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Introdution

Faced with the various Integrals and Series problems that we face, there
were some that were quite recurring and almost always boiled down to the
same problem, that of rational series with second degree polynomials in the
denominator. With this came the elegant idea of a generalization from my
esteemed friend Professor Paulo Sergio Lino, in which he proposed the
present work. We will start from two special cases of series that run all
integers, one will be the alternating general term and the other
non-alternating, divided into only two simple parts. We will glimpse
elegant, similar results involving sequential hyperbolic and trigonometric
functions being branched out with a A’s cases analysis generating and
proving some important identities that are exaggeratedly usuals in the
study of Series and Integrals. We will use crucial properties of the digamma
function and some trigonometric identities to make our results as simple as
possible.

Part 1.0.

Let a,b and ¢ € C then,
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Proof:
First, note that
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where s, = {a_n,...,a_1,a9,a1,...,an} is a sequence of the terms associated
to summations above. Thus
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Shifting n — —n on the second sum from the right side, we have
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Now, let’s call €2 the series from the our problem and €27, {25 denoting the
first and second series from the right side
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Now, let’s evaluating ;. Let z; and w5 roots of an® 4 bn + ¢, then:
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Applying Partial Fractions, we have that
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From the Digamma Function, we have the following property:
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Again, from the Digamma Function, we have
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Similarly, for Q5, let x5 and 4 roots of an? — bn + ¢, note that x4 = —a
and x3 = —xy then using (2) we have directly:
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realizing the sum of €; and (25, we obtain the expression
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then by the property:
P(z) — (1 — z) = —7 cot(nz)

we have
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Note also that:
tan(a) + cot(a) = 2csc(2a)

then
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Since x; = %Z and 7, = _bgg/z, where A = b? — 4ac, we have hence
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where we using fact: csc(—a) = —csc(a). Now, let’s use following
trigonometric identity:
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Replacing the above expression in the equation (1) we have
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Then, we conclude that:
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Delta’s cases

We observe to A > 0, we don’t have alteration in the theorem result. So,
we stay with just two cases:

1.1 Same roots (A = 0)

If b = 4ac with a,c > 0, then A = 0, we have that € takes the form
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And discovering the RHS
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1.2 Complex roots (A < 0)

If b? < 4ac with ¢ < 0, then A < 0, we have that € takes the form

i Tiv A b
47 sin cos [ —
+oo (_ 1)n 1 2a 2a

nz_:oo an?+bn + ¢ B ivVA (mﬂ) (wb)
cOS —cos [ —

a

a
Using the identities sin(iz) = isinh(z) and cos(iz) = cosh(z) in RHS, we

have
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Then, considering |A|, we have finally for the case A <0
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From the above result we can set b =0, ¢ = 22 and a = 1 to we obtain

type’s series
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where in the middle identity i shifting x — iz to we get the third identity.

Part 2.0.
Let a,b and ¢ € C then,
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Proof:
Similarly to part Part 1, we broken the summation
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Evaluating €27 we have that by Partial Fractions:
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Now, let’s use the following trigonometric identity
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Delta’s cases

2.1 Same roots (A =0)

If b?> = 4ac with a,c > 0, then A = 0, we have that € takes the form
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Therefore, we conclude that for the case A =0

2.2 Complex roots (A < 0)

If b? < 4ac with ¢ < 0, then A < 0, we have that € takes the form
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Using the identities sin(iz) = isinh(x) and cos(iz) = cosh(z) in RHS, we

have
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Then, considering |A|, we have finally for the case A <0
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Note that from above result we can to extract the following identities
taking b =0, a = 1 and ¢ = 22, where z > 0 we have
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Which are famous identities and very usuals both for solving integral
problems and for solving series problems. So we have
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Discussions

It is quite obvious that the identities proved in the present work are only
starting points to obtain a closed form for a number of other more complex
problems that are just derivations of the problem addressed here, simply
using from the Calculus techniques, i.e. Derivations or Integrations of the
presented identities. Given the objectivity of this work, we will be able to
skip many calculation processes making the use and manipulation of the
obtained formulas sufficient. We are open to suggestions and constructive
criticism with respect to the our work.

Grateful by the attention!
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