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ABSTRACT

This formula helps us to find easily all integrals of forms

[ x%eP*cos™cxdx ou [ x*eP*sin™cxdx pour tous (a, b, ¢, n)eN*

It helps also to find the residue to a multiple pole of all product of a rational
function and an usual function (exponential, logarithmic,...)

Res(f(2),24) = gy lim 22 (2 = 20" f ()
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EPIGRAPHE

«La vie n’est bonne qu’a deux -choses:
découvrir les Mathématiques et enseigner les
Mathématiques »

S.D Poisson

« La vie n’est bonne qu’a €tudier et enseigner les
Mathématiques »

B. PASCAL
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NOTATIONS

|x]: partie entiére du nombre x

(x,y):la formule numéro y se trouvant sur la page x

(Z) =Gy = k!(:ik)!
A= =R (1)

n n-—1
k=o Uk = ZLZZJO Uzp + Z;l(zzo Uzk+1 (5.0)
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INTRODUCTION

La résolution des certains intégrales généralisées a toujours causé un sérieux
probléme chez les éléves de I’école secondaire, les étudiants du supérieur, voir méme chez
certains enseignants des mathématiques et de physique.

Voici quelques intégrales généralisées qui constitueront la premiere partie de notre
travail :

I = fxaebx dx
I = fx“ sin(bx)dx et I= fxa cos(bx)dx
I =feax sin(bx)dx et I =feax cos(bx)dx
1= fxaebx sin(cx)dx et I = fx“ e cos(cx)dx

I = fx“ln’J xdx

Les résolutions de ces dernieres nous conduiront a résoudre d’autres qui sont encore
plus complexes comme par exemple :

I = ]P(x)eaxsinb(cx)dx

Avec P(x) un polynéme

Pour résoudre facilement ces intégrales, nous allons utiliser la formule de LEIBNIZ de
la dérivée n'*™ du produit de deux fonctions. Cette formule est donnée par :

Soit f et g deux fonctions de variable x

n

F- ™= (§)rr.g®

k=0
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On peut encore la noter comme :

n

Lo =Y (e

dxm
k=0

Cette formule intervient aussi dans I’application du théoréme de résidus dans la
résolution de quelques intégrales réelles, cas de pole multiple d’ordre n.

n-—1

=Dl

Res(f,zy) = [(z —20)f(2)]

On peu noter encore :

lim [(z = 2)f(2)] "

1
Res(f, z,) "1

C’est ceux qui vont constituer la deuxiéme partie de notre travail.

Notre travail a pour but de développer 1’esprit de recherche chez les jeunes passionnés
de mathématiques dans le calcul intégral. Les lecteurs de notre travail peuvent utiliser les
intégrales qui seront traitées dans la conception des petits logiciels de calcul.

Notre travail est subdivisé a deux trois chapitres qui sont :

e Formule de Leibniz

e Intégrales des quelques fonctions modulées

e Applications du théoreme de résidus dans la résolution de quelques intégrales
réelles.
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CHAPITRE PREMIER : FORMULE DE LEIBNIZ

1.1 DERIVEE n*™ D’UNE FONCTION
La dérivée d’ordre n (dérivée n'*™®) d’une fonction f(x) est notée

d™f(x)

== ouf™(x)

Voici les dérivées d’ordre n de quelques fonctions usuelles et peut trouver facilement :

d"y
1. e (x%) = A5x*™ avecaeNeta <n (7.1)
a“y r'n+1) a—n
2. d_”(x )_F(n—a+1+)x avec aeR (7.2)
3 dm ( 1 ) =D 73
Tdx"\x+a) (x +aq)nt? (7:3)
dm 1 (=1)"a™n!
' n ( ) = n+1 (7'4)
dx™\ax + b (ax + b)
d" /s
- — n : —
5'_dx" (sinax) = a"sin (ax + > n) (7.5)
n T
) et
6. Ten (cosax) = a™ cos (ax + > n) (7.6)

Les deux derniéres sont aussi appelées « formules de Leibniz »

dn
7.W(ea") =a"e® (7.7)
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dn
8'@ (aP*) = b"a*In™(x) (7.8)

1.2 DECOMPOSITION D’UNE FONCTION RATIONNELLE EN UNE
SOMME DES FONCTIONS

1.2.1 THEOREME DE D’ALEMBERT-GAUSS

Tout polynéme
n

f) =ag+ a;x? + a,x? + -+ a,x" = Z a;xt
i=0

anzeros xi,x,,..,x, se factorise en :

) =an | Joc—x

i=1

Soit une fonction rationnelle

Avec

flx) = Z a;x™ et g(x) = ) bjx’

i=0 7

étant deux polyndmes dans C, on sait que g(x) peut s’écrire comme
m
g(x) = b, H(x — x]-)
j=1

Avec les x; les solutions de I’équation g(x) = 0

_f)
= h(X) —m

1®cas:n<m

On pose
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(9.9)

Apreés avoir mis au méme dénominateur. Ces derniers étant le méme aux deux membres
de I’égalité nous conduit & obtenir un systéme de n+1 équations a n+1 inconnues (les 4;)
apres 1’identification.

2¢cas:n>m

On fait d’abord la division euclidienne avant de faire la méme procédure que dans le
cas précédent. En divisant f(x) par g(x),ona:

Foo r(x)
00 19w

Avec q(x) et g(x) respectivement le quotient et le reste.

La méme procédure va s’appliquer a la fonction

r(x)

k) = g(x)

1.2.2 THEOREME

En prenant (7.3) et (9.9), on voit qu’on peut trouver facilement la dérivée n® de toute

fonction rationnelle.

1.2.3 FORMULE DE LEIBNIZ

Les dérivees successives de f. g sont :

FD© =fg

F® =fDg+fg®

(@ = [fVg+fg®]"

— (g)f(z—mg(o) + (i) FED M 4 (g)f(z—z)
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(F® = [f@g+2fDg® + fg@]™

= f@ g 4 3f@ gD L 3FM @ 4 £43)
_ (3 £G-0) (0 4 (3 £G-1) (1) 1 (3 £G-2) @ 4 (3 £3-3),(3)
= (O)f g +(1)f g +(2)f g +(3)f g

On voit qu’il y’a une analogie entre cette formule et le bindme de Newton. La formule
générale est donnée par :

n

9™ =) (5) PP g®

k=0

Elle peut se noter aussi :

n n-k k

L= () ) (@)

Avec

Un coefficient binomial de Newton
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CHAPITRE DEUXIEME : INTEGRALES DE
QUELQUES FONCTIONS MODULEES D’UNE
FONCTION USUELLE

2.1. 1 = fx“ebx dx, (a, beN)

I = Jxaebxdx

I =lim | x%eY*dx
y-b

a
eY*dx

I = lim

y-b ) 0y

aa
I = lim feyxdx
y-bdy?

I =1 0° < Yxl)
“yaye\Ty
On se trouve devant la dérivée d’ordre a d’un produit, donc on applique la formule de Leibniz

a

t=tim ) (
k=0

a aa—k ak (1>

Xy —
k) aya—k (e )ayk y

En appliquant (7.3) et (7.7),0n a:
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On sait que

a al al
k!(k)zk!k!(a—k)! R
Ona:

e a a—k
jx eP*dx = Tz )kAa = +C

On peut trouver aussi :

Jxacbxdx: Jxaexblncdx
xblnc a—k a—k

blncz( )kAk(blnc)k blncz( )kAk(bl c)k

On voit que ¢a devient facile de traiter les intégrales des polyndmes modulés de e?* et de c*

a;

j (Z ax >ebxdx z a, j eb*dx =

Et

J.(Za x)cb"dx—z fx‘cbxdx—zbl Z( kAL ——— (bln )k

Remarques :

e nous vous conseillerons d’utiliser la méme procédure dans la résolution des autres
intégrales semblables.

e On peut aussi demontrer la transformation de Laplace de x™ en utilisant la formule de
Leibniz :

[00]

L(x™)(p) =f x"e P¥dx

0

= 0 [ e
0
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=(—1D"lim | (—x)"e Y*dx
y=p Jy

= (=" lima—nnfooe‘yxdx
y-pdy™ ),

[ee)

— (~1)" lim [—e_yx]
= yop Oy y 1

En utilisant (7.3),0n a :

e Sinous procédons de la méme maniére pour p = 1, nous obtiendrons la fonction
gamma I" d’Euler pour les n entiers naturels non nuls :

[o e}

I(n) = f - le~*dx = L)1) = (n— 1)!
0

2.2.1, = je“" sin(bx)dx et I, = je“" cos(bx)dx

Ici on ne va pas utiliser la formule de Leibniz
L +il, = f e ey
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e (a+ib)x

" a+ib

_e*(cosbx + isinbx)(a — ib)
(a+ib)(a —ib)

ax ax

e e
I +il, =az—+bz(acosbx+bsinbx)+im(—bcosbx+asinx)

ax

e .
J e cos bxdx = Z b2 (acos bx + bsinbx) + C
Et

eax
j e sin bxdx = P (—bcosbx + asinx) + C

2.3.1; = jx“sin(bx)dx et I, = jx“ cos(bx)dx

L +il, = fxae”’xdx

En utilisant la premiere intégrale, on a:
ibx & a

5@k
ib kz(_l)k‘qlf‘ (ib)k

=0

e

a
—icos bx + sinx Z x4k
— > (—1)ki_kAk
k=0

n bk

En utilisant la formule (5.0), ona:
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[ ] =

a—Zk a—2k—1

smbx—lcosbx| a2k X i 2kl X ]|
- [2( DRA +lZ( 1)k 42 b2k+1J

Ce qui nous donne :

a a-1
5l &
sin bx x“‘z" cos bx x4 2k-1
fx“cosbxdx= b z(—l)kArzzk b2k Z( D AT —o p2k+1 +C
k=0
Et
inb 7 a-2k-1 b B xa-2k
) sin bx X cos bx
fxa sin bxdx = = Z (_1)kA121k+1 TS — Z( 1)kA2k o +C
Ou encore

fxa cos bxdx = lim | x® cos yxdx
y-b

= lim xacos(x+ﬂ—ﬂ>dx
y oD XTS5 73

= hm Ux cos( x+an)cos—dx+jx sm( x+aﬂ)sinﬂdx]
TR 2 ) 2

En appliquant la formule (7.5) et (7.6)

ar 0%

2 dy@

= lim
y—b

COS —

( amr 0%
2 dy@

f cos yxdx + sin— sin yxdx)

_ amr 0% (1 amr 0% /1
= 31)1_r)rl1) [COSTBya (; sin xy) - sm7a a( cos xy)]

En utilisant la formule de Leibniz, on a :

Muhindo Vusangi Martin



16
a a
i an (a) 9%k (si ) ok (1) o am (a) 0%k (1) o
= lim | cos k) ayar sin yx 3y \y sin 2 L, K)oy \y) ayr

k=0

(cos yx)‘

En utilisant (5.2), (5.3) et (5.4),0na:

y-b 2 2 2 2 2

L - ay (=D*k! umk am ar  km o am an  km
= lim (k)wx c0s —-sin yx + ———]—sin—cos | yx + — — —
k=0

On se retrouve devant la sinus de la différence de deux angles :

a
L ay DRk krm
_31’1_13;2(]{)—}/“1 X sm(yx—7)

k=0

a—k

abk

sin bx k cos
fx cos bxdx = Z(— 1)kAk cos— + Z( 1)"Aa = sin— + C

En utilisant cette formule, on retrouve la premiére forme :

n B 5
Z U Uap + z Uzk+1
k=0 k=0
Et sachant que
. (2km ) 2km K
sin (T) =sinkmr =0 et cos (T) = coskmr = (—1)
Et

2km +
sin( T n) = sin (kn +g) = coskm = (—1)*

(2kn+n)_ (k +T[)_ kT = 0
cos 5 = cos ( km 5) = sinkm =
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2.5.I; = jx“ebx coscxdx et I, = fx“ebx sincxdx (a,b,c €N)

On sait que
cos(cx) + isin(cx) = el

=> I, +il, = f x%e?*[cos(cx) + i sin(cx)]dx
L +il, = jxaebxeicxdx

I +il, = Jxae(b”c)xdx

En utilisant premiere intégrale, on a :

(b+ic)x a xa—k
. (DAL ————
(b +ic) P (b +ic)

11 +i12 =

e+ () _ jc) a
(b+ic)(b—ic) &~

(1) x4 k(b —ic)k

htil, = “Tb + i) (b — io)*

11+12:

e?*(cos cx + isincx) za:( 1)kt x@k(p — jc)k+1
a? + b? s “ (a% +b?)¥

En utilisant le bindme de Newton pour (b — ic)***, ona:

bx( + isi ) a a-k K+l k+1

_e"(coscx +isincx e X + epits

L+, = 22 1 b2 Z(—l) Aa(a2+—bz)k p pk—p+ (—lC)p
k=0 p=0

En utilisant (5.0), on a :
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lk+1]
e?*(cos cx + i sin cx) a-k | . k+1
L+, = aZ + b2 Z( 1)kAa( 2+b2)klzo(_1) < 2p )bk 2p+lp2p
p:

2] -
+
[ —1)P k—2p .2p+1
iy (1P (5 ) peee
p=0

k+1
L [E

L+ = 2+b2 2(— )kAa( 2+b2)’< Z( 1)?P cos(cx)( )bk‘zl’“

2
(—1)P sin(cx) +1 p—2p2p+1
-2, (3 55)

p=0

|' k lk+1J _|

2
+1 |
k- Zp 2p+1 k— 2p 2p+1
+i ZCOS(CX) 2p +1)b + E sin(cx) (2 +1>b J

p=0

,——

f x%eb* cos cx dxv
0 1]
az + b2 Z( y"“aﬁlz (—=1)P cos(cx) ( )bk—2P+1c2p
[z
Z(—l)p sin(cx) (2 -:_11) p2rc2e+l| 4
Et

J x%eb* sin cx dx

k+1J

aZ + b2 Z(— )kAam Z (—=1)P cos(cx) (Zp o 1) pk-2pc2r+l

2
+ Z(—l)” sin(cx) (2 ++11> pk-2pc2p+1| 4 ¢
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On voit qu’on peut facilement trouver les valeurs des intégrales suivantes (d€ N ):

f x%dP* cos cxdx = J x%eXbInd cog cxdx
Et

fxadbx sincx dx = fxanb Ind gin cxdx

Transformations de Laplace des fonctions trigonométriques (sinus et cosinus) modulées
de la fonction puissance

Ici nous allons utiliser 1’autre méthode

L(x*e*)(p) = L(x cos bx)(p) + iL(x“ sin bx)

[oe) [o0)
J x%ehXe PXdy = j x%e~P=b)x gy
0 0

= lim fxae_yxdx
y->=(p-b) J,

On procede comme on a fait pour trouver la premiere int »grale

a4 =
— (_ )a J e YXdx
0

y—>—(p ib)

0¢ e v
- lim (1) [— ]
y——(p—ib) dy? y 1,

% /1
= -_ a -
yo- (p lb)( ) <y)
On utilise la formule (7.3)
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(-1)%!
= D=
yo- (p ib)

a!
_'(p —-ib)a+1

B a! (p + ib)?*?
~ (p—ib)a*1(p + ib)att

a+1l
a! a+1 _ .
=G, (ke
k=0

En sachant que :
L(x*e™?*)(p) = L(x% cos bx)(p) + iL(x* sin bx)(p)
Et en utilisant (5.0) ;ona:

a+1 2
H 5] ]I
k a+1 a-2k+1p2k Z k(AT 1Y aokg 2K+t
(p2+b2)a+1|2( 1) ) b +zk_0( 1) (2k+1)p b=

la+1

L x%e P*cos bxdx = P2+ bz)a+1 Z [( 1)k (a ar 1) pa—2k+1b2k] +C
k=

Et

2]

a ,—PX i — _ 1\ k a+1 a—-2kp2k+1
Jo x%e P*sin bxdx = o 2+b2)“+1 E [( 1) (2k+1)p b ]+C

On voit qu’on peut trouver encore pour les formes plus généralisées :
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J P(x)e?*sin™ cx dx, j P(x)e?* cos™ cx dx,J P(x)d?* sin™ cx dx, J P(x)d?* cos™ cx dx

Il suffit seulement de linéariser sin™x et cos™x en utilisant les formules d’Euler, retrouver
une sommes des formes précédentes :

. i n
n elx_l_e X
CoOS X =\——
2

En utilisant le bindbme de Newton, on a :

En prenant la partie réelle de e!(®=2K)% on g :

n
1
cos"x = ﬁz (Z) cos(n —2k) x
k=0

elx _ g—ix n
sin"x = —

i n
=— E (—1)k [cos(n — 2k)x + isin(n — 2k)]
2 L (k)

Et

Pour les n pairs, on o :

sin™x = ﬂZn:(—l)" (Z) cos(n — 2k) x

k=0

Pour les n impairs, on a :
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ntl n

(—1)z n
in"x = - (—1)* in(n — 2k)
sin™x > kZO (k) sin(n X

Remargues

On constate que toutes les formes citées ci haut sont les cas particuliers de
cette derniére.

2.5.1 = fx“lnb xdx

[ =1lim | x¥YInPxdx
y-a

b

I'=lim_—; xYdx
y-adyb

b
1= pm )
y—>a6y +1

En utilisant la formule de Leibniz

SYNE L 9% /1
=1 y
! i‘i%xkzo(k) ayb ¥ )ayk<y + 1)

b

X Z (Z) (x¥)InP~*x (}(]__I_l—il)(fll

k

Cysay + ( O+ 1Dk
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-k

f x%Unbxdx =

On peut aussi facilement calculer
f P(x)Inbxdx

Avec P(x) un polynébme

Muhindo Vusangi Martin
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CHAPITRE TROISIEME : APPLICATIONS DU
THEOREME DE RESIDUS DANS LA RESOLUTION
DES QUELQUES INTEGRALES REELLES

3.1 POLES ET ZEROS D’UNE FONCTION RATIONNELLE

Soit une fonction f(z) définie sur C (ensemble des complexes)
Si

h(z)

9(2)

f@) =

Alors Yz, € C/h(z) = 0, z, est appelé zéro de f(z) et Vz, € C/g(z) = 0, z, est appelé
pole de f(2)

z), est un pole simple de f(z) si il est une racine simple de g(z) et il est un péle multiple
d’ordre n si il est racine multiple d’ordre n.

3.2. RESIDUS D’UNE FONCTION ET THEOREME

A. DEFI NITION

e Podles simples

Si la fonction f(z) admet un péle simple au point z, alors

Res(f(2),zx) = Zlgrgo(z —2o) f(2)

Si la fonction f(z) = % admet un pole au point z,, avec p(z) # 0 alors

_ h(z)
Res(f(2),z,) = 7o)

e Pole d’ordre m

Si la fonction f(z) admet un pdle d’ordre m au point z, alors
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Res(zy, f(2)) =

lim [z = 2™ ()] D

1
(m—1)
Avec [h]™ est la dérivée d’ordre n de la fonction h

B. THEOREME

Si f(z) est une fonction holomorphe sur un domaine D de frontiere C fermée ( D entouré par
C) et z1, 22, z3,...,zn €C des points isolés de f(z) alors I’intégrale de la fonction f(z)

sur C orientée positivement D est

f(z)dz = 2mi ) Res(f(z),z;)
f 2

3.3. APPLICATIONS DU THEOREME DE RESIDUS

Ce théoréeme est appliqué dans la résolution des intégrales de la forme :

21

I = f(sin @, cos 6)d6
0

I = f_:of(x)dx
I = f:oei“xf(x)dx
I = jmxaf(x)dx
0

I:fo Inx f(x)

Ce qui concerne ici ¢’est la recherche de résidus aux p6les multiples d’une fonction
rationnellef (x).
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Dans le premier chapitre on a vu qu’on peut décomposer tout polynome g(x) en facteur.

Or la fonction rationnelle

_hw
fx) o)

Les poles d’une fonction étant les zéros du dénominateurg(x).

Donc on peut trouver tous les poles d’une fonction rationnelle f(x)

En connaissant les poles, la dérivée n®™ d’une fonction et la formule de Leibniz, on peut
facilement trouver le résidu d’ordre n d’une fonction rationnelle modulée d’une fonction

puissance, exponentielle, trigonométrique, logarithmique,...

Remarque : les différentes conditions que f(x) et ses pdles doivent satisfaire sont dans les

livres d’analyse complexe

3.4. EXEMPLES

Exemple 1
21T d@
1; I = —— 0<b<
o (a+bsinf)n @
En posant
0 dz
e =z => df =—
Lz
Ona:
S N R
=0¢— z
Zi b 1\1"
a+5:(z=3)]
Ona:
1 1
f(z)::—T T
Zi b 1
la+5:(z=3)]

Znin—lzn—l

f) = (bz? + 2aiz — b)™
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f(z) admet deux pdles d’ordre n qui sont :

_i(—a+\/a2—b2) i(—a—\/az—bZ)

Zl_ b 8t22= b

Seul z; se trouve D’intérieur du cercle unité :

R 1 . Znin_l an—l
eS(f; Zl) - ( )lzl_)nzll pn gzt (Z + Zl)n

Res(f, z;)
_ 1 . . z(n—l)( )1nank1[(n_1)|( 1)n 1]ak(n1)

n—1)!z-z, b" (n—1)19z"*1 (z + z)"

Res(f,z1)

B ( 1)n+1 27'1 n— 1 n _ 1 an k-1 an—l ( 1 ) ak -
[(n=D12 b Z azn 119201 \z — z,/ | 92" )

k=0

Res(f’ZO _ (_1)n+1 Znin—l i (n—l) 62n—k—2 < 1 )a_k(zn—l)

[(n=DI2 b zoz k ) a2 \y_ 5 ) ok
k=0
En appliquant la formule (5.1), on a:
Res(f,z1)
B ( 1)n+1 onin-= 1 Zl n—l ( 1)2n k- Z(Zn k — 2)| Zn_k_l
[(n— DIz p» z—>21 (z — z,)2nk-1 n—1

k=0
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res(f,z;)
(=)t 2nn 1 -1 n_1 (— 1)2n k— 2(2n k—2)! ke
[(n - 1)' pn Z—)Zl (Z —Z )271 k—1 n_lz

k=0

n—k—1
(—ia+i\/m )

()"t 2nin- 12( 1)k (2n—k -2

TCEIE (Zim)z’l"‘—l

( 1)n+1 -n+n-— 12n(_a+m)
(n 1)'] 22n (Clz _ bz)n

S (25E)

k=0 —a +

Res(f Zl) =

+
=
[ —

m
I = 2mi Z Res(f,z,)
=1

2n do
o (a+bsin@)"
_ 211:(—1)""‘1 —a+ m n n-1 )
T [(n—-1D112| 2(a?-b?) Z(—l) (2n —k
k+1
z)|("—1)Ak ( 2va? — b? >+
A e W ey
Exemple 2
+o00 dX
I:f (axZ + bx + c)" b? —4ac<0: abc€eR
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1
(az?+ bz + c)n

f@) =

f(z) admet poles d’ordre n qui sont :

—b + ivdac — b? —b — iV4ac — b?
Zl = et Zz =
2a 2a

S

On prendra z seulement car Imz, < 0

1 an 1
Res(f,2,) = g5y I 5o 12 = 220" )]

1 an 1
Res(f, Zl) 1)' an z—>21 0zn1 [(z - Zz)"]

3 (_1)—n+1 1 . 0 on 1 1
Res(f, Zl) " [(n— 1)!]2a_"zh—>r?1 0z 1|0z 1 (z — Zz)

( 1)~ 1 aZn—2< 1 )

Res(f221) = [ = D ar i 3,22\ =,
En appliquant la formule (5.1), on a :

( p™mt 1 (=D (2n - 2)!
ReS(f Zl) _1)!] anzl_)n; (z — z,)2n1

D™ 1 (2n-2)!
[(n—1)!]2a" <2im>2"‘1

2a

Res(f,z;) =

3 [Z(Tl _ 1)]| 1 (_1)n+1i—2n+1

" [(n — 1)!]? qn—2n+1 (meq
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n—-1

f+°° dx . (Zn— 2) a
o (ax? + bx+ o)™ n—-1 (m)zn‘l

Exemple 3

(o]

[ = Ccos ax d
- ), Gz ™

I_lf“” coSs ax 4
~2) ., G +n ™

1 +00 eaix
I = ERG [J;Oo (xz-l-—bz)”dxl

1

f(z)z(zz-l——bz)”

Les deux poles d’ordre n de f(x) sont ib et —ib, nous prenons seulement ib car b > 0

n—-1

Res[e®™f(z), ib] = —1)! Ly

[(z — ib)"e®™ £ (2)]

Res[e WX £(7), ib] =

an—l eaix
I
(n— 1)!21—% 0z 1|(z + ib)"l

On applique la formule de Leibniz

n-—

aix . - 1 " -t aiz ak 1
Res[e®*f(z),ib] = 1)| Z n azn (e )azk ((z T lb)n)
aix (_ )n 1 . = -1 " o1 aix a " ! 1
Res[e®™f(z),ib] = = DI le_{‘{}jz (n k )azn k=1 (e )azk lazn 1 (z n lb)l
k=0

Muhindo Vusangi Martin



31

n-1 gn—k-1 gntk-1

aix (_ )n 1 . -1 aix 1
Res[e*(2), 8] = =gy lim > (" 1) e (o) s ()
k=0

En utilisant les formules (5.1) et (5.5), ona:

n—

_1)n-1 DME-1(n + k — 1)!
Res[eale(z) Lb] ( )1)' z—nbz ( )" . 1e°”Z( ) (Z+ l(l:l);;k )'
k=
—ab n—-1 k
. _ N g (FDF k= 1)!
Res[e"”xf(z),lb] — [(ne_w (n . 1) q—k-1jn-k (2:;)71_{_](

&
Il

0

n—1

1
Res[e f(2), lb] (Zb)" — 1)' zkzzo (n+k —1)! Zab)F
1 i~lqn™ & 1
= Re 2mi (Zb)"[(n— D ZZ) (n +k—1)! (Zab)"]
®  cosax arle~® O
Y Dl (Zb)" m—-DI Z PICET N (2ab)*

Si on place place la fonction exponentielle en deuxiéme position dans la formule de Leibniz,
ona:

aix . < n— 1 " ot 1 a aiz
Res[e f(Z)’lb] 1)';11—21192 62" k-1 ((z + lb)“) ozk (e%)

Si on fait la méme procédure comme le cas précédent, on va trouver :
-1

(n -1

k

=

—ab

f cos ax mwe
(

o Y " @ m s DT ) @n — k- 2)! (2ab)¥

0
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