y’a une analogie entre cette formule et le binôme de Newton. La formule 

générale est donnée par : 

(𝒇. 𝒈)(𝒏) = ∑ (
𝒏
𝒌
)

𝒏

𝒌=𝟎

(𝒇)(𝒏−𝒌)𝒈(𝒌) 

Elle peut se noter aussi : 

 

𝒅𝒏

𝒅𝒙𝒏
(𝒇. 𝒈) = ∑ (

𝒏
𝒌
)

𝒅𝒏−𝒌

𝒅𝒙𝒏−𝒌
(𝒇)

𝒏

𝒌=𝟎

𝒅𝒌

𝒅𝒙𝒌
(𝒈) 

Avec 

(
𝑛
𝑘
) = 𝐶𝑛

𝑘 =
𝑛!

𝑘! (𝑛 − 𝑘)!
 

Un coefficient binomial de Newton 
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CHAPITRE DEUXIEME : INTEGRALES DE 

QUELQUES FONCTIONS  MODULEES D’UNE 

FONCTION USUELLE 

     

𝟐. 𝟏.  𝑰 = ∫𝒙𝒂𝒆𝒃𝒙 𝒅𝒙, (𝒂, 𝒃𝝐ℕ) 

𝐼 = ∫𝑥𝑎𝑒𝑏𝑥𝑑𝑥 

 

𝐼 = lim
𝑦→𝑏

∫𝑥𝑎𝑒𝑦𝑥𝑑𝑥 

 

𝐼 = lim
𝑦→𝑏

∫
𝜕𝑎

𝜕𝑦𝑎
𝑒𝑦𝑥𝑑𝑥 

 

𝐼 = lim
𝑦→𝑏

𝜕𝑎

𝜕𝑦𝑎
∫𝑒𝑦𝑥𝑑𝑥 

 

𝐼 = lim
𝑦→𝑏

𝜕𝑎

𝜕𝑦𝑎
(𝑒𝑦𝑥

1

𝑦
) 

 

On se trouve devant la dérivée d’ordre a d’un produit, donc on applique la formule de Leibniz  

 

𝐼 = lim
𝑦→𝑏

∑ (
𝑎
𝑘
)

𝜕𝑎−𝑘

𝜕𝑦𝑎−𝑘

𝑎

𝑘=0

(𝑒𝑥𝑦)
𝜕𝑘

𝜕𝑦𝑘
(
1

𝑦
) 

 

En appliquant (7.3) et (7.7), on a : 

𝐼 = lim
𝑦→𝑏

∑ (
𝑎
𝑘
)𝑥𝑎−𝑘𝑒𝑦𝑥.

(−1)𝑘𝑘!

𝑦𝑘+1

𝑎

𝑘=0

 

 

𝐼 =
𝑒𝑏𝑥

𝑏
∑(−1)𝑘𝑘! (

𝑎
𝑘
)
𝑥𝑎−𝑘

𝑏𝑘

𝑎

𝑘=0
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On sait que  

𝑘! (
𝑎
𝑘
) = 𝑘!

𝑎!

𝑘! (𝑎 − 𝑘)!
=

𝑎!

(𝑎 − 𝑘)!
= 𝐴𝑎

𝑘  

On a : 

∫ 𝒙𝒂𝒆𝒃𝒙𝒅𝒙 =
𝒆𝒃𝒙

𝒃
∑(−𝟏)𝒌𝑨𝒂

𝒌
𝒙𝒂−𝒌

𝒃𝒌

𝒂

𝒌=𝟎

+ 𝑪 

 

On peut trouver aussi : 

 

∫ 𝒙𝒂𝒄𝒃𝒙𝒅𝒙 = ∫𝒙𝒂𝒆𝒙𝒃 𝐥𝐧 𝒄𝒅𝒙

=
𝒆𝒙𝒃 𝐥𝐧 𝒄

𝒃 𝐥𝐧 𝒄
∑(−𝟏)𝒌𝑨𝒂

𝒌
𝒙𝒂−𝒌

(𝒃 𝐥𝐧 𝒄)𝒌
=

𝒄𝒃𝒙

𝒃 𝐥𝐧 𝒄
∑(−𝟏)𝒌𝑨𝒂

𝒌
𝒙𝒂−𝒌

(𝒃 𝐥𝐧 𝒄)𝒌

𝒂

𝒌=𝟎

𝒂

𝒌=𝟎

 

 

On voit que ça devient facile de traiter les intégrales des polynômes modulés de 𝑒𝑏𝑥  et de 𝑐𝑥 : 

 

∫(∑𝒂𝒊

𝒏

𝒊=𝟎

𝒙𝒊)𝒆𝒃𝒙𝒅𝒙 = ∑ 𝒂𝒊 ∫𝒙𝒊𝒆𝒃𝒙𝒅𝒙 = ∑
𝒂𝒊𝒆

𝒃𝒙

𝒃
∑(−𝟏)𝒌𝑨𝒂𝒊

𝒌
𝒙𝒂𝒊−𝒌

𝒃𝒌

𝒂𝒊

𝒌=𝟎

𝒏

𝒊=𝟎

𝒏

𝒊=𝟎

 

Et 

∫(∑𝒂𝒊

𝒏

𝒊=𝟎

𝒙𝒊)𝒄𝒃𝒙𝒅𝒙 = ∑𝒂𝒊 ∫𝒙𝒊𝒄𝒃𝒙𝒅𝒙 = ∑
𝒂𝒊𝒄

𝒃𝒙

𝒃 𝐥𝐧 𝒄
∑(−𝟏)𝒌𝑨𝒂𝒊

𝒌
𝒙𝒂𝒊−𝒌

(𝒃 𝐥𝐧 𝒄)𝒌

𝒂𝒊

𝒌=𝟎

𝒏

𝒊=𝟎

𝒏

𝒊=𝟎

 

 

Remarques :  

• nous vous conseillerons d’utiliser la même procédure dans la résolution    des autres 

intégrales semblables. 

• On peut aussi démontrer la transformation de Laplace de 𝑥𝑛 en utilisant la formule de 

Leibniz : 

ℒ(𝑥𝑛)(𝑝) = ∫ 𝑥𝑛𝑒−𝑝𝑥𝑑𝑥
∞

0

 

 

= (−1)𝑛 ∫ (−𝑥)𝑛𝑒−𝑝𝑥𝑑𝑥
∞

0
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= (−1)𝑛 lim
𝑦→𝑝

∫ (−𝑥)𝑛𝑒−𝑦𝑥𝑑𝑥
∞

0

 

 

= (−1)𝑛 lim
𝑦→𝑝

𝜕𝑛

𝜕𝑦𝑛
∫ 𝑒−𝑦𝑥𝑑𝑥

∞

0

 

 

= (−1)𝑛 lim
𝑦→𝑝

𝜕𝑛

𝜕𝑦𝑛
[−

𝑒−𝑦𝑥

𝑦
]
0

∞

 

 

= (−1)𝑛 lim
𝑦→𝑝

𝜕𝑛

𝜕𝑦𝑛
(
1

𝑦
) 

En utilisant (7.3), on a : 

= (−1)𝑛 lim
𝑦→𝑝

(−1)𝑛𝑛!

𝑦𝑛+1
 

 

𝓛(𝒙𝒏)(𝒑) = ∫ 𝒙𝒏𝒆−𝒑𝒙𝒅𝒙
∞

𝟎

=
𝒏!

𝒑𝒏+𝟏
 

 

• Si nous procédons de la même manière pour 𝑝 = 1, nous obtiendrons la fonction 

gamma Γ d’Euler pour les n entiers naturels non nuls : 

 

𝚪(𝒏) = ∫ 𝒙𝒏−𝟏𝒆−𝒙𝒅𝒙 =
∞

𝟎

𝓛(𝒙𝒏−𝟏)(𝟏) = (𝒏 − 𝟏)! 

 

 

𝟐. 𝟐. 𝑰𝟏 = ∫𝒆𝒂𝒙 𝐬𝐢𝐧(𝒃𝒙)𝒅𝒙     𝒆𝒕    𝑰𝟐 = ∫𝒆𝒂𝒙 𝐜𝐨𝐬(𝒃𝒙)𝒅𝒙 

 

Ici on ne va pas utiliser la formule de Leibniz 

 

𝐼1 + 𝑖𝐼2 = ∫𝑒𝑎𝑥𝑒𝑖𝑏𝑥𝑑𝑥 
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=
𝑒(𝑎+𝑖𝑏)𝑥

𝑎 + 𝑖𝑏
 

 

=
𝑒𝑎𝑥(cos 𝑏𝑥 + 𝑖 sin 𝑏𝑥)(𝑎 − 𝑖𝑏)

(𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏)
 

 

𝐼1 + 𝑖𝐼2 =
𝑒𝑎𝑥

𝑎2 + 𝑏2
(𝑎 cos 𝑏𝑥 + 𝑏 sin 𝑏𝑥) + 𝑖

𝑒𝑎𝑥

𝑎2 + 𝑏2
(−𝑏 cos 𝑏𝑥 + 𝑎 sin 𝑥) 

a: 

∫𝒆𝒂𝒙 𝐜𝐨𝐬 𝒃𝒙𝒅𝒙 =
𝒆𝒂𝒙

𝒂𝟐 + 𝒃𝟐
(𝒂 𝐜𝐨𝐬 𝒃𝒙 + 𝒃𝐬𝐢𝐧𝒃𝒙) + 𝑪 

Et 

∫𝒆𝒂𝒙 𝐬𝐢𝐧 𝒃𝒙𝒅𝒙 =
𝒆𝒂𝒙

𝒂𝟐 + 𝒃𝟐
(−𝒃𝐜𝐨𝐬 𝒃𝒙 + 𝒂𝐬𝐢𝐧 𝒙) + 𝑪 

 

 

𝟐. 𝟑. 𝑰𝟏 = ∫𝒙𝒂 𝐬𝐢𝐧(𝒃𝒙)𝒅𝒙     𝒆𝒕    𝑰𝟐 = ∫𝒙𝒂 𝐜𝐨𝐬(𝒃𝒙)𝒅𝒙 

 

𝐼1 + 𝑖𝐼2 = ∫𝑥𝑎𝑒𝑖𝑏𝑥𝑑𝑥 

En utilisant la première intégrale, on a: 

=
𝑒𝑖𝑏𝑥

𝑖𝑏
∑(−1)𝑘𝐴𝑛

𝑘
𝑥𝑎−𝑘

(𝑖𝑏)𝑘

𝑎

𝑘=0

 

 

=
−𝑖 cos 𝑏𝑥 + sin 𝑥

𝑏
∑(−1)𝑘𝑖−𝑘𝐴𝑛

𝑘
𝑥𝑎−𝑘

𝑏𝑘

𝑎

𝑘=0

 

 

En utilisant  la formule (5.0), on a : 
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=
sin𝑏𝑥 − 𝑖 cos 𝑏𝑥

𝑏
[
 
 
 
∑(−1)𝑘𝐴𝑛

2𝑘
𝑥𝑎−2𝑘

𝑏2𝑘
+ 𝑖 ∑ (−1)𝑘𝐴𝑛

2𝑘+1
𝑥𝑎−2𝑘−1

𝑏2𝑘+1

⌊
𝑎−1

2
⌋

𝑘=0

⌊
𝑎

2
⌋

𝑘=0
]
 
 
 
 

 

Ce qui nous donne : 

∫𝒙𝒂 𝐜𝐨𝐬 𝒃𝒙𝒅𝒙 =
𝐬𝐢𝐧𝒃𝒙

𝒃
∑(−𝟏)𝒌𝑨𝒏

𝟐𝒌
𝒙𝒂−𝟐𝒌

𝒃𝟐𝒌

⌊
𝒂

𝟐
⌋

𝒌=𝟎

+
𝐜𝐨𝐬𝒃𝒙

𝒃
∑(−𝟏)𝒌

⌊
𝒂−𝟏

𝟐
⌋

𝒌=𝟎

𝑨𝒏
𝟐𝒌+𝟏

𝒙𝒂−𝟐𝒌−𝟏

𝒃𝟐𝒌+𝟏
+ 𝑪 

Et 

∫𝒙𝒂 𝐬𝐢𝐧𝒃𝒙𝒅𝒙 =
𝐬𝐢𝐧𝒃𝒙

𝒃
∑(−𝟏)𝒌

⌊
𝒂−𝟏

𝟐
⌋

𝒌=𝟎

𝑨𝒏
𝟐𝒌+𝟏

𝒙𝒂−𝟐𝒌−𝟏

𝒃𝟐𝒌+𝟏
−

𝐜𝐨𝐬 𝒃𝒙

𝒃
∑(−𝟏)𝒌𝑨𝒏

𝟐𝒌
𝒙𝒂−𝟐𝒌

𝒃𝟐𝒌
+ 𝑪

⌊
𝒂

𝟐
⌋

𝒌=𝟎

 

 

Ou encore  

∫𝑥𝑎 cos 𝑏𝑥𝑑𝑥 = lim
𝑦→𝑏

∫𝑥𝑎 cos 𝑦𝑥𝑑𝑥 

 

= lim
𝑦→𝑏

∫𝑥𝑎 cos (𝑦𝑥 +
𝑎𝜋

2
−

𝑎𝜋

2
)𝑑𝑥 

 

= lim
𝑦→𝑏

[∫𝑥𝑎 cos (𝑦𝑥 +
𝑎𝜋

2
) cos

𝑎𝜋

2
𝑑𝑥 + ∫𝑥𝑎 sin (𝑦𝑥 +

𝑎𝜋

2
) sin

𝑎𝜋

2
𝑑𝑥] 

 

En appliquant la formule (7.5) et (7.6) 

 

= lim
𝑦→𝑏

(cos
𝑎𝜋

2

𝜕𝑎

𝜕𝑦𝑎
∫cos 𝑦𝑥𝑑𝑥 + sin

𝑎𝜋

2

𝜕𝑎

𝜕𝑦𝑎
∫sin𝑦𝑥𝑑𝑥) 

 

= lim
𝑦→𝑏

[cos
𝑎𝜋

2

𝜕𝑎

𝜕𝑦𝑎
(
1

𝑦
sin 𝑥𝑦) − sin

𝑎𝜋

2

𝜕𝑎

𝜕𝑦𝑎
(
1

𝑦
cos 𝑥𝑦)] 

 

En utilisant la formule de Leibniz, on a : 
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= lim
𝑦→𝑏

[cos
𝑎𝜋

2
∑ (

𝑎
𝑘
)

𝜕𝑎−𝑘

𝜕𝑦𝑎−𝑘
(sin 𝑦𝑥)

𝜕𝑘

𝜕𝑦𝑘
(
1

𝑦
)

𝑎

𝑘=0

− sin
𝑎𝜋

2
∑ (

𝑎
𝑘
)

𝜕𝑎−𝑘

𝜕𝑦𝑎−𝑘
(
1

𝑦
)

𝜕𝑘

𝜕𝑦𝑘
(cos 𝑦𝑥)

𝑎

𝑘=0

] 

 

En utilisant (5.2), (5.3) et (5.4), on a : 

 

= lim
𝑦→𝑏

∑ (
𝑎
𝑘
)
(−1)𝑘𝑘!

𝑦𝑘+1
𝑥𝑎−𝑘 [cos

𝑎𝜋

2
sin (𝑦𝑥 +

𝑎𝜋

2
−

𝑘𝜋

2
) − sin

𝑎𝜋

2
cos (𝑦𝑥 +

𝑎𝜋

2
−

𝑘𝜋

2
)]

𝑎

𝑘=0

 

 

On se retrouve devant la sinus de la différence de deux angles : 

 

= lim
𝑦→𝑏

∑ (
𝑎
𝑘
)
(−1)𝑘𝑘!

𝑦𝑘+1
𝑥𝑎−𝑘 sin (𝑦𝑥 −

𝑘𝜋

2
)

𝑎

𝑘=0

 

 

∫𝒙𝒂 𝐜𝐨𝐬 𝒃𝒙𝒅𝒙 =
𝐬𝐢𝐧 𝒃𝒙

𝒃
∑(−𝟏)𝒌𝑨𝒂

𝒌
𝒙𝒂−𝒌

𝒃𝒌
𝐜𝐨𝐬

𝒌𝝅

𝟐
+

𝐜𝐨𝐬

𝒃
∑(−𝟏)𝒌𝑨𝒂

𝒌
𝒙𝒂−𝒌

𝒃𝒌
𝐬𝐢𝐧

𝒌𝝅

𝟐

𝒏

𝒌=𝟎

𝒏

𝒌=𝟎

+ 𝑪 

 

En utilisant cette formule, on retrouve la première forme : 

 

∑ 𝑈𝑘 = ∑ 𝑈2𝑘 + ∑ 𝑈2𝑘+1

⌊
𝑛−1

2
⌋

𝑘=0

⌊
𝑛

2
⌋

𝑘=0

𝑛

𝑘=𝑜

 

Et sachant que 

sin (
2𝑘𝜋

2
) = sin𝑘𝜋 = 0   𝑒𝑡  cos (

2𝑘𝜋

2
) = cos 𝑘𝜋 = (−1)𝑘 

Et 

sin (
2𝑘𝜋 + 𝜋

2
) = sin (𝑘𝜋 +

𝜋

2
) = cos 𝑘𝜋 = (−1)𝑘 

 

cos (
2𝑘𝜋 + 𝜋

2
) = cos (𝑘𝜋 +

𝜋

2
) = −sin 𝑘𝜋 = 0 
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𝟐. 𝟓.  𝑰𝟏 = ∫𝒙𝒂𝒆𝒃𝒙 𝐜𝐨𝐬 𝒄𝒙 𝒅𝒙   𝒆𝒕  𝑰𝟐 = ∫𝒙𝒂𝒆𝒃𝒙 𝐬𝐢𝐧𝒄𝒙 𝒅𝒙  (𝒂, 𝒃, 𝒄 ∈ ℕ) 

 

On sait que 

cos(𝑐𝑥) + 𝑖 sin(𝑐𝑥) = 𝑒𝑖𝑐𝑥 

 

=> 𝐼1 + 𝑖𝐼2 = ∫𝑥𝑎𝑒𝑏𝑥[cos(𝑐𝑥) + 𝑖 sin(𝑐𝑥)]𝑑𝑥 

 

𝐼1 + 𝑖𝐼2 = ∫𝑥𝑎𝑒𝑏𝑥𝑒𝑖𝑐𝑥𝑑𝑥 

 

𝐼1 + 𝑖𝐼2 = ∫𝑥𝑎𝑒(𝑏+𝑖𝑐)𝑥𝑑𝑥 

 

En utilisant première intégrale, on a : 

 

𝐼1 + 𝑖𝐼2 =
𝑒(𝑏+𝑖𝑐)𝑥

(𝑏 + 𝑖𝑐)
∑(−1)𝑘𝐴𝑎

𝑘
𝑥𝑎−𝑘

(𝑏 + 𝑖𝑐)𝑘
   

𝑎

𝑘=0

 

 

𝐼1 + 𝑖𝐼2 =
𝑒(𝑏+𝑖𝑐)𝑥(𝑏 − 𝑖𝑐)

(𝑏 + 𝑖𝑐)(𝑏 − 𝑖𝑐)
∑(−1)𝑘𝐴𝑎

𝑘
𝑥𝑎−𝑘(𝑏 − 𝑖𝑐)𝑘

(𝑏 + 𝑖𝑐)𝑘(𝑏 − 𝑖𝑐)𝑘
   

𝑎

𝑘=0

 

 

𝐼1 + 𝐼2 =
𝑒𝑏𝑥(cos 𝑐𝑥 + 𝑖 sin 𝑐𝑥)

𝑎2 + 𝑏2
∑(−1)𝑘𝐴𝑎

𝑘
𝑥𝑎−𝑘(𝑏 − 𝑖𝑐)𝑘+1

(𝑎2 + 𝑏2)𝑘

𝑎

𝑘=0

 

 

En utilisant le binôme de Newton pour (𝑏 − 𝑖𝑐)𝑘+1, on a : 

 

𝐼1 + 𝐼2 =
𝑒𝑏𝑥(cos 𝑐𝑥 + 𝑖 sin 𝑐𝑥)

𝑎2 + 𝑏2
∑(−1)𝑘𝐴𝑎

𝑘
𝑥𝑎−𝑘

(𝑎2 + 𝑏2)𝑘
∑ (

𝑘 + 1
𝑝

)𝑏𝑘−𝑝+1(−𝑖𝑐)𝑝

𝑘+1

𝑝=0

𝑎

𝑘=0

 

 

En utilisant (5.0), on a : 
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𝐼1 + 𝐼2 =
𝑒𝑏𝑥(cos 𝑐𝑥 + 𝑖 sin 𝑐𝑥)

𝑎2 + 𝑏2
∑(−1)𝑘𝐴𝑎

𝑘
𝑥𝑎−𝑘

(𝑎2 + 𝑏2)𝑘

[
 
 
 

∑(−1)𝑝 (
𝑘 + 1
2𝑝

)𝑏𝑘−2𝑝+1𝑐2𝑝

⌊
𝑘+1

2
⌋

𝑝=0

𝑎

𝑘=0

+ 𝑖 ∑(−1)𝑝 (
𝑘 + 1
2𝑝 + 1

)𝑏𝑘−2𝑝𝑐2𝑝+1

⌊
𝑘

2
⌋

𝑝=0
]
 
 
 

 

 

𝐼1 + 𝐼2 =
𝑒𝑏𝑥

𝑎2 + 𝑏2
∑(−1)𝑘𝐴𝑎

𝑘
𝑥𝑎−𝑘

(𝑎2 + 𝑏2)𝑘

[
 
 
 

∑(−1)𝑝 cos(𝑐𝑥) (
𝑘 + 1
2𝑝

) 𝑏𝑘−2𝑝+1

⌊
𝑘+1

2
⌋

𝑝=0

𝑎

𝑘=0

− ∑(−1)𝑝 sin(𝑐𝑥) (
𝑘 + 1
2𝑝 + 1

) 𝑏−2𝑝𝑐2𝑝+1

⌊
𝑘

2
⌋

𝑝=0
]
 
 
 

 

 

+𝑖

[
 
 
 

∑ cos(𝑐𝑥) (
𝑘 + 1
2𝑝 + 1

)𝑏𝑘−2𝑝𝑐2𝑝+1

⌊
𝑘

2
⌋

𝑝=0

+ ∑ sin(𝑐𝑥) (
𝑘 + 1
2𝑝 + 1

)𝑏𝑘−2𝑝𝑐2𝑝+1

⌊
𝑘+1

2
⌋

𝑝=0
]
 
 
 

 

 

 ∫𝑥𝑎𝑒𝑏𝑥 cos 𝑐𝑥 𝑑𝑥𝑣

=
𝒆𝒃𝒙

𝒂𝟐 + 𝒃𝟐
∑(−𝟏)𝒌𝑨𝒂

𝒌
𝒙𝒂−𝒌

(𝒂𝟐 + 𝒃𝟐)𝒌

𝒂

𝒌=𝟎
[
 
 
 

∑(−𝟏)𝒑 𝐜𝐨𝐬(𝒄𝒙) (
𝒌 + 𝟏
𝟐𝒑

)𝒃𝒌−𝟐𝒑+𝟏𝒄𝟐𝒑

⌊
𝒌+𝟏

𝟐
⌋

𝒑=𝟎

− ∑(−𝟏)𝒑 𝐬𝐢𝐧(𝒄𝒙) (
𝒌 + 𝟏
𝟐𝒑 + 𝟏

)𝒃−𝟐𝒑𝒄𝟐𝒑+𝟏

⌊
𝒌

𝟐
⌋

𝒑=𝟎
]
 
 
 

+ 𝑪 

Et 

∫𝒙𝒂𝒆𝒃𝒙 𝐬𝐢𝐧 𝒄𝒙𝒅𝒙

=
𝒆𝒃𝒙

𝒂𝟐 + 𝒃𝟐
∑(−𝟏)𝒌𝑨𝒂

𝒌
𝒙𝒂−𝒌

(𝒂𝟐 + 𝒃𝟐)𝒌

𝒂

𝒌=𝟎
[
 
 
 

∑(−𝟏)𝒑

⌊
𝒌+𝟏

𝟐
⌋

𝒑=𝟎

𝐜𝐨𝐬(𝒄𝒙) (
𝒌 + 𝟏
𝟐𝒑 + 𝟏

)𝒃𝒌−𝟐𝒑𝒄𝟐𝒑+𝟏

+ ∑(−𝟏)𝒑 𝐬𝐢𝐧(𝒄𝒙) (
𝒌 + 𝟏
𝟐𝒑 + 𝟏

)𝒃𝒌−𝟐𝒑𝒄𝟐𝒑+𝟏

⌊
𝒌

𝟐
⌋

𝒑=𝟎
]
 
 
 

+ 𝑪 
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0n voit qu’on peut facilement trouver les valeurs des intégrales suivantes (d∈ ℕ ): 

 

∫𝑥𝑎𝑑𝑏𝑥 cos 𝑐𝑥𝑑𝑥 = ∫𝑥𝑎𝑒𝑥𝑏 ln𝑑 cos 𝑐𝑥𝑑𝑥 

Et 

∫𝑥𝑎𝑑𝑏𝑥 sin 𝑐𝑥 𝑑𝑥 = ∫𝑥𝑎𝑒𝑥𝑏 ln𝑑 sin 𝑐𝑥𝑑𝑥 

 

Transformations de Laplace des fonctions trigonométriques (sinus et cosinus) modulées 

de la fonction puissance 

 

Ici nous allons utiliser l’autre méthode 

 

ℒ(𝑥𝑎𝑒𝑖𝑏𝑥)(𝑝) = ℒ(𝑥𝑎 cos 𝑏𝑥)(𝑝) + 𝑖ℒ(𝑥𝑎 sin 𝑏𝑥) 

 

∫ 𝑥𝑎𝑒𝑖𝑏𝑥𝑒−𝑝𝑥𝑑𝑥 = ∫ 𝑥𝑎𝑒−(𝑝−𝑏)𝑥𝑑𝑥
∞

0

∞

0

 

 

= lim
𝑦→−(𝑝−𝑏)

∫ 𝑥𝑎𝑒−𝑦𝑥𝑑𝑥
∞

0

 

 

On procède comme on a fait pour trouver la première int »grale 

= lim
𝑦→−(𝑝−𝑖𝑏)

(−1)𝑎
𝜕𝑎

𝜕𝑦𝑎
∫ 𝑒−𝑦𝑥𝑑𝑥

∞

0

 

 

= lim
𝑦→−(𝑝−𝑖𝑏)

(−1)𝑎
𝜕𝑎

𝜕𝑦𝑎
[−

𝑒−𝑦𝑥

𝑦
]
0

∞

 

 

= lim
𝑦→−(𝑝−𝑖𝑏)

(−1)𝑎
𝜕𝑎

𝜕𝑦𝑎
(
1

𝑦
) 

 

On utilise la formule (7.3) 
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= lim
𝑦→−(𝑝−𝑖𝑏)

(−1)𝑎
(−1)𝑎𝑎!

𝑦𝑎+1
 

 

=
𝑎!

(𝑝 − 𝑖𝑏)𝑎+1
 

 

=
𝑎! (𝑝 + 𝑖𝑏)𝑎+1

(𝑝 − 𝑖𝑏)𝑎+1(𝑝 + 𝑖𝑏)𝑎+1
 

 

=
𝑎!

(𝑝2 + 𝑏2)𝑎+1
∑ (

𝑎 + 1
𝑘

)𝑝𝑎−𝑘+1(𝑖𝑏)𝑘

𝑎+1

𝑘=0

 

En sachant que : 

 

ℒ(𝑥𝑎𝑒𝑖𝑏𝑥)(𝑝) = ℒ(𝑥𝑎 cos 𝑏𝑥)(𝑝) + 𝑖ℒ(𝑥𝑎 sin 𝑏𝑥)(𝑝) 

 

Et en utilisant (5.0) ; on a : 

 

=
𝑎!

(𝑝2 + 𝑏2)𝑎+1

[
 
 
 
∑ (−1)𝑘 (

𝑎 + 1
2𝑘

)𝑝𝑎−2𝑘+1𝑏2𝑘 + 𝑖 ∑(−1)𝑘 (
𝑎 + 1
2𝑘 + 1

)𝑝𝑎−2𝑘𝑏2𝑘+1

⌊
𝑎

2
⌋

𝑘=0

⌊
𝑎+1

2
⌋

𝑘=0
]
 
 
 
 

 

∫ 𝒙𝒂𝒆−𝒑𝒙 𝐜𝐨𝐬 𝒃𝒙𝒅𝒙 =
𝒂!

(𝒑𝟐 + 𝒃𝟐)𝒂+𝟏 ∑ [(−𝟏)𝒌 (
𝒂 + 𝟏
𝟐𝒌

)𝒑𝒂−𝟐𝒌+𝟏𝒃𝟐𝒌]

⌊
𝒂+𝟏

𝟐
⌋

𝒌=𝟎

∞

𝟎

+ 𝑪 

 

Et 

 

∫ 𝒙𝒂𝒆−𝒑𝒙 𝐬𝐢𝐧 𝒃𝒙𝒅𝒙 =
𝒂!

(𝒑𝟐 + 𝒃𝟐)𝒂+𝟏 ∑ [(−𝟏)𝒌 (
𝒂 + 𝟏
𝟐𝒌 + 𝟏

)𝒑𝒂−𝟐𝒌𝒃𝟐𝒌+𝟏]

⌊
𝒂

𝟐
⌋

𝒌=𝟎

∞

𝟎

+ 𝑪 

 

On voit qu’on peut trouver encore pour les formes plus généralisées : 
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∫𝑷(𝒙)𝒆𝒃𝒙 𝐬𝐢𝐧𝒏 𝒄𝒙𝒅𝒙,∫𝑷(𝒙)𝒆𝒃𝒙 𝐜𝐨𝐬𝒏 𝒄𝒙𝒅𝒙,∫𝑷(𝒙)𝒅𝒃𝒙 𝐬𝐢𝐧𝒏 𝒄𝒙𝒅𝒙,∫𝑷(𝒙)𝒅𝒃𝒙 𝐜𝐨𝐬𝒏 𝒄𝒙𝒅𝒙 

 

Il suffit seulement de linéariser  𝑠𝑖𝑛𝑛𝑥 𝑒𝑡 𝑐𝑜𝑠𝑛𝑥 en utilisant les formules d’Euler, retrouver 

une sommes des formes précédentes : 

𝑐𝑜𝑠𝑛𝑥 = (
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2
)

𝑛

 

 

En utilisant le binôme de Newton, on a : 

 

=
1

2𝑛
∑ (

𝑛
𝑘
)𝑒𝑖(𝑛−2𝑘)𝑥

𝑛

𝑘=0

 

 

En prenant la partie réelle de 𝑒𝑖(𝑛−2𝑘)𝑥 on a : 

 

𝒄𝒐𝒔𝒏𝒙 =
𝟏

𝟐𝒏
∑(

𝒏
𝒌
)

𝒏

𝒌=𝟎

𝐜𝐨𝐬(𝒏 − 𝟐𝒌) 𝒙 

Et  

𝑠𝑖𝑛𝑛𝑥 = (
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖
)

𝑛

 

=
𝑖−𝑛

2𝑛
∑(−1)𝑘 (

𝑛
𝑘
) [cos(𝑛 − 2𝑘)𝑥 + 𝑖 sin(𝑛 − 2𝑘)]

𝑛

𝑘=0

 

 

Pour les n pairs, on o : 

 

𝒔𝒊𝒏𝒏𝒙 =
(−𝟏)

𝒏

𝟐

𝟐𝒏
∑(−𝟏)𝒌

𝒏

𝒌=𝟎

(
𝒏
𝒌
) 𝐜𝐨𝐬(𝒏 − 𝟐𝒌) 𝒙 

 

Pour les n impairs, on a : 
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𝒔𝒊𝒏𝒏𝒙 =
(−𝟏)

𝒏+𝟏

𝟐

𝟐𝒏
∑(−𝟏)𝒌

𝒏

𝒌=𝟎

(
𝒏
𝒌
) 𝐬𝐢𝐧(𝒏 − 𝟐𝒌)𝒙 

 

Remarques 

On constate que toutes les formes citées ci haut sont les cas particuliers de 

cette dernière. 

 

 

𝟐. 𝟓. 𝑰 = ∫𝒙𝒂𝒍𝒏𝒃 𝒙𝒅𝒙 

  

𝐼 = lim
𝑦→𝑎

∫𝑥𝑦𝑙𝑛𝑏𝑥𝑑𝑥 

 

𝐼 = lim
𝑦→𝑎

𝜕𝑏

𝜕𝑦𝑏
∫𝑥𝑦𝑑𝑥 

 

𝐼 = lim
𝑦→𝑎

𝜕𝑏

𝜕𝑦𝑏
(

1

𝑦 + 1
𝑥𝑦+1) 

 

En utilisant la formule de Leibniz 

 

𝐼 = lim
𝑦→𝑎

𝑥 ∑ (
𝑏
𝑘
)

𝜕𝑏−𝑘

𝜕𝑦𝑏−𝑘
(𝑥𝑦)

𝜕𝑘

𝜕𝑦𝑘
(

1

𝑦 + 1
)

𝑏

𝑘=0

 

 

𝐼 = lim
𝑦→𝑎

𝑥 ∑ (
𝑏
𝑘
) (𝑥𝑦)𝑙𝑛𝑏−𝑘𝑥

(−1)𝑘𝑘!

(𝑦 + 1)𝑘+1

𝑏

𝑘=0

 

 

𝐼 = lim
𝑦→𝑎

𝑥𝑦+1

𝑦 + 1
∑(−1)𝑘𝑘! (

𝑏
𝑘
)

𝑙𝑛𝑏−𝑘𝑥

(𝑦 + 1)𝑘

𝑏

𝑘=0
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∫ 𝒙𝒂𝒍𝒏𝒃𝒙𝒅𝒙 =
𝒙𝒃+𝟏

𝒃 + 𝟏
∑(−𝟏)𝒌𝑨𝒃

𝒌 𝒍𝒏𝒃−𝒌𝒙

(𝒃 + 𝟏)𝒌

𝒃

𝒌=𝟎

+ 𝑪 

 

On peut aussi facilement calculer  

∫𝑃(𝑥)𝑙𝑛𝑏𝑥𝑑𝑥 

Avec 𝑃(𝑥) un polynôme  
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CHAPITRE TROISIEME : APPLICATIONS DU 

THEOREME DE RESIDUS DANS LA RESOLUTION 

DES  QUELQUES INTEGRALES REELLES 

 

3.1 POLES ET ZEROS D’UNE FONCTION RATIONNELLE 

 

Soit une fonction 𝑓(𝑧) définie sur ℂ (ensemble des complexes) 

Si 

𝑓(𝑧) =
ℎ(𝑧)

𝑔(𝑧)
 

Alors ∀𝑧𝑘 ∈ ℂ/ℎ(𝑧) = 0, 𝑧𝑘 est appelé zéro de 𝑓(𝑧) et  ∀𝑧𝑘 ∈ ℂ/𝑔(𝑧) = 0, 𝑧𝑘 est appelé 

pôle de 𝑓(𝑧) 

𝑧𝑘 est un pôle simple de 𝑓(𝑧) si il est une racine simple de 𝑔(𝑧) et il est un pôle multiple 

d’ordre n si il est racine multiple d’ordre n. 

 

3.2. RESIDUS D’UNE FONCTION ET THEOREME 

 

A. DEFI NITION 

 

• Pôles simples 

Si la fonction  𝑓(𝑧) admet un pôle simple au point 𝑧0 alors 

 

Res(𝑓(𝑧), 𝑧𝑘) = lim
𝑧→𝑧0

(𝑧 − 𝑧0) 𝑓(𝑧) 

 

Si la fonction 𝑓(𝑧) =
𝑔(𝑧)

𝑞(𝑧)
 admet un pôle au point 𝑧0, avec 𝑝(𝑧) ≠ 0 alors  

 

Res(𝑓(𝑧), 𝑧𝑘) =
ℎ(𝑧0)

𝑔′(𝑧0)
 

 

• Pole d’ordre m 

 

Si la fonction 𝑓(𝑧) admet un pôle d’ordre m au point 𝑧0 alors 
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Res(𝑧𝑘, 𝑓(𝑧)) =
1

(𝑚 − 1)!
lim
𝑧→𝑧0

[(𝑧 − 𝑧0)
𝑚𝑓(𝑧)](𝑚−1) 

 

 

Avec [ℎ](𝑛) est la dérivée d’ordre n de la fonction h 

 

B. THEOREME 

 

Si 𝑓(𝑧) est une fonction holomorphe sur un domaine D de frontière C fermée ( D entouré par 

C) et z1, z2, z3,…,zn ∈C des points isolés de 𝑓(𝑧) alors l’intégrale de la fonction 𝑓(𝑧) 

sur C orientée positivement D est 

 

∮ 𝒇(𝒛)𝒅𝒛 = 𝟐𝝅𝒊 ∑ 𝐑𝐞𝐬(𝒇(𝒛), 𝒛𝒌)

𝒏

𝒌=𝟏𝑪

 

 

3.3. APPLICATIONS DU THEOREME DE RESIDUS 

 

Ce théorème est appliqué dans la résolution des intégrales de la forme : 

𝐼 = ∫ 𝑓(sin 𝜃 , cos 𝜃)𝑑𝜃
2𝜋

0

 

 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
+∞

−∞

 

 

𝐼 = ∫ 𝑒𝑖𝛼𝑥𝑓(𝑥)𝑑𝑥
−∞

+∞

 

 

𝐼 = ∫ 𝑥𝑎𝑓(𝑥)𝑑𝑥
∞

0

 

 

𝐼 = ∫ ln 𝑥 𝑓(𝑥)
∞

0

 

 

Ce qui concerne ici c’est la recherche de résidus aux pôles multiples d’une fonction 

rationnelle𝑓(𝑥). 



 

 

 
Muhindo Vusangi Martin 

26 
 

Dans le premier chapitre on a vu qu’on peut décomposer tout polynôme 𝑔(𝑥) en facteur. 

Or la fonction rationnelle 

 

𝑓(𝑥) =
ℎ(𝑥)

𝑔(𝑥)
 

 

Les pôles d’une fonction étant les zéros du dénominateur𝑔(𝑥). 

Donc on peut trouver tous les pôles d’une fonction rationnelle 𝑓(𝑥) 

En connaissant les pôles, la dérivée nième d’une fonction et la formule de Leibniz, on peut 

facilement trouver le résidu d’ordre n d’une fonction rationnelle modulée d’une fonction 

puissance, exponentielle, trigonométrique, logarithmique,…  

 

Remarque : les différentes conditions que 𝑓(𝑥) et ses pôles doivent satisfaire sont dans les 

livres d’analyse complexe 

 

3.4. EXEMPLES 

 

Exemple 1 

 

1;  𝐼 = ∫
𝑑𝜃

(𝑎 + 𝑏 sin 𝜃)𝑛
     0 < 𝑏 < 𝑎

2𝜋

0

 

En posant 

𝑒𝜃 = 𝑧  =>   𝑑𝜃 =
𝑑𝑧

𝑖𝑧
 

   

On a: 

𝐼 = ∮
1

𝑧𝑖

1

[𝑎 +
𝑏

2𝑖
(𝑧 −

1

𝑍
)]

𝑛 𝑑𝑧 

 

On a: 

𝑓(𝑧) =
1

𝑧𝑖

1

[𝑎 +
𝑏

2𝑖
(𝑧 −

1

𝑍
)]

𝑛 

 

 

𝑓(𝑧) =
2𝑛𝑖𝑛−1𝑧𝑛−1

(𝑏𝑧2 + 2𝑎𝑖𝑧 − 𝑏)𝑛
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f(z) admet deux pôles d’ordre n qui sont : 

 

𝑧1 =
𝑖(−𝑎 + √𝑎2 − 𝑏2)

𝑏
 𝑒𝑡  𝑧2 =

𝑖(−𝑎 − √𝑎2 − 𝑏2)

𝑏
 

 

Seul z1 se trouve  l’intérieur du cercle unité : 

 

Res(𝑓, 𝑧1) =
1

(𝑛 − 1)!
lim
𝑧→𝑧1

2𝑛𝑖𝑛−1

𝑏𝑛

𝜕𝑛−1

𝜕𝑧𝑛−1
[

𝑧𝑛−1

(𝑧 + 𝑧1)𝑛] 

 

Res(𝑓, 𝑧1)

=
1

(𝑛 − 1)!
lim
𝑧→𝑧1

2𝑛𝑖𝑛−1

𝑏𝑛 ∑(
𝑛 − 1

𝑘
)
(−1)1−𝑛

(𝑛 − 1)!

𝜕𝑛−𝑘−1

𝜕𝑧𝑛−𝑘−1

𝑛−1

𝑘=0

[
(𝑛 − 1)! (−1)𝑛−1

(𝑧 + 𝑧1)𝑛 ]
𝜕𝑘

𝜕𝑧𝑘
(𝑧𝑛−1) 

 

Res(𝑓, 𝑧1)

=
(−1)𝑛+1

[(𝑛 − 1)!]2
2𝑛𝑖𝑛−1

𝑏𝑛
lim
𝑧→𝑧1

∑(
𝑛 − 1

𝑘
)

𝜕𝑛−𝑘−1

𝜕𝑧𝑛−𝑘−1

𝑛−1

𝑘=0

[
𝜕𝑛−1

𝜕𝑧𝑛−1
(

1

𝑧 − 𝑧1

)]
𝜕𝑘

𝜕𝑧𝑘
(𝑧𝑛−1) 

 

Res(𝑓, 𝑧1) =
(−1)𝑛+1

[(𝑛 − 1)!]2
2𝑛𝑖𝑛−1

𝑏𝑛 lim
𝑧→𝑧1

∑(
𝑛 − 1

𝑘
)

𝑛−1

𝑘=0

𝜕2𝑛−𝑘−2

𝜕𝑧2𝑛−𝑘−2
(

1

𝑧 − 𝑧1

)
𝜕𝑘

𝜕𝑧𝑘
(𝑧𝑛−1) 

 

En appliquant la formule (5.1), on a : 

 

Res(𝑓, 𝑧1)

=
(−1)𝑛+1

[(𝑛 − 1)!]2
2𝑛𝑖𝑛−1

𝑏𝑛 lim
𝑧→𝑧1

∑(
𝑛 − 1

𝑘
)

𝑛−1

𝑘=0

(−1)2𝑛−𝑘−2(2𝑛 − 𝑘 − 2)!

(𝑧 − 𝑧2)2𝑛−𝑘−1 𝐴𝑛−1
𝑘 𝑧𝑛−𝑘−1 
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res(𝑓, 𝑧1)

=
(−1)𝑛+1

[(𝑛 − 1)!]2
2𝑛𝑖𝑛−1

𝑏𝑛 lim
𝑧→𝑧1

∑(
𝑛 − 1

𝑘
)

𝑛−1

𝑘=0

(−1)2𝑛−𝑘−2(2𝑛 − 𝑘 − 2)!

(𝑧 − 𝑧2)2𝑛−𝑘−1 𝐴𝑛−1
𝑘 𝑧𝑛−𝑘−1 

 

=
(−1)𝑛+1

[(𝑛 − 1)!]2
2𝑛𝑖𝑛−1

𝑏𝑛 ∑(−1)𝑘 (
𝑛 − 1

𝑘
)

𝑛−1

𝑘=0

𝐴𝑛−1
𝑘

(
−𝑖𝑎+𝑖√𝑎2−𝑏2

𝑏
)

𝑛−𝑘−1

(
2𝑖√𝑎2−𝑏2

𝑏
)

2𝑛−𝑘−1
(2𝑛 − 𝑘 − 2)! 

 

Res(𝑓, 𝑧1) =
(−1)𝑛+1𝑖−𝑛+𝑛−12𝑛

[(𝑛 − 1)!]2
(−𝑎 + √𝑎2 − 𝑏2)

𝑛

22𝑛
(𝑎2 − 𝑏2

)
𝑛  

[∑(−1)𝑘(2𝑛 − 𝑘 − 2)! (
𝑛 − 1

𝑘
)

𝑛−1

𝑘=0

𝐴𝑛−1
𝑘 (

2√𝑎2 − 𝑏2

−𝑎 + √𝑎2 − 𝑏2
)

𝑘+1

] 

 

𝐼 = 2𝜋𝑖 ∑ Res(𝑓,𝑧1)

𝑚

𝑘=1

 

 

∫
𝒅𝜽

(𝒂 + 𝒃𝐬𝐢𝐧𝜽)𝒏 
𝟐𝝅

𝟎

=
𝟐𝝅(−𝟏)𝒏+𝟏

[(𝒏 − 𝟏)!]𝟐
[
−𝒂 + √𝒂𝟐 − 𝒃𝟐

𝟐(𝒂𝟐 − 𝒃𝟐)
]

𝒏

 ∑(−𝟏)𝒌(2𝑛 − 𝑘

𝒏−𝟏

𝒌=𝟎

− 2)! (
𝒏 − 𝟏

𝒌
)𝑨𝒏−𝟏

𝒌 (
𝟐√𝒂𝟐 − 𝒃𝟐

−𝒂 + √𝒂𝟐 − 𝒃𝟐
)

𝒌+𝟏

 

 

Exemple 2 

 

𝐼 = ∫
𝑑𝑥

(𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑛
          𝑏2 − 4𝑎𝑐 < 0 ∶  𝑎, 𝑏, 𝑐 ∈ ℝ

+∞

−∞
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𝑓(𝑧) =
1

(𝑎𝑧2 + 𝑏𝑧 + 𝑐)𝑛
 

 

𝑓(𝑧)  admet pôles d’ordre n qui sont : 

 

𝑧1 =
−𝑏 + 𝑖√4𝑎𝑐 − 𝑏2

2𝑎
   𝑒𝑡  𝑧2 =

−𝑏 − 𝑖√4𝑎𝑐 − 𝑏2

2𝑎
 

s 

On prendra 𝑧 seulement car   𝐼𝑚𝑧2 < 0 

 

Res(𝑓, 𝑧1) =
1

(𝑛 − 1)!
lim
𝑧→𝑧

1

𝑎𝑛

𝜕𝑛−1

𝜕𝑧𝑛−1
[(𝑧 − 𝑧1)

𝑛𝑓(𝑧)] 

 

Res(𝑓, 𝑧1) =
1

(𝑛 − 1)!

1

𝑎𝑛
lim
𝑧→𝑧1

𝜕𝑛−1

𝜕𝑧𝑛−1
[

1

(𝑧 − 𝑧2)
𝑛
] 

 

Res(𝑓, 𝑧1) =
(−1)−𝑛+1

[(𝑛 − 1)!]2
1

𝑎𝑛
lim
𝑧→𝑧1

𝜕𝑛−1

𝜕𝑧𝑛−1
[
𝜕𝑛−1

𝜕𝑧𝑛−1
(

1

𝑧 − 𝑧2
)] 

 

Res(𝑓, 𝑧1) =
(−1)−𝑛+1

[(𝑛 − 1)!]2
1

𝑎𝑛
lim
𝑧→𝑧1

𝜕2𝑛−2

𝜕𝑧2𝑛−2
(

1

𝑧 − 𝑧2
) 

 

En appliquant la formule (5.1), on a : 

 

Res(𝑓, 𝑧1) =
(−1)−𝑛+1

[(𝑛 − 1)!]2
1

𝑎𝑛
lim
𝑧→𝑧1

(−1)2𝑛−2(2𝑛 − 2)!

(𝑧 − 𝑧2)2𝑛−1
 

 

Res(𝑓, 𝑧1) =
(−1)−𝑛+1

[(𝑛 − 1)!]2
1

𝑎𝑛

(2𝑛 − 2)!

(
2𝑖√4𝑎𝑐−𝑏2

2𝑎
)

2𝑛−1 

 

𝐼 =
[2(𝑛 − 1)]!

[(𝑛 − 1)!]2
1

𝑎𝑛−2𝑛+1

(−1)𝑛+1𝑖−2𝑛+1

(2√4𝑎𝑐 − 𝑏2)
2𝑛−1 
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∫
𝒅𝒙

(𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄)𝒏

+∞

−∞

= 𝟐𝝅(
𝟐𝒏 − 𝟐
𝒏 − 𝟏

)
𝒂𝒏−𝟏

(√𝟒𝒂𝒄 − 𝒃𝟐)
𝟐𝒏−𝟏 

 

Exemple 3 

 

𝐼 = ∫
cos 𝑎𝑥

(𝑥2 + 𝑏2)𝑛

∞

0

𝑑𝑥 

 

𝐼 =
1

2
∫

cos 𝑎𝑥

(𝑥2 + 𝑏2)𝑛

+∞

−∞

𝑑𝑥 

 

𝐼 =
1

2
Re [∫

𝑒𝑎𝑖𝑥

(𝑥2 + 𝑏2)𝑛

+∞

−∞

𝑑𝑥] 

 

𝑓(𝑧) =
1

(𝑧2 + 𝑏2)𝑛
 

Les deux pôles d’ordre n de 𝑓(𝑥) sont  𝑖𝑏 𝑒𝑡 – 𝑖𝑏, nous prenons seulement 𝑖𝑏  𝑐𝑎𝑟  𝑏 > 0  

 

Res[𝑒𝑎𝑖𝑥𝑓(𝑧), 𝑖𝑏] =
1

(𝑛 − 1)!
lim
𝑧→𝑖𝑏

𝜕𝑛−1

𝜕𝑧𝑛−1
[(𝑧 − 𝑖𝑏)𝑛𝑒𝑎𝑖𝑥𝑓(𝑧)] 

 

Res[𝑒𝑎𝑖𝑥𝑓(𝑧), 𝑖𝑏] =
1

(𝑛 − 1)!
lim
𝑧→𝑖𝑏

𝜕𝑛−1

𝜕𝑧𝑛−1
[

𝑒𝑎𝑖𝑥

(𝑧 + 𝑖𝑏)𝑛
] 

 

On applique la formule de Leibniz 

 

Res[𝑒𝑎𝑖𝑥𝑓(𝑧), 𝑖𝑏] =
1

(𝑛 − 1)!
lim
𝑧→𝑖𝑏

∑ (
𝑛 − 1

𝑘
)

𝜕𝑛−𝑘−1

𝜕𝑧𝑛−𝑘−1
(𝑒𝑎𝑖𝑧)

𝜕𝑘

𝜕𝑧𝑘
(

1

(𝑧 + 𝑖𝑏)𝑛
)

𝑛−1

𝑘=0

 

 

Res[𝑒𝑎𝑖𝑥𝑓(𝑧), 𝑖𝑏] =
(−1)𝑛−1

[(𝑛 − 1)!]2
lim
𝑧→𝑖𝑏

∑ (
𝑛 − 1

𝑘
)

𝜕𝑛−𝑘−1

𝜕𝑧𝑛−𝑘−1
(𝑒𝑎𝑖𝑥)

𝜕𝑘

𝜕𝑧𝑘
[
𝜕𝑛−1

𝜕𝑧𝑛−1
(

1

𝑧 + 𝑖𝑏
)]

𝑛−1

𝑘=0
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Res[𝑒𝑎𝑖𝑥𝑓(𝑧), 𝑖𝑏] =
(−1)𝑛−1

[(𝑛 − 1)!]2
lim
𝑧→𝑖𝑏

∑ (
𝑛 − 1

𝑘
)

𝜕𝑛−𝑘−1

𝜕𝑧𝑛−𝑘−1
(𝑒𝑎𝑖𝑥)

𝜕𝑛+𝑘−1

𝜕𝑧𝑛+𝑘−1
(

1

𝑧 + 𝑖𝑏
)

𝑛−1

𝑘=0

 

 

En utilisant les formules (5.1) et (5.5), on a : 

 

Res[𝑒𝑎𝑖𝑥𝑓(𝑧), 𝑖𝑏] =
(−1)𝑛−1

[(𝑛 − 1)!]2
lim
𝑧→𝑖𝑏

∑ (
𝑛 − 1

𝑘
) (𝑖𝑎)𝑛−𝑘−1𝑒𝑎𝑖𝑧

(−1)𝑛+𝑘−1(𝑛 + 𝑘 − 1)!

(𝑧 + 𝑖𝑏)𝑛+𝑘

𝑛−1

𝑘=0

 

 

Res[𝑒𝑎𝑖𝑥𝑓(𝑧), 𝑖𝑏] =
𝑒−𝑎𝑏

[(𝑛 − 1)!]2
∑ (

𝑛 − 1
𝑘

) 𝑎𝑛−𝑘−1𝑖𝑛−𝑘−1
(−1)𝑘(𝑛 + 𝑘 − 1)!

(2𝑖𝑏)𝑛+𝑘

𝑛−1

𝑘=0

 

 

Res[𝑒𝑎𝑖𝑥𝑓(𝑧), 𝑖𝑏] =
𝑖−1𝑎𝑛−1𝑒−𝑎𝑏

(2𝑏)𝑛[(𝑛 − 1)!]2
∑ (

𝑛 − 1
𝑘

) (𝑛 + 𝑘 − 1)!
1

(2𝑎𝑏)𝑘

𝑛−1

𝑘=0

 

 

𝐼 =
1

2
Re [2𝜋𝑖

𝑖−1𝑎𝑛−1𝑒−𝑎𝑏

(2𝑏)𝑛[(𝑛 − 1)!]2
∑ (

𝑛 − 1
𝑘

) (𝑛 + 𝑘 − 1)!
1

(2𝑎𝑏)𝑘

𝑛−1

𝑘=0

] 

 

∫
𝐜𝐨𝐬𝒂𝒙

(𝒙𝟐 + 𝒃𝟐)𝒏

∞

𝟎

𝒅𝒙 =
𝝅𝒂𝒏−𝟏𝒆−𝒂𝒃

(𝟐𝒃)𝒏[(𝒏 − 𝟏)!]𝟐
∑ (

𝒏 − 𝟏
𝒌

) (𝒏 + 𝒌 − 𝟏)!
𝟏

(𝟐𝒂𝒃)𝒌

𝒏−𝟏

𝒌=𝟎

 

 

Si on place place la fonction exponentielle en deuxième position dans la formule de Leibniz, 

on a : 

Res[𝑒𝑎𝑖𝑥𝑓(𝑧), 𝑖𝑏] =
1

(𝑛 − 1)!
lim
𝑥→𝑖𝑏

∑ (
𝑛 − 1

𝑘
)

𝜕𝑛−𝑘−1

𝜕𝑧𝑛−𝑘−1
(

1

(𝑧 + 𝑖𝑏)𝑛
)

𝜕𝑘

𝜕𝑧𝑘
(𝑒𝑎𝑖𝑧)

𝑛−1

𝑘=0

 

 

Si on fait la même procédure comme le cas précédent, on va trouver : 

∫
𝐜𝐨𝐬𝒂𝒙

(𝒙𝟐 + 𝒃𝟐)𝒏

∞

𝟎

𝒅𝒙 =
𝝅𝒆−𝒂𝒃

(𝟐𝒃)𝟐𝒏−𝟏[(𝒏 − 𝟏)!]𝟐
∑ (

𝒏 − 𝟏
𝒌

) (𝟐𝒏 − 𝒌 − 𝟐)! (𝟐𝒂𝒃)𝒌

𝒏−𝟏

𝒌=𝟎
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