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Introdution

Faced with the various Integrals and Series problems that we face, there
were some that were quite recurring and almost always boiled down to the
same problem, that of rational series with second degree polynomials in the
denominator. With this came the elegant idea of a generalization from my
esteemed friend Professor Paulo Sergio Lino, in which he proposed the
present work. We will start from two special cases of series that run all
integers, one will be the alternating general term and the other
non-alternating, divided into only two simple parts. We will glimpse
elegant, similar results involving sequential hyperbolic and trigonometric
functions being branched out with a ∆'s cases analysis generating and
proving some important identities that are exaggeratedly usuals in the
study of Series and Integrals. We will use crucial properties of the digamma
function and some trigonometric identities to make our results as simple as
possible.

Part 1.0.

Let a, b and c ∈ C then,

+∞∑
n=−∞

(−1)n

an2 + bn+ c
=

1√
∆

4π sin

(
π
√

∆

2a

)
cos

(
πb

2a

)

cos

(
π
√

∆

a

)
− cos

(
πb

a

)

where ∆ = b2 − 4ac.

1



Proof:

First, note that
+N∑

n=−N

sn =
0∑

n=−N

sn +
+N∑
n=0

sn − a0

where sn = {a−N , ..., a−1, a0, a1, ..., aN} is a sequence of the terms associated
to summations above. Thus

+∞∑
n=−∞

(−1)n

an2 + bn+ c
=

0∑
n=−∞

(−1)n

an2 + bn+ c
+

+∞∑
n=0

(−1)n

an2 + bn+ c
− 1

c

Shifting n→ −n on the second sum from the right side, we have

+∞∑
n=−∞

(−1)n

an2 + bn+ c
=
∞∑
n=0

(−1)n

an2 + bn+ c
+
∞∑
n=0

(−1)n

an2 − bn+ c
− 1

c

Now, let's call Ω the series from the our problem and Ω1, Ω2 denoting the
�rst and second series from the right side

Ω = Ω1 + Ω2 −
1

c
(1)

Now, let's evaluating Ω1. Let x1 and x2 roots of an2 + bn+ c, then:

Ω1 =
∞∑
n=0

(−1)n

an2 + bn+ c
=
∞∑
n=0

(−1)n

a(n− x1)(n− x2)

Applying Partial Fractions, we have that

∞∑
n=0

(−1)n

a(n− x1)(n− x2)
=

1

a(x1 − x2)

∞∑
n=0

{
(−1)n

n− x2

− (−1)n

n− x1

}

⇒ Ω1 =
1

a(x1 − x2)

{
1

x1

∞∑
n=0

(−1)n

− n
x1

+ 1
− 1

x2

∞∑
n=0

(−1)n

− n
x2

+ 1

}
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From the Digamma Function, we have the following property:

∞∑
n=0

(−1)n

zn+ 1
=

1

2z

{
ψ

(
1 + z

2z

)
− ψ

(
1

2z

)}
(2)

we have

Ω1 =
1

a(x1 − x2)

{
1

2

[
ψ

(
1− x1

2

)
− ψ

(
−x1

2

)]
− 1

2

[
ψ

(
1− x2

2

)
− ψ

(
−x2

2

)]}

Again, from the Digamma Function, we have

ψ(−z)− ψ(z) =
1

z
+ π cot(πz)

Then

Ω1 =
1

2a(x1 − x2)

{
ψ

(
1− x1

2

)
− ψ

(
1− x2

2

)
+

2

x2
− 2

x1
+ π cot

(πx2
2

)
− π cot

(πx1
2

)
+ ψ

(x2
2

)
− ψ

(x1
2

)}

Similarly, for Ω2, let x3 and x4 roots of an2 − bn+ c, note that x4 = −x1

and x3 = −x2 then using (2) we have directly:

Ω2 =
1

2a(x1 − x2)

{
ψ

(
1 + x2

2

)
− ψ

(
1 + x1

2

)
+ ψ

(x1

2

)
− ψ

(x2

2

)}

realizing the sum of Ω1 and Ω2, we obtain the expression

Ω1+Ω2 =
1

2a(x1 − x2)

{
ψ

(
1 + x2

2

)
− ψ

(
1− x2

2

)
+ ψ

(
1− x1

2

)
− ψ

(
1 + x1

2

)
+

2

x2
−

2

x1
+ π cot

(πx2
2

)
− π cot

(πx1
2

)}

Note that:

ψ

(
1 + x2

2

)
− ψ

(
1− x2

2

)
= ψ

(
1− 1− x2

2

)
− ψ

(
1− x2

2

)

and

ψ

(
1− x1

2

)
− ψ

(
1 + x1

2

)
= ψ

(
1− x1

2

)
− ψ

(
1− 1 + x2

2

)
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then by the property:

ψ(z)− ψ(1− z) = −π cot(πz)

we have

⇒ Ω1 +Ω2 =
1

2a(x1 − x2)

{
2

x2
− 2

x1
+ π cot

(π
2
− πx2

2

)
− π cot

(π
2
− πx1

2

)
+ π cot

(πx2
2

)
− π cot

(πx1
2

)}

⇒ Ω1 +Ω2 =
1

2a(x1 − x2)

{
2

x2
− 2

x1
+ π tan

(πx2
2

)
+ π cot

(πx2
2

)
− π tan

(πx1
2

)
− π cot

(πx1
2

)}

Note also that:
tan(a) + cot(a) = 2csc(2a)

then

⇒ Ω1 + Ω2 =
1

a(x1 − x2)

{
1

x2

− 1

x1

+ πcsc(πx2)− πcsc(πx1)

}

Since x1 = −b+
√

∆
2a

and x1 = −b−
√

∆
2a

, where ∆ = b2 − 4ac, we have hence

⇒ Ω1+Ω2 =
1√
∆

{√
∆

c
+ πcsc

(
πb

2a
− π
√

∆

2a

)
− πcsc

(
πb

2a
+
π
√

∆

2a

)}
(3)

where we using fact: csc(−a) = −csc(a). Now, let's use following
trigonometric identity:

csc(x− y)− csc(x+ y) =
4 sin(y) cos(x)

cos(2y)− cos(2x)

So, taking x = πb
2a

and y = π
√

∆
2a

and plugging in (3)

⇒ Ω1 + Ω2 =
1

c
+

1√
∆

4π sin

(
π
√

∆

2a

)
cos

(
πb

2a

)

cos

(
π
√

∆

a

)
− cos

(
πb

a

)
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Replacing the above expression in the equation (1) we have

Ω =
1√
∆

4π sin

(
π
√

∆

2a

)
cos

(
πb

2a

)

cos

(
π
√

∆

a

)
− cos

(
πb

a

)
:

Then, we conclude that:

∴
+∞∑

n=−∞

(−1)n

an2 + bn+ c
=

1√
∆

4π sin

(
π
√

∆

2a

)
cos

(
πb

2a

)

cos

(
π
√

∆

a

)
− cos

(
πb

a

) , where ∆ = b2 − 4ac. �

Delta's cases

We observe to ∆ > 0, we don't have alteration in the theorem result. So,
we stay with just two cases:

1.1 Same roots (∆ = 0)

If b2 = 4ac with a, c > 0, then ∆ = 0, we have that Ω takes the form

⇒
+∞∑

n=−∞

(−1)n

a
(
n± b

2a

)2 = lim
∆→0

1√
∆

4π sin

(
π
√

∆

2a

)
cos

(
πb

2a

)

cos

(
π
√

∆

a

)
− cos

(
πb

a

) .

5



And discovering the RHS

lim
∆→0

1√
∆

4π sin

(
π
√

∆

2a

)
cos

(
πb

2a

)

cos

(
π
√

∆

a

)
− cos

(
πb

a

) = 4π lim
∆→0

sin

(
π
√

∆

2a

)
√

∆︸ ︷︷ ︸
limx→0

sin(x)
x

=1

. lim
∆→0

cos

(
πb

2a

)
cos

(
π
√

∆

a

)
− cos

(
πb

a

) =

=4π.
π

2a
.

cos

(
πb

2a

)
1− cos

(
πb

a

) =
2π2

a
.
1

2
cot

(
πb

2a

)
csc

(
πb

2a

)
=
π2

a
cot

(
πb

2a

)
csc

(
πb

2a

)
.

Therefore, we conclude that for the case ∆ = 0

∴
+∞∑

n=−∞

(−1)n(
n± b

2a

)2 = π2 cot

(
πb

2a

)
csc

(
πb

2a

)

1.2 Complex roots (∆ < 0)

If b2 < 4ac with c < 0, then ∆ < 0, we have that Ω takes the form

+∞∑
n=−∞

(−1)n

an2 + bn+ c
=

1

i
√

∆

4π sin

(
πi
√

∆

2a

)
cos

(
πb

2a

)

cos

(
πi
√

∆

a

)
− cos

(
πb

a

)

Using the identities sin(ix) = i sinh(x) and cos(ix) = cosh(x) in RHS, we
have

⇒ 1

i
√

∆

4π sin

(
πi
√

∆

2a

)
cos

(
πb

2a

)

cos

(
πi
√

∆

a

)
− cos

(
πb

a

) =
1√
∆

4π sinh

(
π
√

∆

2a

)
cos

(
πb

2a

)

cosh

(
π
√

∆

a

)
− cos

(
πb

a

) .

Then, considering |∆|, we have �nally for the case ∆ < 0
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∴
+∞∑

n=−∞

(−1)n

an2 + bn+ c
=

1√
|∆|

4π sinh

(
π
√
|∆|

2a

)
cos

(
πb

2a

)

cosh

(
π
√
|∆|
a

)
− cos

(
πb

a

) for ∆ < 0

From the above result we can set b = 0, c = x2 and a = 1 to we obtain
type's series

+∞∑
n=−∞

(−1)n

n2 + x2
=

1

x
.

2π sinh (πx)

cosh (2πx)− 1

Note that:
sinh(z)

cosh(2z)−1 =
csch(z)

2 , we have the identities

∴
+∞∑

n=−∞

(−1)n

n2 + x2
=
πcsch (πx)

x

∴
+∞∑
n=0

(−1)n

n2 + x2
=
πcsch (πx)

2x
+

1

2x2

∴
∞∑
n=0

(−1)n

n2 − x2
= −πcsc (πx)

2x
− 1

2x2

where in the middle identity i shifting x→ ix to we get the third identity.

Part 2.0.

Let a, b and c ∈ C then,

+∞∑
n=−∞

1

an2 + bn+ c
=

2π√
∆
.

sin

(
π
√

∆

a

)

cos

(
π
√

∆

a

)
− cos

(
πb

a

)

where ∆ = b2 − 4ac.
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Proof:

Similarly to part Part 1, we broken the summation

+∞∑
n=−∞

1

an2 + bn+ c
=
∞∑
n=0

1

an2 + bn+ c
+
∞∑
n=0

1

an2 − bn+ c
− 1

c
= Ω1+Ω2−

1

c

Evaluating Ω1 we have that by Partial Fractions:

Ω1 =
1

a(x1 − x2)

∞∑
n=0

{
1

n− x1

− 1

n− x2

}
=

1

a(x1 − x2)

{
∞∑
n=0

1

n− x1

−
∞∑
n=0

1

n− x2

}

=⇒ ∴ Ω1 =
1

a(x1 − x2)
{ψ(−x2)− ψ(−x1)} (1)

Similarly to Ω2 we have directly that

=⇒ ∴ Ω2 =
1

a(x1 − x2)
{ψ(x1)− ψ(x2)} (2)

plugging (1) and (2)

=⇒
+∞∑

n=−∞

1

an2 + bn+ c
=

1

a(x1 − x2)
{ψ(x1)− ψ(−x1) + ψ(−x2)− ψ(x2)}−1

c

Using again the identity:

ψ(−z)− ψ(z) =
1

z
+ π cot(πz)

We have

=⇒
+∞∑

n=−∞

1

an2 + bn+ c
=

1

a(x1 − x2)

{
1

x2

− 1

x1

+ π cot(πx2)− π cot(πx1)

}
− 1

c

=⇒
+∞∑

n=−∞

1

an2 + bn+ c
=

1

ax1x2

+
1

a(x1 − x2)
(π cot(πx2)− π cot(πx1))− 1

c
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Note that
1

ax1x2

=
1

c
, so

=⇒
+∞∑

n=−∞

1

an2 + bn+ c
=

1

a(x1 − x2)
(π cot(πx2)− π cot(πx1))

Since x1 = −b+
√

∆
2a

and x1 = −b−
√

∆
2a

, where ∆ = b2 − 4ac, we have hence

=⇒
+∞∑

n=−∞

1

an2 + bn+ c
=

π√
∆

(
cot

(
−πb

2a
− π
√

∆

2a

)
− cot

(
−πb

2a
+
π
√

∆

2a

))

as cot(−z) = − cot(z) we have

=⇒
+∞∑

n=−∞

1

an2 + bn+ c
=

π√
∆

(
cot

(
πb

2a
− π
√

∆

2a

)
− cot

(
πb

2a
+
π
√

∆

2a

))

Now, let's use the following trigonometric identity

cot(x− y)− cot(x+ y) =
2 sin(2y)

cos(2y)− cos(2x)

we have �nally

∴
+∞∑

n=−∞

1

an2 + bn+ c
=

2π√
∆
.

sin

(
π
√

∆

a

)

cos

(
π
√

∆

a

)
− cos

(
πb

a

) �

where ∆ = b2 − 4ac.
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Delta's cases

2.1 Same roots (∆ = 0)

If b2 = 4ac with a, c > 0, then ∆ = 0, we have that Ω takes the form

=⇒ Ω =
∞∑

n=−∞

1

a
(
n± b

2a

)2 = lim
∆→0

2π√
∆
.

sin

(
π
√

∆

a

)

cos

(
π
√

∆

a

)
− cos

(
πb

a

) .

Developing RHS

⇒ 2π lim
∆→0

sin

(
π
√

∆

a

)
√

∆︸ ︷︷ ︸
limx→0

sin(x)
x

=1

. lim
∆→0

1

cos

(
π
√

∆

a

)
− cos

(
πb

a

) = 2π.
π

a
.

1

1− cos

(
πb

a

) =

=
2π2

a
.

(
1

2
csc2

(
πb

2a

))
=
π2

a
csc2

(
πb

2a

)
.

Therefore, we conclude that for the case ∆ = 0

∴
∞∑

n=−∞

1(
n± b

2a

)2 = π2csc2

(
πb

2a

)
.

2.2 Complex roots (∆ < 0)

If b2 < 4ac with c < 0, then ∆ < 0, we have that Ω takes the form

=⇒ Ω =
∞∑

n=−∞

1

an2 + bn+ c
=

2π

i
√

∆
.

sin

(
iπ
√

∆

a

)

cos

(
iπ
√

∆

a

)
− cos

(
πb

a

)
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Using the identities sin(ix) = i sinh(x) and cos(ix) = cosh(x) in RHS, we
have

=⇒ 2π

i
√

∆
.

i sinh

(
π
√

∆

a

)

cosh

(
π
√

∆

a

)
− cos

(
πb

a

) =
1√
∆
.

2π sinh

(
π
√

∆

a

)

cosh

(
π
√

∆

a

)
− cos

(
πb

a

) .

Then, considering |∆|, we have �nally for the case ∆ < 0

∴
∞∑

n=−∞

1

an2 + bn+ c
=

1√
|∆|

.

2π sinh

(
π
√
|∆|
a

)

cosh

(
π
√
|∆|
a

)
− cos

(
πb

a

) , where ∆ = b2 − 4ac.

Note that from above result we can to extract the following identities
taking b = 0, a = 1 and c = x2, where x > 0 we have

=⇒
∞∑

n=−∞

1

n2 + x2
=

1√
| − 4x2|

.
2π sinh(π

√
| − 4x2|)

cosh(π
√
| − 4x2|)− 1

=
1

2x
.

2π sinh(2πx)

cosh(2πx)− 1
=
π coth(πx)

x

so

∴
∞∑

n=−∞

1

n2 + x2
=
π coth(πx)

x

Further

⇒
∞∑

n=−∞

1

n2 + x2
= 2

∞∑
n=0

1

n2 + x2
− 1

x2

Then

⇒ ∴
∞∑
n=0

1

n2 + x2
=
π coth(πx)

2x
+

1

2x2

Observe that, shi�ting x by ix and using coth(iz) = −i cot(z)

⇒ ∴
∞∑
n=0

1

n2 − x2
= −π cot(πx)

2x
− 1

2x2
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Which are famous identities and very usuals both for solving integral
problems and for solving series problems. So we have

∴
∞∑

n=−∞

1

n2 + x2
=
π coth(πx)

x

∴
∞∑
n=0

1

n2 + x2
=
π coth(πx)

2x
+

1

2x2

∴
∞∑
n=0

1

n2 − x2
= −π cot(πx)

2x
− 1

2x2

Discussions

It is quite obvious that the identities proved in the present work are only
starting points to obtain a closed form for a number of other more complex
problems that are just derivations of the problem addressed here, simply
using from the Calculus techniques, i.e. Derivations or Integrations of the
presented identities. Given the objectivity of this work, we will be able to
skip many calculation processes making the use and manipulation of the
obtained formulas su�cient. We are open to suggestions and constructive
criticism with respect to the our work.

Grateful by the attention!
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