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Let's start with the followings de�nitions

∴ Dα
∗ f(t) :=


1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α+1−ndτ, n− 1 < α < n, n ∈ N ∧ t > a ∈ R.
dn

dtn
f(t), α = n ∈ N.

∴ Dα
∗ x

n =
Γ(n+ 1)

Γ(n− α + 1)
xn−α (∗)

where Dα
∗ is the Caputo Fractional Di�erential Operator (F.D.O.) of the

function xn and Γ(n+ 1) is the Gamam Function. But here we will give the
fractional sense for the order of this di�erential operator, i.e. α ∈ Q. Now,
let's take α = 1

2
then from (∗) we have

D
1
2xn =

Γ(n+ 1)

Γ
(
n+ 1

2

)xn− 1
2 =

(4x)n(
2n
n

)√
πx

(1)

where the following properties were used: Γ
(
n+ 1

2

)
= (2n)!

4nn!

√
π and (2n)!

(n!)2
=(

2n
n

)
, being

(
2n
n

)
the Central Coe�cient Binomial. It is valid to let the rea-

der know that the notations are equivalent D
1
2 ≡

√
D. Now we go to the

objective of this work taking the sum on both sides of (1):

∞∑
n=1

1

n

√
Dxn =

1√
πx

∞∑
n=1

(4x)n

n
(
2n
n

)
1



From Calculus, we know that Dα has linear operations then

⇒
√
D

∞∑
n=1

xn

n
=

1√
πx

∞∑
n=1

(4x)n

n
(
2n
n

) ⇐⇒
√
D (− ln(1− x)) =

1√
πx

∞∑
n=1

(4x)n(
2n
n

)
∴ −

√
D (ln(1− x)) =

1√
πx

∞∑
n=1

(4x)n

n
(
2n
n

) (2)

In this excerpt from the work, we will stick to solving the RHS (Right Hand
Side) series. So from the Beta Function we have the following property:

∴ B(n,m) =

∫ 1

0

tn−1(1− x)m−1dt =
Γ(n)Γ(m)

Γ(n+m)

making the change n→ n+ 1 and m→ n we get

=⇒ B(n+1, n) =

∫ 1

0

tn(1−t)n−1dt =
Γ(n+ 1)Γ(n)

Γ(2n+ 1)
=

Γ(n+ 1)nΓ(n)

nΓ(2n+ 1)
=

Γ2(n+ 1)

nΓ(2n+ 1)

given the de�nition Γ(n+ 1) = n! we get

∴ B(n+ 1, n) =
(n!)2

n(2n)!
=

1

n
(
2n
n

) =

∫ 1

0

tn(1− t)n−1dt.

Therefore (2) assume the form

−
√
D (ln(1− x)) =

∞∑
n=1

(4x)n√
πx

∫ 1

0

tn(1− t)n−1dt

As the sum varies in n we have from the geometric series that

−
√
D (ln(1− x)) =

1√
πx

∫ 1

0

1

1− t

∞∑
n=1

(4xt(1− t))ndt =
1√
πx

∫ 1

0

1

1− t
· 4xt(1− t)

1− 4xt(1− t)
dt

∴ −
√
D (ln(1− x)) =

1√
πx

∫ 1

0

4xt

1− 4xt+ 4xt2
dt (3)

The last integral can be solved as follows

=⇒
∫ 1

0

4xt

1− 4xt+ 4xt2
dt =

1

2

∫ 1

0

8xt+ 4x− 4x

1− 4xt+ 4xt2
dt =

=
1

2

∫ 1

0

8xt− 4x

1− 4xt+ 4xt2
dt+ 2x

∫ 1

0

dt

1− 4xt+ 4xt2
=

1

2
ln(1− 4xt+ 4xt2)

∣∣∣1
0︸ ︷︷ ︸

=0

+ 2xI
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where I =

∫ 1

0

dt

1− 4xt+ 4xt2
, solving I:

=⇒ I =
1

x

∫ 1

0

dt

(2t− 1)2 + 1
x
− 1

=
1

1− x

∫ 1

0

dt(
2t−1√
1−x
√
x
)2

+ 1
=

=
1

2
√
x
√

1− x
arctan

(
2t− 1√

1− x
√
x

) ∣∣∣1
0

=
1

√
x
√

1− x
arctan

( √
x√

1− x

)
.

then

=⇒
∫ 1

0

4xt

1− 4xt+ 4xt2
dt = 2x· 1

√
x
√

1− x
arctan

( √
x√

1− x

)
=

2
√
x√

1− x
arctan

( √
x√

1− x

)
.

as soon

=⇒ −
√
D (ln(1− x)) =

1√
πx
· 2
√
x√

1− x
arctan

( √
x√

1− x

)
=

1√
π
· 2√

1− x
arctan

( √
x√

1− x

)
note that arctan

( √
x√

1−x

)
= arcsin(

√
x), and (3) takes the following form

∴ −
√
D (ln(1− x)) =

1√
π

2 arcsin(
√
x)√

1− x
Then we �nally have two strong equalities

∴
∞∑
n=1

(4x)n

n
(
2n
n

) = −
√
πx
√
D (ln(1− x)) and

√
D (ln(1− x)) = − 2√

π

arcsin(
√
x)√

1− x
, x 6= 1 (∗∗)

Some numerical results

In this excerpt we will take the points x0 = 3
4
, x1 = 1

2
and x2 = 1

4
as an

example starting from (∗∗). then follows that

√
D (ln(1− x))x=x0 = −4

√
π

3
=⇒

∞∑
n=1

3n

n
(
2n
n

) =
2π√

3

√
D (ln(1− x))x=x1 = −

√
π

2
=⇒

∞∑
n=1

2n

n
(
2n
n

) =
π

2

√
D (ln(1− x))x=x2 = −2

3

√
π

3
=⇒

∞∑
n=1

1

n
(
2n
n

) =
π

3
√

3
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Main result from work

Let's do the following, let

√
D (ln(1− x)) := g(x)

∞∑
n=1

(4x)n

n
(
2n
n

) := S1(x)

Thus

∴ g(x) = − 1√
πx
S1(x) (4)

Now we need to introduce the de�nition of Fractional Integral in order to
obtain the result of the integration of the function g(x) and thereby obtain
a closed form for the integral of the series S1(x). The following de�nition is
known as Riemann � Liouville fractional integral:

∴ Jαf(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ, α > 0, t > a, α, t, a ∈ R.

Multiplying by 1√
x
and taking the operator Jα in both sides from (4)

=⇒ Jα
(

1√
x
g(x)

)
= − 1√

π
Jα
(

1

x
S1(x)

)
However, putting α = 1 and a = 0 at the point x0 = 1

4

=⇒ J1

(
1√
x
g(x)

)
= − 1√

π
J1

(
1

x
S1(x)

)
= − 1√

π

1

Γ(1)︸︷︷︸
=1

∫ x

0

(x− τ)0
1

τ
S1(τ)dτ =

= − 1√
π

∫ x

0

1

τ
S1(τ)dτ =⇒ − 1√

π

∫ x

0

1

τ
S1(τ)dτ = − 1√

π

∞∑
n=1

4n

n
(
2n
n

) ∫ x

0

τn−1dτ =

= − 1√
π

∞∑
n=1

4n

n
(
2n
n

) · xn
n

= − 1√
π

∞∑
n=1

(4x)n

n2
(
2n
n

) =⇒ ∴ J1

(
1√
x
g(x)

)
= − 1√

π

∞∑
n=1

(4x)n

n2
(
2n
n

) . (5)

By other side, through the result from (∗∗)

− 1√
πx

∞∑
n=1

(4x)n

n
(
2n
n

) = − 2√
π

arcsin(
√
x)√

1− x
=⇒ ∴

∞∑
n=1

(4x)n

n
(
2n
n

) =
2
√
x arcsin(

√
x)√

1− x
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This means

=⇒ − 1√
π
J1

(
1

x
S1(x)

)
= − 1√

π
J1

(
1

x
· 2
√
x arcsin(

√
x)√

1− x

)
=⇒ − 1√

π

∞∑
n=1

(4x)n

n2
(
2n
n

) = − 2√
π
J1

(
arcsin(

√
x)

√
x
√

1− x

)
=⇒

∞∑
n=1

(4x)n

n2
(
2n
n

) = 2J1

(
arcsin(

√
x)

√
x
√

1− x

)

=⇒
∞∑
n=1

(4x)n

n2
(
2n
n

) = 2

∫ x

0

arcsin(
√
τ)

√
τ
√

1− τ
dτ

arcsin(
√
τ)→y︷︸︸︷

= 4

∫ arcsin(
√
x)

0

ydy = 2 arcsin2(
√
x)

∴
∞∑
n=1

(4x)n

n2
(
2n
n

) = 2 arcsin2(
√
x) (6)

Thus we conclude from (5) and (6) that

∴ J1

(
1√
x
g(x)

)
= −2 arcsin2(

√
x)√

π
. (7)

Taking the point x0 = 1
4
we get

=⇒ J1

(
1√
x
g(x)

)
x0=

1
4

= −
√
π3

36

As g(x) =
√
D (ln(1− x)) and coming back to the notation for Jα we �nally

have two other strong results

∴
∫ x

0

√
D (ln(1− τ))√

τ
dτ = −2 arcsin2(

√
x)√

π
and −

√
π

∫ x

0

√
D (ln(1− τ))√

τ
dτ =

∞∑
n=1

(4x)n

n2
(
2n
n

)
Therefore, taking the results above at point x0 = 1

4
we can extract the

following �nal results:

∴
∫ 1/4

0

√
D (ln(1− τ))√

τ
dτ = − ζ(2)

6
√
π

=⇒ ∴
∞∑
n=1

1

n2
(
2n
n

) =
ζ(2)

3

where ζ(2) = π2

6
being ζ(s) is the Riemann Zeta Function.
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Discussions

I consider these small steps relevant to understand an intrinsic relationship
between the series of inverse binomial central coe�cients and the fractional
calculation provided by Leibniz. The Caputo Fractional Di�erential Opera-
tor of order 1

2
allows us to relate an important class of in�nite series, which

are the Central Binomial Coe�cients, with ζ(2) with the help of the func-
tion f(t) = ln(1 − t) which receives the action of the operator Dα

∗ , which
brings us pleasant results. Therefore, what excited me to the point of elabo-
rating the present work was the desire to show that the calculations above
demonstrate that when solving a series of such a nature we may actually be
calculating integrals or fractional derivatives and, if that is the case, we will
be �nding beautiful relationships between Fractional Calculus and Riemann's
Zeta Function. Thus, the execution of the calculations above is subject to se-
veral generalizations, including taking other functions since with the support
that the expansion in Taylor Series allows us almost always in comfortable
manipulations with the Gamma and Beta Functions enabling them.

Constructive criticism and praise will always be welcome. Grateful for the

attention!
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