RMM - Triangle Alaretuon 1301-1400

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro Proposed by

Daniel Sitaru - Romania,Thanasis Gakopoulos-Larisa- Greece Adil Abdullayev-Baku-Azerbaijan,Bogdan Fuștei-Romania

Seyran Ibrahimov-Maasilli-Azerbaijan, George Apostolopoulos-Messolonghi-Greece, Mustafa Tarek-Cairo-Egypt, Florentin Vișescu

- Romania, Rahim Shahbazov-Baku-Azerbaijan, Radu DiaconuRomania,Avishek Mitra-West Bengal-India,Marin Chirciu - Romania
D.M. Bătinețu - Giurgiu- Romania ,Neculai Stanciu - Romania Emil Popa-Romania, Seyran Ibrahimov-Maasilli-Azerbaijan Tran Hong-Dong Thap-Vietnam,Marian Ursărescu Romania,Mokhtar Khassani-Mostaganem-Algerie, Jalil Hajimir-Toronto-Canada, Rovsen Pirguliyev-Sumgait-Azerbaijan, Ionuț Florin Voinea-Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Solutions by

Daniel Sitaru - Romania,Thanasis Gakopoulos-Larisa- Greece
Soumava Chakraborty-Kolkata-India,Marian Ursărescu-Romania
Mokhtar Khassani-Mostaganem-Algerie,Bogdan Fuștei-Romania George Apostolopoulos-Messolonghi-Greece,Avishek Mitra-West BengalIndia,Soumava Chakraborty-Kolkata-India,Șerban George Florin-Romania Boris Colakovic-Belgrade-Serbie,Adrian Popa - Romania Ravi Prakash-New Delhi-India,Rahim Shahbazov-Baku-Azerbaijan,Jalil Hajimir-Toronto-Canada,Sanong Huayrerai-Nakon PathomThailand,Myagmarsuren Yadamsuren-Darkhan-Mongolia,Remus Florin Stanca-Romania,Marin Chirciu-Romania,Rovsen Pirguliyev-SumgaitAzerbaijan,George Apostolopoulos-Messolonghi-Greece

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro1301.

$$
\begin{gathered}
A B=5, A C=7, B D=2, D E=3, E C=3, A B\left\|D D_{1}\right\| E E_{1} \\
S_{x}=?
\end{gathered}
$$

Proposed by Thanasis Gakopoulos-Larisa- Greece

Solution by proposer

PLAGIOGONAL system: BC $\equiv B x, B A \equiv B y$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
A C: f(x)=\frac{1}{2}\left(\sqrt{-3 x^{2}+22 x+25}-x+5\right) \\
{\left[D E E_{1} D_{1}\right]=\left(\sin \frac{\pi}{3}\right) \cdot \int_{2}^{5} f(x) \rightarrow} \\
S_{x}=\frac{9 \sqrt{3}}{8}+\sqrt{5}+\frac{5}{8} \sqrt{19}+\frac{49}{6}\left[\sin ^{-1}\left(\frac{2}{7}\right)+\sin ^{-1}\left(\frac{5}{14}\right)\right]=12.258
\end{gathered}
$$

1302. In $\triangle A B C$ the following relationship holds:

$$
\frac{w_{a} w_{b} w_{c}}{h_{a} h_{b} h_{c}} \cdot \frac{(a+b)(b+c)(c+a)}{8 a b c}=\frac{R}{2 r}
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\frac{w_{a} w_{b} w_{c}}{h_{a} h_{b} h_{c}} \cdot \frac{(a+b)(b+c)(c+a)}{8 a b c}=\frac{1}{8} \prod_{c y c} \frac{(b+c) w_{a}}{h_{a} \cdot a}= \\
=\frac{1}{8} \prod_{c y c} \frac{(b+c) w_{a}}{\frac{2 S}{a} \cdot a}=\frac{1}{64} \prod_{c y c}(b+c) w_{a}==\frac{1}{64 S^{3}} \prod_{c y c}(b+c) \cdot \frac{2 b c}{b+c} \cos \frac{A}{2}= \\
=\frac{1}{8 S^{3}}(a b c)^{2} \prod_{c y c} \cos \frac{A}{2}=\frac{1}{8 S^{3}}(4 R S)^{2} \cdot \frac{s}{4 R}=\frac{16 R^{2} S^{2} s}{32 R S^{2} r s}=\frac{R}{2 r}
\end{gathered}
$$

1303. In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{r} \sum_{c y c} h_{a}=\left(\sum_{c y c} \frac{h_{b} h_{c}}{a^{2}}\right)\left(\sum_{c y c} \frac{r_{a}-r}{w_{a}} \sqrt{\frac{h_{a}}{r_{a}}}\right)^{2}
$$

Proposed by Bogdan Fuștei-Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\sum \frac{\mathbf{r}_{\mathrm{a}}-\mathbf{r}}{\mathbf{w}_{\mathrm{a}}} \sqrt{\frac{\mathbf{h}_{\mathrm{a}}}{\mathbf{r}_{\mathrm{a}}}}=\sum \frac{(\mathbf{b}+\mathbf{c})\left(\frac{\mathbf{r s}}{s-\mathbf{a}}-\frac{\mathbf{r s}}{s}\right)}{2 b \cos \frac{A}{2}} \sqrt{\frac{\left(\frac{2 r s}{\mathrm{a}}\right)}{\left(\frac{\mathbf{r s}}{s-a}\right)}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$=\sum \frac{(\mathbf{b}+\mathbf{c})\left(\frac{\mathbf{r s}(\mathbf{s}-(\mathbf{s}-\mathbf{a})}{\mathbf{s}(\mathbf{s}-\mathbf{a})}\right)}{2 \mathbf{b c c o s} \frac{\mathbf{A}}{2}} \sqrt{\frac{\mathbf{s}(\mathbf{s}-\mathbf{a})}{\mathbf{b c}}\left(\frac{2 \mathbf{a b c}}{\mathbf{s a}^{2}}\right)}$
$=\sum \frac{2 \mathbf{r a}(\mathbf{s}+\mathbf{s}-\mathbf{a}) \cos \frac{\mathbf{A}}{\mathbf{2}}}{2(\mathbf{s}-\mathbf{a}) \mathbf{a b c c o s} \frac{\mathbf{A}}{2}} \sqrt{\frac{2 \operatorname{Rrs}}{\mathbf{s}}}=\sqrt{2 \operatorname{Rr}}\left(\frac{\mathbf{r}}{4 \operatorname{Rrs}}\right) \sum \frac{\mathbf{a}(\mathbf{s}+\mathbf{s}-\mathbf{a})}{\mathbf{s}-\mathbf{a}}=$
$=\frac{\sqrt{2 R r}}{4 R s}\left(s \Sigma \frac{\mathbf{a}-\mathbf{s}+\mathbf{s}}{\mathbf{s}-\mathbf{a}}+\Sigma \mathbf{a}\right)=\frac{\sqrt{2 R r}}{4 R s}\left(s(-3)+\frac{\left(4 R r+\mathbf{r}^{2}\right) \mathbf{s}^{2}}{\mathbf{s r}^{2}}+2 s\right)$
$=\frac{\sqrt{2 R r}}{4 \mathbf{R}}\left(-1+\frac{4 \mathbf{R}+\mathbf{r}}{\mathbf{r}}\right)=\frac{\sqrt{2 R r}}{4 \mathbf{R}}\left(\frac{4 \mathrm{R}}{\mathbf{r}}\right)=\sqrt{\frac{2 \mathrm{R}}{\mathrm{r}}} \Rightarrow\left(\sum \frac{\mathbf{r}_{\mathrm{a}}-\mathbf{r}}{\mathbf{w}_{\mathrm{a}}} \sqrt{\frac{\mathbf{h}_{\mathrm{a}}}{\mathbf{r}_{\mathrm{a}}}}\right)^{2}=\frac{2 \mathbf{R}}{\mathbf{r}}$
$\Rightarrow\left(\sum \frac{\mathbf{h}_{\mathbf{b}} \mathbf{h}_{\mathbf{c}}}{\mathbf{a}^{2}}\right)\left(\sum \frac{\mathbf{r}_{\mathbf{a}}-\mathbf{r}}{\mathbf{w}_{\mathbf{a}}} \sqrt{\frac{\mathbf{h}_{\mathbf{a}}}{\mathbf{r}_{\mathbf{a}}}}\right)^{2}=\frac{\mathbf{2 R}}{\mathbf{r}} \sum\left(\frac{\mathbf{c a . a b}}{4 \mathbf{R}^{2} \mathbf{a}^{2}}\right)=\frac{\sum \mathbf{b c}}{2 \mathbf{R r}}=\frac{\mathbf{1}}{\mathbf{r}} \sum\left(\frac{\mathbf{b c}}{2 \mathbf{R}}\right)=\frac{\mathbf{1}}{\mathbf{r}} \sum \mathbf{h}_{\mathbf{a}}$ (Proved)
1304. In $\triangle A B C$ the following relationship holds:

$$
h_{a}=\frac{m_{a}}{\sin A} \sqrt{\frac{2 \cdot \sum_{c y c} \sin A \cdot \prod_{c y c}(\sin A+\sin B-\sin C)}{3+\cos 2 A-2 \cos 2 B-2 \cos 2 C}}
$$

Proposed by Seyran Ibrahimov-Maasilli-Azerbaijan
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
2 \cdot \sum_{c y c} \sin A \cdot \prod_{c y c}(\sin A+\sin B-\sin C)= \\
=\frac{1}{R} \sum_{c y c} 2 R \sin A \cdot \frac{1}{8 R^{3}} \prod_{c y c}(a+b-c)=\frac{1}{R^{4}} \cdot 2 s \cdot \prod_{c y c}(s-a)=\frac{2 S^{2}}{R^{4}} \\
3+\cos 2 A-2 \cos 2 B-2 \cos 2 C=3+1-2 \sin ^{2} A-2+4 \sin ^{2} B-2+4 \sin ^{2} C= \\
=-2 \sin ^{2} A+4 \sin ^{2} B+4 \sin ^{2} C=\frac{1}{2 R^{2}}\left(2 b^{2}+2 c^{2}-a^{2}\right)=\frac{2 m_{a}^{2}}{R^{2}} \\
\frac{m_{a}}{\sin A} \sqrt{\frac{2 \cdot \sum_{c y c} \sin A \cdot \prod_{c y c}(\sin A+\sin B-\sin C)}{3+\cos 2 A-2 \cos 2 B-2 \cos 2 C}}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
=\frac{m_{a}}{\sin A} \sqrt{\frac{\frac{2 S^{2}}{R^{4}}}{\frac{2 m_{a}^{2}}{R^{2}}}}=\frac{m_{a}}{\sin A} \cdot \frac{S}{m_{a} \cdot R}=\frac{2 S}{2 R \sin A}=\frac{a \cdot h_{a}}{a}=h_{a}
$$

1305. In $\triangle A B C$ the following relationship holds:

$$
\sec ^{2} \frac{A}{2}+\sec ^{2} \frac{B}{2}+\sec ^{2} \frac{C}{2} \leq 4\left(\frac{R}{2 r}\right)^{2}
$$

Proposed by George Apostolopoulos-Messolonghi-Greece
Solution 1 by Marian Ursărescu-Romania

$$
\begin{equation*}
\text { We must show: } \frac{1}{\cos ^{2} \frac{A}{2}}+\frac{1}{\cos ^{2} \frac{B}{2}}+\frac{1}{\cos ^{2} \frac{C}{2}} \leq \frac{R^{2}}{r^{2}} \tag{1}
\end{equation*}
$$

$$
\text { Because } \cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}}, s=a+b+c=1
$$

$$
\begin{equation*}
\frac{1}{\cos ^{2} \frac{A}{2}}+\frac{1}{\cos ^{2} \frac{B}{2}}+\frac{1}{\cos ^{2} \frac{C}{2}}=1+\left(\frac{4 R+r}{s^{2}}\right)^{2} \tag{2}
\end{equation*}
$$

From (1)+(2) we must show: $1+\frac{(4 R+r)^{2}}{s^{2}} \leq \frac{R^{2}}{r^{2}}$
But $2 s^{2} \geq 27 \operatorname{Rr}$ (Cosniță and Turtoiu inequality) (4)

$$
\begin{gather*}
\text { From (3)+(4) we must show: } 1+\frac{2(4 R+r)^{2}}{27 R r} \leq \frac{R^{2}}{r^{2}} \Leftrightarrow \\
\Leftrightarrow \frac{27 R r+2(4 R+r)^{2}}{27 R r} \leq \frac{R^{2}}{r^{2}} \Leftrightarrow 27 R r^{2}+2(4 R+r)^{2} \leq \frac{27 R^{3}}{r} \Leftrightarrow \\
27 R r^{2}+2 r(4 R+r)^{2} \leq 27 R^{3} \tag{5}
\end{gather*}
$$

From Euler: 27 Rr $^{2} \leq \frac{27 R^{3}}{4}$

$$
\begin{equation*}
2 r(4 R+r)^{2} \leq R \cdot \frac{81 R^{2}}{4}=\frac{81 R^{3}}{4} \tag{6}
\end{equation*}
$$

From (6) $+(7) \Rightarrow 27 R^{2}+2 r(4 R+r)^{2} \leq \frac{27 R^{3}}{4}+\frac{81 R^{3}}{4}=\frac{108 R^{3}}{4}=27 R^{3} \Rightarrow$ (5) it is true.
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\sum \sec ^{2} \frac{A}{2}=\sum \frac{b c(s-b)(s-c)}{s(s-a)(s-b)(s-c)}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\frac{\sum b c\left(s^{2}-s(2 s-a)+b c\right)}{r^{2} s^{2}}=\frac{-s^{2} \sum a b+\left(\sum a b\right)^{2}-2 a b c(2 s)+3 s a b c}{r^{2} s^{2}} \\
=\frac{\left(s^{2}+4 R r+r^{2}\right)\left(4 R r+r^{2}\right)-4 R r s^{2}}{r^{2} s^{2}}=\frac{s^{2} r^{2}+r^{2}(4 R+r)^{2}}{r^{2} s^{2}}= \\
=1+\frac{(4 R+r)^{2}}{s^{2}} \leq 4\left(\frac{R}{2 r}\right)^{2} \Leftrightarrow \frac{R^{2}-r^{2}}{r^{2}} \geq \frac{(4 R+r)^{2}}{s^{2}} \Leftrightarrow s^{2}\left(R^{2}-r^{2}\right) \stackrel{(1)}{\geq} r^{2}(4 R+r)^{2} \\
\because R^{2}-r^{2}=(R+2 r)(R-2 r)+3 r^{2} \stackrel{\text { Euler }}{\geq} 3 r^{2}>0
\end{gathered}
$$

$$
\therefore \text { LHS of }(1) \stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)\left(R^{2}-r^{2}\right) \stackrel{?}{\geq} r^{2}(4 R+r)^{2}
$$

$$
\Leftrightarrow 16 t^{3}-21 t^{2}-24 t+4 \stackrel{?}{\geq} 0\left(t=\frac{R}{r}\right)
$$

$$
\Leftrightarrow(t-2)\left\{16 t^{2}+11(t-2)+22\right\} \stackrel{?}{\geq} 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2
$$

$$
\Rightarrow(1) \Rightarrow \text { proposed inequality is true (Proved) }
$$

Solution 3 by Mokhtar Khassani-Mostaganem-Algerie

$$
\begin{aligned}
\sum \sec ^{2}\left(\frac{A}{2}\right) \leq & 4\left(\frac{R}{2 r}\right)^{2} \Leftrightarrow \sum\left(1+\tan ^{2}\left(\frac{A}{2}\right)\right) \leq\left(\frac{R}{2}\right)^{2} \Leftrightarrow\left(\sum \tan \left(\frac{A}{2}\right)\right)^{2}+1 \leq\left(\frac{R}{r}\right)^{2} \\
\Rightarrow & \left(\frac{4 R+r}{s}\right)^{2}+1 \leq\left(\frac{R}{r}\right)^{2} \Rightarrow r^{2}(4 R+r)^{2} \leq\left(R^{2}-r^{2}\right) s^{2} \\
& \left(R^{2}-r^{2}\right) s^{2} \stackrel{\text { Gerretsen }}{\geq}\left(R^{2}-r^{2}\right)\left(16 R r-5 r^{2}\right)
\end{aligned}
$$

Now, we will prove that: $\left(16 R r-5 r^{2}\right)\left(R^{2}-r^{2}\right) \geq r^{2}(4 R+r)^{2} \Leftrightarrow$

$$
\begin{gathered}
\Leftrightarrow r\left(16 R^{3}-21 R^{2} r-24 R r^{2}+4 r^{3}\right) \geq 0 \Rightarrow \\
\Rightarrow r\left(16 R^{2}(R-2 r)+11 R r(R-2 r)-2 r^{2}(R-2 r)\right) \geq 0 \stackrel{R \geq 2 r}{\Rightarrow} \\
\Rightarrow 84 r^{3}(R-2 r) \geq 0 \xrightarrow{\text { true }}(\text { Euler } R \geq 2 r) \therefore \sum \sec ^{2}\left(\frac{A}{2}\right) \leq 4\left(\frac{R}{2 r}\right)^{2}
\end{gathered}
$$

1306. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{\tan \frac{A}{2}}+\sqrt{\tan \frac{B}{2}}+\sqrt{\tan \frac{C}{2}} \leq \sqrt{\frac{s}{r}}
$$

Proposed by Mustafa Tarek-Cairo-Egypt
Solution 1 by George Apostolopoulos-Messolonghi-Greece

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
We have $\frac{a^{2}}{4 F}=\frac{(2 R \sin A)^{2}}{4\left(\frac{1}{2} b c \sin A\right)}=\frac{2 R^{2} \sin A}{b c}=\frac{2 R^{2} \sin A}{(2 R \sin B)(2 R \sin C)}=\frac{\sin A}{2 \sin B \cdot \sin C}=\frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{\cos (B-C)-\cos (B+C)} \geq$

$$
\begin{gathered}
\frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{1+\cos A}=\frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{1+\left(2 \cos \frac{A}{2}-1\right)}=\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}=\tan \frac{A}{2} . \text { So, } \tan \frac{A}{2} \leq \frac{a^{2}}{4 R^{\circ}} \text { Similarly, } \tan \frac{B}{2} \leq \frac{b^{2}}{4 F} \text { and } \\
\tan \frac{C}{2} \leq \frac{c^{2}}{4 F^{*}} \text { So, } \sqrt{\tan \frac{A}{2}}+\sqrt{\tan \frac{B}{2}}+\sqrt{\tan \frac{C}{2}} \leq \frac{a+b+c}{2 \sqrt{F}}=\frac{s}{\sqrt{r s}}=\sqrt{\frac{s}{r}}
\end{gathered}
$$

Equality holds if and only if the triangle ABC is an equilateral triangle.

Solution 2 by Avishek Mitra-West Bengal-India

$$
\begin{gathered}
\Leftrightarrow \sum \sqrt{\tan \frac{B}{2}} \leq \sqrt{\frac{s}{r}} \Rightarrow \sum \sqrt{\frac{r_{b}}{s}} \leq \sqrt{\frac{s}{r}} \Rightarrow \sum \sqrt{r_{b}} \leq \frac{s}{\sqrt{r}} \Rightarrow\left(\sum \sqrt{r_{b}}\right)^{2} \leq \frac{s^{2}}{r} \\
\Rightarrow\left(\sum \sqrt{r_{b}}\right)^{2} \leq\left(\sum \frac{1}{r_{a}}\right)\left(\sum r_{a} r_{b}\right) \\
\Leftrightarrow\left(\sum \frac{1}{\sqrt{r_{a}}} \cdot \sqrt{r_{a} r_{b}}\right)^{2} \stackrel{C B S}{\leq}\left\{\sum\left(\frac{1}{\sqrt{r_{a}}}\right)^{2}\right\}\left\{\sum\left(\sqrt{r_{a} r_{b}}\right)^{2}\right\}(* \text { true) } \\
\Leftrightarrow \sqrt{\tan \frac{A}{2}}+\sqrt{\tan \frac{B}{2}}+\sqrt{\tan \frac{c}{2}} \leq \sqrt{\frac{s}{r}} \text { (proved) }
\end{gathered}
$$

Solution 3 by Mokhtar Khassani-Mostaganem-Algerie

$$
\begin{gathered}
\therefore \tan \left(\frac{A}{2}\right)=\frac{(a+b-c)(a+c-b)}{4 S}=\frac{a^{2}-(b-c)^{2}}{4 S} \leq \frac{a^{2}}{4 S} \rightarrow \tan \left(\frac{B}{2}\right) \leq \frac{b^{2}}{4 S^{\prime}} \\
\tan \left(\frac{c}{2}\right) \leq \frac{c^{2}}{4 S} \therefore \sum \sqrt{\tan \left(\frac{A}{2}\right)} \leq \frac{a+b+c}{2 \sqrt{S}}=\frac{s}{\sqrt{r s}}=\sqrt{\frac{s}{r}}
\end{gathered}
$$

Solution 4 by Bogdan Fuștei-Romania

$$
\begin{aligned}
& \text { We know that: } \frac{r_{a}}{s}=\tan \frac{A}{2} \text { (and the analogs) } \\
& \qquad r_{a} r=(s-b)(s-c) \text { (and the analogs) }
\end{aligned}
$$

The above inequality becomes: $\sqrt{\frac{r_{a}}{s}}+\sqrt{\frac{r_{b}}{s}}+\sqrt{\frac{r_{c}}{s}} \leq \sqrt{\frac{s}{r}}$

$$
\Rightarrow \sqrt{r_{a} r}+\sqrt{r_{b} r}+\sqrt{r_{c} r} \leq \sqrt{s \cdot s}=\sqrt{s^{2}}=s
$$

$$
\sqrt{(s-b)(s-c)} \leq \frac{s-b+s-c}{2}=\frac{2 s-b-c}{2}=\frac{a}{2} \text { (and the analogs) }
$$

(The inequality between the geometric means and the arithmetic means)

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Summing $\sqrt{r_{a} r} \leq \frac{a}{2}$ (and the analogs) \Rightarrow we obtain the above inequality.
1307. In $\Delta A B C, n_{a}-$ Nagel's cevian the following relationship holds:

$$
\prod_{c y c}\left(1-\sqrt{\frac{2 r}{r_{b}+r_{c}}}\right) \geq \frac{n_{a} n_{b} n_{c}}{2 \sqrt{2} s^{3}}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

Firstly, $r_{b}+r_{c}=s\left(\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}+\frac{\sin \frac{C}{2}}{\cos \frac{C}{2}}\right)=\frac{s \cos \frac{A}{2}\left(\sin \frac{A}{2} \cos \frac{C}{2}+\sin \frac{C}{2} \cos \frac{B}{2}\right)}{\prod \cos \frac{A}{2}}=\frac{s \cos ^{2} \frac{A}{2}}{\left(\frac{s}{4 R}\right)} \stackrel{(1)}{=} 4 R \cos ^{2} \frac{A}{2}$

$$
\text { Now, } \frac{2 r}{r_{b}+r_{c}}<1 \stackrel{b y(1)}{=} \frac{2 r}{4 R \cos ^{2} \frac{A}{2}}<1 \Leftrightarrow \frac{r}{R}<2 \cos ^{2} \frac{A}{2}
$$

$$
\Leftrightarrow \sum \cos A-1<1+\cos A \Leftrightarrow \cos B+\cos C<2 \rightarrow \text { true } \because \cos B, \cos C<1
$$

$$
\therefore \frac{\mathbf{2 r}}{\boldsymbol{r}_{\boldsymbol{b}}+\boldsymbol{r}_{\boldsymbol{c}}}<1 \Rightarrow \sqrt{\frac{2 \boldsymbol{r}}{\boldsymbol{r}_{\boldsymbol{b}}+\boldsymbol{r}_{\boldsymbol{c}}}}<1 \Rightarrow 1-\sqrt{\frac{2 \boldsymbol{r}}{\boldsymbol{r}_{\boldsymbol{b}}+\boldsymbol{r}_{\boldsymbol{c}}}} \stackrel{(a)}{>} 0
$$

$$
\text { Similarly, } 1-\sqrt{\frac{2 r}{r_{c}+r_{a}}} \stackrel{(b)}{>} 0 \text { and, } 1-\sqrt{\frac{2 r}{r_{a}+r_{b}}} \stackrel{(c)}{>} 0
$$

Now, Stewart's theorem $\Rightarrow b^{2}(s-c)+c^{2}(s-b)=a n_{a}^{2}+a(s-b)(s-c)$

$$
\begin{gathered}
\Rightarrow s\left(b^{2}+c^{2}\right)-b c(2 s-a)=a n_{a}^{2}+a\left(s^{2}-s(2 s-a)+b c\right) \\
\Rightarrow s\left(b^{2}+c^{2}\right)-2 s b c=a n_{a}^{2}+a\left(a s-s^{2}\right) \Rightarrow s\left(b^{2}+c^{2}-a^{2}-2 b c\right)=a n_{a}^{2}-a s^{2} \\
\Rightarrow a n_{a}^{2}=a s^{2}+s(2 b c \cos A-2 b c)=a s^{2}-4 s b c \sin ^{2} \frac{A}{2} \\
=a s^{2}-\frac{4 s b c(s-b)(s-c)(s-a)}{b c(s-a)}=a s^{2}-\frac{4 \Delta^{2}}{s-a}=a s^{2}-2 a\left(\frac{2 \Delta}{a}\right)\left(\frac{\Delta}{s-a}\right) \\
=a s^{2}-2 a h_{a} r_{a} \Rightarrow n_{a}^{2} \stackrel{(2)}{=} s^{2}-2 h_{a} r_{a}
\end{gathered}
$$

$$
\text { Now, } 1-\sqrt{\frac{2 r}{r_{b}+r_{c}}} \geq \frac{n_{a}}{\sqrt{2} s} \Leftrightarrow 1+\frac{2 r}{r_{b}+r_{c}}-2 \sqrt{\frac{2 r}{r_{b}+r_{c}}} \geq \frac{n_{a}^{2}}{2 s^{2}}
$$

$$
\stackrel{b y}{(1),(2)} 1+\frac{2 r}{4 R \cos ^{2} \frac{A}{2}}-2 \sqrt{\frac{2 r}{4 R \cos ^{2} \frac{A}{2}}} \geq \frac{s^{2}-2 h_{a} r_{a}}{2 s^{2}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
\Leftrightarrow 2 s^{2}+\frac{r s^{2}}{R \cos ^{2} \frac{A}{2}}-4 s^{2} \sqrt{\frac{2 r}{4 R \cos ^{2} \frac{A}{2}}} \geq s^{2}-2\left(\frac{2 r s}{a}\right)\left(\frac{r s}{s-a}\right) \\
\Leftrightarrow s^{2}+\frac{4 R r s \cdot r s^{2}}{R s a(s-a)}+\frac{4 r^{2} s^{2}}{a(s-a)}-2 s^{2} \sqrt{\frac{8 r}{4 R}} \sec \frac{A}{2} \geq 0 \\
\Leftrightarrow s^{2}\left(1+\frac{8 r^{2}}{a(s-a)}-2 \sqrt{\frac{2 r}{R}} \sec \frac{A}{2}\right) \geq 0 \Leftrightarrow s^{2}\left(1+\frac{8 s b c r^{2}}{a b c s(s-a)}-2 \sqrt{\frac{2 r}{R}} \sec \frac{A}{2}\right) \geq 0 \\
\Leftrightarrow s^{2}\left(1+\left(\frac{8 s r^{2}}{4 R r s}\right)\left(\frac{b c}{s(s-a)}\right)-2 \sqrt{\frac{2 r}{R}} \sec \frac{A}{2}\right) \geq 0 \\
\Leftrightarrow s^{2}\left(1+\frac{2 r}{R} \sec ^{2} \frac{A}{2}-2 \sqrt{\frac{2 r}{R}} \sec \frac{A}{2}\right) \geq 0 \Leftrightarrow s^{2}\left(1-\sqrt{\frac{2 r}{R}} \sec \frac{A}{2}\right)^{2} \geq 0
\end{gathered}
$$

\rightarrow true $\therefore 1-\sqrt{\frac{2 r}{r_{b}+r_{c}}} \stackrel{(i)}{\geq} \frac{n_{a}}{\sqrt{2} s}$ Similarly, $1-\sqrt{\frac{2 r}{r_{c}+r_{a}}} \stackrel{(i i)}{\geq} \frac{n_{b}}{\sqrt{2} s}$ and, $1-\sqrt{\frac{2 r}{r_{a}+r_{b}}} \stackrel{(i i i)}{\geq} \frac{n_{c}}{\sqrt{2} s}$

$$
\text { (a), (b), (c) } \Rightarrow \text { (i).(ii).(iii) } \Rightarrow \Pi\left(1-\sqrt{\frac{2 r}{r_{b}+r_{c}}}\right) \geq \Pi\left(\frac{n_{a}}{\sqrt{2} s}\right)=\frac{n_{a} n_{b} n_{c}}{2 \sqrt{2} s^{3}} \quad \text { (Done) }
$$

1308. In $\triangle A B C$ the following relationship holds:

$$
\begin{gathered}
\frac{\sqrt{m_{a} r_{a}}}{w_{a}}+\frac{\sqrt{m_{b} r_{b}}}{w_{b}}+\frac{\sqrt{m_{c} r_{c}}}{w_{c}} \leq 1+\frac{R}{r} \\
\frac{r_{a}+r_{b}+r_{c}}{m_{a}+m_{b}+m_{c}} \leq \sqrt{\frac{\sin A+\sin B+\sin C}{\sin 2 A+\sin 2 B+\sin 2 C}}
\end{gathered}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\because m_{a} \leq \frac{R}{2 r} \cdot h_{a}=\frac{R}{2 r} \cdot \frac{2 r s}{a}=\frac{R s}{a}
$$

$\therefore m_{a} r_{a} \leq \frac{R s}{a} \cdot \frac{r s}{s-a}=\frac{R s}{a} \cdot \frac{r s}{s(s-a)} \cdot \frac{s b c}{b c}=\frac{R r s^{3}}{4 R r s} \cdot \frac{b c}{s(s-a)}=\frac{s^{2}}{4 \cos ^{2} \frac{A}{2}}$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{aligned}
& \Rightarrow \sqrt{m_{a} r_{a}} \leq \frac{s}{2 \cos \frac{A}{2}} \Rightarrow \frac{\sqrt{m_{a} r_{a}}}{w_{a}} \leq \frac{s}{2 \cos \frac{A}{2}} \cdot \frac{b+c}{2 b c \cos \frac{A}{2}} \\
&=\frac{s(b+c)}{4 b c \cdot \frac{s(s-a)}{b}}=\frac{b+c}{4(s-a)} \therefore \frac{\sqrt{m_{a} r_{a}}}{w_{a}} \leq \frac{(1)}{\leq(s-a)} . \text { Similarly, } \frac{\sqrt{m_{a} r_{b}}}{w_{b}}(2) \\
& \leq \frac{c+a}{4(s-b)} a n d \frac{\sqrt{m_{c} r_{c}}}{w_{c}}(3) \\
&(1)+(2)+(3) \Rightarrow \sum \frac{a+b}{4(s-c)} \\
& \leq \frac{\sqrt{m_{a} r_{a}}}{w_{a}} \\
& \leq \frac{1}{4} \sum \frac{s+a}{s-a}=\frac{1}{4}\left(\frac{s}{r^{2} s} \sum(s-b)(s-c)+3\right) \\
& \frac{1}{4}\left(\frac{4 R r+r^{2}}{r^{2}}+3\right)=1+\frac{R}{r} \therefore \sum \frac{\sqrt{m_{a} r_{a}}}{w_{a}} \leq 1+\frac{R}{r}
\end{aligned}
$$

Now, $\sum m_{a} \stackrel{\text { Ioscu }}{\geq} \sum \frac{b+c}{2} \cos \frac{A}{2} \stackrel{\text { Bogdan Fustei }}{\geq} \sum \sqrt{8 R r} \cos ^{2} \frac{A}{2}=\sqrt{2 R r} \sum(1+\cos A)=$

$$
=\sqrt{2 R r}\left(3+1+\frac{r}{R}\right)=\sqrt{2 R r}\left(\frac{4 R+r}{R}\right)=\sqrt{\frac{2 r}{R}}\left(\sum r_{a}\right) \Rightarrow \frac{\sum r_{a}}{\sum m_{a}} \stackrel{(i)}{\leq} \sqrt{\frac{R}{2 r}}
$$

Now, $\sqrt{\frac{\sum \sin A}{\sum \sin 2 A}}=\sqrt{\frac{\frac{s}{R}}{4\left(\frac{a b c}{8 R^{3}}\right)}}=\sqrt{\frac{s}{R} \cdot \frac{8 R^{3}}{16 R r s}}=\sqrt{\frac{R}{2 r}} \stackrel{\text { by }(i)}{\geq} \frac{\sum r_{a}}{\sum m_{a}} \Rightarrow \frac{\sum r_{a}}{\sum m_{a}} \leq \sqrt{\frac{R}{2 r}}$ (Proved)
1309. In acute $\triangle A B C$ the following relationship holds:

$$
8(1-\sin A)(1-\sin B)(1-\sin C)+15 \sqrt{3} \leq 26
$$

Proposed by Florentin Vișescu - Romania

Solution by Marian Ursărescu - Romania

We must show: $8(1-\sin A)(1-\sin B)(1-\sin C) \leq 26-15 \sqrt{3} \Leftrightarrow$

$$
\begin{gather*}
\Leftrightarrow(1-\sin A)(1-\sin B)(1-\sin C) \leq\left(\frac{2-\sqrt{3}}{2}\right)^{3} \Leftrightarrow \\
\ln (1-\sin A)+\ln (1-\sin B)+\ln (1-\sin C) \leq 3 \ln \left(\frac{2-\sqrt{3}}{2}\right) \tag{1}\\
A, B, C \in\left(0, \frac{\pi}{2}\right) \Rightarrow \sin A, \sin B, \sin C \in(0,1) \\
\text { Let } f(x)=\ln (1-\sin x) ; f:\left(0, \frac{\pi}{2}\right) \rightarrow \mathbb{R} \\
f^{\prime}(x)=\frac{\cos x}{\sin x-1}, f^{\prime \prime}(x)=\frac{-\sin x(\sin x-1)-\cos x \cdot \cos x}{(\sin x-1)^{2}}=
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\frac{-\sin ^{2} x+\sin x-\cos ^{2} x}{(\cos x-1)^{2}}=\frac{\sin x-1}{(\cos x-1)^{2}}<0 \Rightarrow \text { from Jensen } \\
\Rightarrow \frac{f(A)+f(B)+f(C)}{3} \leq f\left(\frac{A+B+C}{3}\right) \Leftrightarrow \\
\frac{\ln (1-\sin A)+\ln (1-\sin B)+\ln (1-\sin C)}{3} \leq \ln \left(1-\sin \frac{\pi}{3}\right) \Leftrightarrow \\
\ln (1-\sin A)+\ln (1-\sin B)+\ln (1-\sin C) \leq 3 \ln \left(\frac{2-\sqrt{3}}{2}\right) \Rightarrow(1) \text { it is true. }
\end{gathered}
$$

1310. In $\triangle A B C$ the following relationship holds:

$$
w_{b} w_{a}^{3}+w_{c} w_{b}^{3}+w_{a} w_{c}^{3} \leq \frac{243 R^{4}}{16}
$$

Proposed by Marian Ursărescu - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
w_{b} w_{a}^{3}+w_{c} w_{b}^{3}+w_{a} w_{c}^{3} \stackrel{(1)}{\leq} \frac{243 R^{4}}{16} \\
L H S \text { of }(1)=w_{a} w_{b} w_{c}\left(\frac{w_{a}^{2}}{w_{c}}+\frac{w_{b}^{2}}{w_{a}}+\frac{w_{c}^{2}}{w_{b}}\right)=\prod\left(\frac{2 b c \cos \frac{A}{2}}{b+c}\right)\left[\frac{w_{a}^{2}}{w_{c}}+\frac{w_{b}^{2}}{w_{a}}+\frac{w_{c}^{2}}{w_{b}}\right] \\
\leq \frac{8 \cdot 16 R^{2} r^{2} s^{2}\left(\frac{s}{4 R}\right)}{\prod(b+c)}\left(\frac{s(s-a)}{h_{c}}+\frac{s(s-b)}{h_{a}}+\frac{s(s-c)}{h_{b}}\right) \\
\left(\because w_{a}^{2} \leq s(s-a) \text { and analogs and } \frac{1}{w_{c}} \leq \frac{1}{h_{c}}\right. \text { and analogs)} \\
=\frac{32 R r^{2} s^{3}}{2 a b c+\sum a b(2 s-c)} \cdot\left[\frac{s(s-a) c+s(s-b) a+s(s-c) b}{2 r s}\right] \\
=\frac{16 R r s^{3}}{2 s\left(s^{2}+4 R r+r^{2}\right)-4 R r s} \cdot\left[s(2 s)-\left(s^{2}+4 R r+r^{2}\right)\right] \\
=\frac{8 R r s^{2}\left(s^{2}-4 R r-r^{2}\right)}{s^{2}+2 R r+r^{2}}=\frac{4 R r s^{2}\left(\sum a^{2}\right)}{s^{2}+2 R r+r^{2}} \stackrel{\text { Leibnitz }}{\leq} \frac{4 R r s^{2}\left(9 R^{2}\right)}{s^{2}+2 R r+r^{2}} \therefore L H S \text { of }(1) \stackrel{(i)}{\leq} \frac{36 R^{3} r s^{2}}{s^{2}+2 R r+r^{2}}
\end{gathered}
$$

(i) \Rightarrow it suffices to prove: $\frac{36 R^{3} r s^{2}}{s^{2}+2 R r+r^{2}} \leq \frac{243 R^{4}}{16} \Leftrightarrow 27 R\left(s^{2}+2 R r+r^{2}\right) \geq 64 r s^{2}$

$$
\Leftrightarrow(27 R-54 r) s^{2}+27 R\left(2 R r+r^{2}\right) \stackrel{(2)}{\geq} 10 r s^{2}
$$

Now, LHS of (2) $\underset{(\bar{a})}{\text { Gerreten }}(27 R-54 r)\left(16 R r-5 r^{2}\right)+27 R\left(2 R+r^{2}\right)$ and RHS of (2)

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 Gerreten
 $\underset{(b)}{\frac{1}{(b)}} 10 r\left(4 R^{2}+4 R r+3 r^{2}\right)$

(a), (b) \Rightarrow in order to prove (2), it suffices to prove:

$$
(27 R-54 r)(16 R-5 r)+27 R(2 R+r)-10\left(4 R^{2}+4 R r+3 r^{2}\right) \geq 0
$$

$$
\Leftrightarrow 223 R^{2}-506 R r+120 r^{2} \geq 0 \Leftrightarrow(R-2 r)(223 R-60 r) \geq 0 \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2 r
$$

$$
\Rightarrow(2) \Rightarrow(1) \text { is true (Proved) }
$$

1311. In $\triangle A B C, N$ - Nagel's point, $N D \perp B C, N E \perp A C, N F \perp A B, D \in(B C)$, $E \in(C A), F \in(A B)$. Prove that:

$$
\frac{r_{a}}{N D}+\frac{r_{b}}{N E}+\frac{r_{c}}{N F} \geq\left(\frac{3 R}{2 r}\right)^{2} \geq 9
$$

Proposed by Marian Ursărescu-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\frac{r_{a}}{N D}+\frac{r_{b}}{N E}+\frac{r_{c}}{N F} \stackrel{(i)}{\geq}\left(\frac{3 R}{2 r}\right)^{2} \geq 9
$$

$$
\begin{gathered}
\text { Van Aubel's theorem } \Rightarrow \frac{A N}{n_{a}-A N}=\frac{s-c}{s-a}+\frac{s-b}{s-a}=\frac{a}{s-a} \\
\Rightarrow \frac{n_{a}-A N}{A N}=\frac{s-a}{a} \Rightarrow \frac{n_{a}}{A N}=\frac{s-a+a}{a}=\frac{s}{a} \Rightarrow \frac{A N}{n_{a}} \stackrel{(1)}{=} \frac{a}{s} \\
\text { Sine - rule on } \triangle A P C \Rightarrow \frac{b}{\sin \theta}=\frac{n_{a}}{\sin C} \Rightarrow \sin \left(180^{\circ}-\theta\right)=\frac{b c}{2 R n_{a}} \\
\Rightarrow \frac{N D}{N P}=\frac{b c}{2 R n_{a}}(u \operatorname{sing} \triangle N D P)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\Rightarrow \frac{N D}{n_{a}-A N}=\frac{b c}{2 R n_{a}} \Rightarrow \frac{n_{a}-A N}{n_{a}}=\frac{2 R \cdot N D \cdot a}{a b c} \Rightarrow 1-\frac{A N}{n_{a}}=\frac{2 R \cdot N D \cdot a}{4 R r s} \\
\stackrel{b y(1)}{\Rightarrow} 1-\frac{a}{s}=\frac{a \cdot N D}{2 r s} \Rightarrow \frac{s-a}{s}=\frac{a \cdot N D}{2 r s} \Rightarrow N D \stackrel{(a)}{=} 2 r\left(\frac{s-a}{a}\right)
\end{gathered}
$$

$$
\text { Similarly, } N E \stackrel{(b)}{=} 2 r\left(\frac{s-b}{b}\right) \text { and } N F \stackrel{(c)}{=} 2 r\left(\frac{s-c}{c}\right)
$$

(a), (b), (c) \Rightarrow LHS of $(i)=\sum \frac{r_{a} a}{2 r(s-a)}=\frac{1}{2 r} \sum \frac{r_{a}(a-s+s)}{s-a}=\frac{1}{2 r} \sum\left(-r_{a}+\frac{r_{a}}{r} \cdot \frac{r s}{s-a}\right)$

$$
\begin{gathered}
=\frac{1}{2 r} \sum\left(-r_{a}+\frac{1}{r} r_{a}^{2}\right)=\frac{(4 R+r)^{2}-2 s^{2}}{2 r^{2}}-\frac{4 R+r}{2 r}\left(\because \sum r_{a}^{2}=(4 R+r)^{2}-2 s^{2}\right) \\
=\frac{(4 R+r)^{2}-2 s^{2}-r(4 R+r)}{2 r^{2}}=\frac{8 R^{2}+2 R r-s^{2}}{r^{2}} \geq \frac{9 R^{2}}{4 r^{2}} \\
\Leftrightarrow 32 R^{2}+8 R r-4 s^{2} \geq 9 R^{2} \Leftrightarrow 4 s^{2} \stackrel{(i i)}{\leq} 23 R^{2}+8 R r \\
\text { Now, } \text { LHS of (ii) } \stackrel{\text { Gerretsen }}{\leq} 16 R^{2}+16 R r+12 r^{2} \stackrel{?}{\leq} 23 R^{2}+8 R r \\
\Leftrightarrow 7 R^{2}-8 R r-12 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow(R-2 r)(7 R+6 r) \stackrel{?}{\geq} 0
\end{gathered}
$$

\rightarrow true \Rightarrow (ii) \Rightarrow (i) is true and $\because R \stackrel{\text { Euler }}{\geq} 2 r \therefore\left(\frac{3 R}{2 r}\right)^{2} \geq 9$ and thus the proposed chain of inequalities is true (Proved)
1312. If in $\triangle A B C, I$ - incenter then:

$$
[A I B] \cdot[A I C]+[B I C] \cdot[B I A]+[C I A] \cdot[C I B] \leq r^{2}(R+r)^{2}
$$

Proposed by Marian Ursărescu - Romania

Solution by Avishek Mitra-West Bengal-India

$$
\text { In } \triangle A B C \Rightarrow I P=I Q=I R=r
$$

$$
A B=a, B C=b, A C=c,[A I B]=[B I A]=\frac{1}{2} r_{a}[B I C]=[C I B]=\frac{1}{2} r_{b}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
\text { www.ssmrmh.ro } \\
{[A I C]=[C I A]=\frac{1}{2} r_{c}} \\
\therefore \Omega=[A I B] \cdot[A I C]+[B I C] \cdot[B I A]+[C I A] \cdot[C I B] \\
=\frac{1}{4} r^{2}(a b+b c+c a)=\frac{1}{4} r^{2}\left(s^{2}+r^{2}+4 R r\right)
\end{gathered}
$$

Need to show $\Rightarrow \frac{1}{4} r^{2}\left(s^{2}+r^{2}+4 R r\right) \leq r^{2}(R+r)^{2}$
$\Rightarrow \frac{s^{2}}{4}+\frac{r^{2}}{4}+R r \leq R^{2}+2 R r+r^{2} \Rightarrow \frac{s^{2}}{4} \leq R^{2}+R r+\frac{3 r^{2}}{4}$

$$
\Rightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \quad(* T r u e \text { Gerretsen's Inequality) }
$$

1313. In $\triangle A B C$ the following relationship holds:

$$
m_{a} \geq \frac{1}{2 \sqrt{2}}\left((b+c) \cos \frac{A}{2}+|b-c| \sin \frac{A}{2}\right)
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
m_{a} \stackrel{(1)}{\gtrless} \frac{1}{2 \sqrt{2}}\left((b+c) \cos \frac{A}{2}+|b-c| \sin \frac{A}{2}\right)
$$

Upon squaring both sides, (1)

$$
\begin{gathered}
\Leftrightarrow 8 m_{a}^{2} \geq(b+c)^{2}\left(\cos \frac{A}{2}\right)^{2}+(b-c)^{2}\left(\sin \frac{A}{2}\right)^{2}+2(b+c)|b-c| \cos \frac{A}{2} \sin \frac{A}{2} \\
\Leftrightarrow 8 m_{a}^{2} \geq(b-c)^{2}\left(\left(\cos \frac{A}{2}\right)^{2}+\left(\sin \frac{A}{2}\right)^{2}\right)+4 b c\left(\cos \frac{A}{2}\right)^{2}+\left(\frac{a}{2 R}\right)(b+c)|b-c| \Leftrightarrow \\
\Leftrightarrow 8 m_{a}^{2} \geq(b-c)^{2}+\frac{4 b c s(s-a)}{b c}+\left(\frac{a}{2 R}\right)(b+c)|b-c| \\
\Leftrightarrow 8 m_{a}^{2} \geq(b-c)^{2}+(b+c+a)(b+c-a)+\left(\frac{a}{2 R}\right)(b+c)|b-c| \Leftrightarrow 8 m_{a}^{2} \\
\geq(b-c)^{2}+(b+c)^{2}-a^{2}+\left(\frac{a}{2 R}\right)(b+c)|b-c| \\
\Leftrightarrow 8 m_{a}^{2} \geq 4 m_{a}^{2}+\left(\frac{a}{2 R}\right)(b+c)|b-c| \Leftrightarrow 8 R m_{a}^{2} \geq a(b+c)|b-c| \Leftrightarrow \\
\left(\frac{2 a b c}{4 \Delta}\right) 4 m_{a}^{2} \geq a(b+c)|b-c| \Leftrightarrow 4 a^{2} b^{2} c^{2}\left(2 b^{2}+2 c^{2}-a^{2}\right)^{2} \geq \\
(a+b+c)(b+c-a)(c+a-b)(a+b-c) a^{2}\left(b^{2}-c^{2}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \Leftrightarrow 4 b^{2} c^{2}\left(2 b^{2}+2 c^{2}-a^{2}\right)^{2} \geq\left(2 \sum a^{2} b^{2}-\sum a^{4}\right)\left(b^{2}-c^{2}\right)^{2} \\
& \Leftrightarrow \boldsymbol{a}^{4}\left(b^{2}+c^{2}\right)^{2}-2 a^{2}\left(b^{6}+c^{6}\right)-14 a^{2} b^{2} \boldsymbol{c}^{2}\left(b^{2}+c^{2}\right)+\left(b^{2}+c^{2}\right)^{4}+8 b^{2} \boldsymbol{c}^{2}\left(b^{2}+\right. \\
& \left.c^{2}\right)^{2}+16 b^{4} c^{4} \geq \mathbf{0} \text { (expanding and re-arranging) } \\
& \Leftrightarrow\left\{a^{4}\left(b^{2}+c^{2}\right)^{2}+16 b^{4} c^{4}-8 a^{2} b^{2} c^{2}\left(b^{2}+c^{2}\right)\right\}- \\
& -6 a^{2} b^{2} c^{2}\left(b^{2}+c^{2}\right)+\left(b^{2}+c^{2}\right)^{4}+8 b^{2} c^{2}\left(b^{2}+c^{2}\right)^{2}- \\
& -2 a^{2}\left(b^{2}+c^{2}\right)\left(b^{4}+c^{4}-b^{2} c^{2}\right) \geq \mathbf{0} \\
& \Leftrightarrow\left\{a^{2}\left(b^{2}+c^{2}\right)-4 b^{2} c^{2}\right\}^{2}-6 a^{2} b^{2} c^{2}\left(b^{2}+c^{2}\right)+\left(b^{2}+c^{2}\right)^{4}+8 b^{2} c^{2}\left(b^{2}+c^{2}\right)^{2}- \\
& -2 a^{2}\left(b^{2}+c^{2}\right)\left\{\left(b^{2}+c^{2}\right)^{2}-3 b^{2} c^{2}\right\} \geq \mathbf{0} \\
& \Leftrightarrow\left\{a^{2}\left(b^{2}+c^{2}\right)-4 b^{2} c^{2}\right\}^{2}+\left(b^{2}+c^{2}\right)^{4}+8 b^{2} c^{2}\left(b^{2}+c^{2}\right)^{2}-2 a^{2}\left(b^{2}+c^{2}\right)^{3} \geq 0 \\
& \Leftrightarrow\left\{a^{2}\left(b^{2}+c^{2}\right)-4 b^{2} c^{2}\right\}^{2}+\left(b^{2}+c^{2}\right)^{4}-2\left(b^{2}+c^{2}\right)^{2}\left\{a^{2}\left(b^{2}+c^{2}\right)-4 b^{2} c^{2}\right\} \geq \\
& \mathbf{0} \Leftrightarrow\left[\left\{\boldsymbol{a}^{2}\left(\boldsymbol{b}^{2}+c^{2}\right)-4 b^{2} c^{2}\right\}-\left(b^{2}+c^{2}\right)^{2}\right]^{2} \geq \mathbf{0} \rightarrow \text { true } \\
& \Rightarrow(1) \text { is true (Proved) }
\end{aligned}
$$

1314. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a}^{2}}{r_{b}^{2}}+\frac{r_{b}^{2}}{r_{c}^{2}}+\frac{r_{c}^{2}}{r_{a}^{2}}+\frac{8 r}{R} \geq 7
$$

Proposed by Rahim Shahbazov-Baku-Azerbaijan

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { Lets }-a=x, s-b=y, s-c=z \\
\therefore 3 s-2 s=s=\sum x \Rightarrow a=y+z, b=z+x, c=x+y
\end{gathered}
$$

Now, proposed inequality $\Leftrightarrow \sum\left(\frac{s-b}{s-a}\right)^{2}+8\left(\frac{\Delta}{s}\right)\left(\frac{4 \Delta}{a b c}\right) \stackrel{\text { via above transformation }}{\Leftrightarrow}$

$$
\begin{gathered}
\sum \frac{y^{2}}{x^{2}}+\frac{32 s(s-a)(s-b)(s-c)}{s \prod(x+y)} \geq 7 \Leftrightarrow \sum \frac{y^{2}}{x^{2}}+\frac{32 x y z}{\prod(x+y)} \geq 7 \\
\Leftrightarrow \sum \frac{y^{2}}{x^{2}}+3+\frac{32 x y z}{\prod(x+y)} \geq 10 \Leftrightarrow \sum \frac{y^{2}+x^{2}}{x^{2}}+\frac{32 x y z}{\prod(x+y)} \stackrel{(1)}{\prod} 10 \\
\sum \frac{y^{2}+x^{2}}{x^{2}}+\frac{32 x y z}{\prod(x+y)}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
&=\sum \frac{y^{2}+x^{2}}{x^{2}}+\frac{16 x y z}{\Pi(x+y)}+\frac{16 x y z}{\Pi(x+y)} \\
& \stackrel{A-G}{n} 5^{5} \sqrt{\frac{2^{8}(x y z)^{2}}{\prod x^{2}} \frac{\Pi\left(x^{2}+y^{2}\right)}{\Pi(x+y)^{2}}} \geq \\
& \geq 5 \sqrt[5]{2^{8} \frac{\Pi\left(\frac{1}{2}(x+y)^{2}\right)}{\prod(x+y)^{2}}}=5 \sqrt[5]{2^{5}}=10
\end{aligned}
$$

\Rightarrow (1) is true \Rightarrow proposed inequality is true (Proved)
1315. In $\triangle A B C, n_{a}-$ Nagel's cevian the following relationship holds:

$$
R \geq \frac{r}{\sum_{c y c} h_{a}}\left(5 R-r+\sum_{c y c} n_{a}\right) \geq \frac{r}{\sum_{c y c} \boldsymbol{h}_{a}}\left(\sum_{c y c}\left(r_{a}+n_{a}\right)\right) \geq 2 r
$$

Proposed by Bogdan Fuștei - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& R \stackrel{(m)}{\geq} \frac{r}{\sum h_{a}}\left(5 R-r+\sum n_{a}\right) \stackrel{(n)}{\geq} \frac{r}{\sum h_{a}}\left(\sum\left(r_{a}+n_{a}\right)\right) \stackrel{(p)}{\geq} 2 r \\
&(m) \Leftrightarrow \sum h_{a} \geq r\left(5-\frac{r}{R}+\frac{\sum n_{a}}{R}\right) \Leftrightarrow \sum\left(\frac{2 r s}{a}\right) \geq r\left(6-\left(1+\frac{r}{R}\right)+\frac{\sum n_{a}}{R}\right) \\
& \Leftrightarrow \sum\left(\frac{a+b+c}{a}\right) \geq 6-\sum \cos A+\frac{\sum n_{a}}{R} \\
& \Leftrightarrow \sum\left(1+\frac{b+c}{a}\right) \geq 6-\sum\left(1-2 \sin ^{2} \frac{A}{2}\right)+\frac{\sum n_{a}}{R} \\
& \Leftrightarrow 3+\sum \frac{b+c}{a} \geq 3+2 \sum \sin ^{2} \frac{A}{2}+\frac{\sum n_{a}}{R} \\
& \Leftrightarrow \sum\left(\frac{b}{c}+\frac{c}{b}\right) \geq \sum\left[\left(\frac{2(s-b)(s-c)}{b c}\right)+\frac{n_{a}}{R}\right] \\
& \Leftrightarrow \sum\left[\frac{b^{2}+c^{2}}{b c}-\frac{2(s-b)(s-c)}{b c}\right] \geq \sum \frac{n_{a}}{R} \\
& \Leftrightarrow \sum\left[\frac{2\left(b^{2}+c^{2}\right)-4(s-b)(s-c)}{2 b c}\right] \geq \sum \frac{n_{a}}{R} \\
& \Leftrightarrow \sum\left[\frac{2\left(b^{2}+c^{2}\right)-(a+b-c)(c+a-b)}{2 b c}\right] \geq \sum \frac{n_{a}}{R}
\end{aligned}
$$

> ROMANIAN MATHEMATICAL MAGAZINE $\Leftrightarrow \sum\left[\frac{\left(2\left(\boldsymbol{b}^{2}+\boldsymbol{c}^{2}\right)-\boldsymbol{a}^{2}\right)+(\boldsymbol{b}-\boldsymbol{c})^{2}}{2 \boldsymbol{b} \boldsymbol{c}}\right] \geq \sum \frac{n_{a}}{\boldsymbol{R}} \Leftrightarrow \sum\left[\frac{4 \boldsymbol{m}_{a}^{2}+(\boldsymbol{b}-\boldsymbol{c})^{2}}{2 \boldsymbol{b} \boldsymbol{c}}\right]^{(i)} \geq \sum \frac{n_{a}}{\mathbb{R}}$

Now, Stewart's theorem $\Rightarrow b^{2}(s-c)+c^{2}(s-b) \stackrel{(1)}{=} a n_{a}^{2}+a(s-b)(s-c) a n d$,

$$
\begin{gathered}
b^{2}(s-b)+c^{2}(s-c) \stackrel{(2)}{=} a g_{a}^{2}+a(s-b)(s-c) \\
(1)+(2) \Rightarrow\left(b^{2}+c^{2}\right)(2 s-b-c)=a n_{a}^{2}+a g_{a}^{2}+2 a(s-b)(s-c) \\
\Rightarrow 2 a\left(b^{2}+c^{2}\right)=2 a\left(n_{a}^{2}+g_{a}^{2}\right)+a(a+b-c)(c+a-b) \\
\Rightarrow 2\left(b^{2}+c^{2}\right)=2\left(n_{a}^{2}+g_{a}^{2}\right)+a^{2}-(b-c)^{2} \\
\Rightarrow 2\left(b^{2}+c^{2}\right)-a^{2}+(b-c)^{2}=2\left(n_{a}^{2}+g_{a}^{2}\right) \Rightarrow 4 m_{a}^{2}+(b-c)^{2} \stackrel{(3)}{=} 2\left(n_{a}^{2}+g_{a}^{2}\right) \\
(3) \Rightarrow(i) \Leftrightarrow \sum\left(\frac{n_{a}^{2}+g_{a}^{2}}{b c}\right) \stackrel{(i i)}{\geq} \sum \frac{n_{a}}{R} \\
\text { Now, } \frac{b c n_{a}}{R}=2 h_{a} n_{a} \leq 2 g_{a} n_{a} \leq n_{a}^{2}+g_{a}^{2} \Rightarrow \frac{n_{a}^{2}+g_{a}^{2}}{b c} \stackrel{(a)}{\geq} \frac{n_{a}}{R} \\
\text { Similarly, } \frac{n_{b}^{2}+g_{b}^{2}}{c a} \stackrel{(b)}{\geq} \frac{n_{b}}{R} \text { and, } \frac{n_{c}^{2}+g_{c}^{2}}{a b} \stackrel{(c)}{\geq} \frac{n_{c}}{R} \\
\text { (a)+(b)+(c) } \Rightarrow(i i) \Rightarrow(i) \Rightarrow(m) \text { is true }
\end{gathered}
$$

$$
\text { Now, } \frac{r}{\sum h_{a}}\left(5 R-r+\sum n_{a}\right)=\frac{r}{\sum h_{a}}\left(4 R+r+(R-2 r)+\sum n_{a}\right)
$$

$$
\stackrel{\text { Euler }}{\geq} \frac{r}{\sum \boldsymbol{h}_{a}}\left(4 \boldsymbol{R}+r+\sum \boldsymbol{n}_{a}\right)=\frac{r}{\sum \boldsymbol{h}_{a}}\left(\sum r_{a}+\sum \boldsymbol{n}_{a}\right)=\frac{r}{\sum \boldsymbol{h}_{a}}\left(\sum\left(\boldsymbol{r}_{a}+\boldsymbol{n}_{a}\right)\right) \Rightarrow(n) \text { is true }
$$

$$
\text { Again, } \frac{r}{\sum \boldsymbol{h}_{\boldsymbol{a}}}\left(\sum\left(\boldsymbol{r}_{\boldsymbol{a}}+\boldsymbol{n}_{\boldsymbol{a}}\right)\right)=\frac{\boldsymbol{r}}{\sum \boldsymbol{h}_{\boldsymbol{a}}}\left(\sum \boldsymbol{r}_{\boldsymbol{a}}+\sum \boldsymbol{n}_{\boldsymbol{a}}\right) \geq \frac{\boldsymbol{r}}{\sum \boldsymbol{h}_{\boldsymbol{a}}}\left(\sum \boldsymbol{h}_{\boldsymbol{a}}+\sum \boldsymbol{h}_{\boldsymbol{a}}\right)=\mathbf{2 r}
$$

$$
\Rightarrow(p) \text { is true. }
$$

1316. In $\triangle A B C$ the following relationship holds:

$$
\frac{64}{81 r^{2}} \leq \frac{a^{2}+b^{2}+c^{2}}{3 S^{2}}+\frac{1}{\left(m_{a}+m_{b}+m_{c}\right)^{2}}+\sum_{c y c} \frac{1}{\left(m_{a}+m_{b}+m_{c}\right)^{2}} \leq \frac{R^{6}}{81 r^{8}}
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan

Solution by Soumava Chakraborty-Kolkata-India

$$
\frac{64}{81 r^{2}} \stackrel{(1)}{\sim} \frac{\sum a^{2}}{3 S^{2}}+\frac{1}{\left(\sum m_{a}\right)^{2}}+\sum \frac{1}{\left(m_{b}+m_{c}-m_{a}\right)^{2}} \stackrel{(2)}{\sim} \frac{R^{6}}{81 r^{8}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Firstly, for simplicity, let $\Delta=S(=r s)$
Secondly, let $\triangle P Q R$ have sides $\frac{2 m_{a}}{3}, \frac{2 m_{b}}{3}, \frac{2 m_{c}}{3}$. Then, its medians $=$

$$
\begin{gathered}
\frac{a}{2}, \frac{b}{2}, \frac{c}{2} \text { respectively and its area }=\frac{\Delta}{3} \\
\text { Now, } \frac{64}{81}\left(\frac{\sum m_{a}}{\Delta}\right)^{2} \stackrel{(i)}{\sim} \frac{4 \sum m_{a}^{2}}{3 \Delta^{2}}+\frac{4}{\left(\sum a\right)^{2}}+\sum \frac{4}{(b+c-a)^{2}} \\
\Leftrightarrow 64\left(\sum m_{a}\right)^{2} \leq 108\left(\sum m_{a}^{2}\right)+81 r^{2}+81 \sum\left(\frac{\Delta}{s-a}\right)^{2} \Leftrightarrow \\
64\left(\sum m_{a}\right)^{2} \leq 81 \sum a^{2}+81 r^{2}+81 \sum r_{a}^{2} \\
\Leftrightarrow 64\left(\sum m_{a}\right)^{2} \leq 162\left(s^{2}-4 R r-r^{2}\right)+81 r^{2}+81(4 R+r)^{2}-162 s^{2} \\
\Leftrightarrow 64\left(\sum m_{a}\right)^{2} \stackrel{(i i)}{\leq} 81(4 R+r)^{2}+81 r^{2}-162\left(4 R r+r^{2}\right)
\end{gathered}
$$

$$
\text { Now, } 64\left(\sum m_{a}\right)^{2} \leq 64(4 R+r)^{2} \stackrel{\text { ¿ु }}{\leq} 81(4 R+r)^{2}+81 r^{2}-162\left(4 R r+r^{2}\right)
$$

$$
\Leftrightarrow 17(4 R+r)^{2}+81 r^{2}-162\left(4 R r+r^{2}\right) \stackrel{?}{\Perp} 0
$$

$$
\Leftrightarrow(R-2 r)(17 R+2 r) \stackrel{\substack{\text { in }}}{ } 0 \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geqq} 2 r \Rightarrow(i i) \Rightarrow(i) \text { is true }
$$

$$
\text { Now, applying (i) on } \triangle P Q R \text {, we get }: \frac{64}{81}\left(\frac{\frac{\sum a}{2}}{\frac{\Delta}{3}}\right)^{2} \leq
$$

$$
\leq \frac{\left(\frac{4 \sum a^{2}}{4}\right)}{\left(\frac{3 \Delta^{2}}{9}\right)}+\frac{4}{\frac{4\left(\sum m_{a}\right)^{2}}{9}}+\sum \frac{4}{\frac{4\left(m_{b}+m_{c}-m_{a}\right)^{2}}{9}}
$$

$$
\Leftrightarrow \frac{64}{81}\left(\frac{9 s^{2}}{r^{2} s^{2}}\right) \leq \frac{3 \sum a^{2}}{\Delta^{2}}+\frac{9}{\left(\sum m_{a}\right)^{2}}+\sum \frac{9}{\left(m_{b}+m_{c}-m_{a}\right)^{2}} \Rightarrow \frac{64}{81 r^{2}}
$$

$$
\leq \frac{\sum a^{2}}{3 S^{2}}+\frac{1}{\left(\sum m_{a}\right)^{2}}+\sum \frac{1}{\left(m_{b}+m_{c}-m_{a}\right)^{2}} \Rightarrow(1) \text { is true }
$$

$$
\text { Now, } \frac{m_{a} m_{b} m_{c}}{\Delta} \stackrel{(i i i)}{y^{2}} \frac{1}{\Delta^{6}}\left(\frac{a b c}{8}\right)^{3}\left(\frac{\sum a}{2}\right)^{4} \Leftrightarrow \prod m_{a} \leq \frac{s^{4}\left(\frac{4 R \Delta}{8}\right)^{3}}{\Delta^{5}}=\frac{R^{3} s^{4}}{8 r^{2} s^{2}} \Leftrightarrow
$$

$$
\Pi m_{a} \stackrel{(i v)}{\stackrel{m}{\leq}} \frac{R^{3} s^{2}}{8 r^{2}}
$$

\mathbb{R}

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

(iv) \Rightarrow (iii) is true. Now, applying (iii) on $\triangle P Q R$, we get :
$\frac{\left(\frac{\mathbf{a b c}}{8}\right)}{\left(\frac{\Delta}{3}\right)} \leq \frac{3^{6}}{\Delta^{6}}\left(\frac{\frac{8 \mathbf{m}_{\mathrm{a}} \mathbf{m}_{\mathrm{b}} \mathrm{m}_{\mathrm{c}}}{\mathbf{2 7}}}{8}\right)^{3}\left(\frac{\left(\frac{2 \sum \mathrm{~m}_{\mathrm{a}}}{3}\right)}{2}\right)^{4} \Rightarrow \frac{\left(\frac{4 \mathrm{Rrs}}{\mathbf{8}}\right)}{\left(\frac{\mathbf{r s}}{3}\right)} \leq \frac{\left(\prod \mathrm{m}_{\mathrm{a}}\right)^{6}\left(\sum \mathbf{m}_{\mathrm{a}}\right)^{4}}{3^{7} \Delta^{6}}$
$\Rightarrow \mathrm{R} \leq \frac{2\left(\prod \mathrm{~m}_{\mathrm{a}}\right)^{3}\left(\sum \mathrm{~m}_{\mathrm{a}}\right)^{4}}{3^{8} \Delta^{6}} \Rightarrow 16 \mathrm{R}^{2} \leq \frac{64\left(\prod \mathrm{~m}_{\mathrm{a}}\right)^{6}\left(\sum \mathrm{~m}_{\mathrm{a}}\right)^{8}}{\mathbf{9}^{8} \Delta^{12}}$
$\Rightarrow 2\left(s^{2}-4 R r-r^{2}\right)+r^{2}+(4 R+r)^{2}-2 s^{2} \leq \frac{64\left(\prod m_{a}\right)^{6}\left(\sum m_{a}\right)^{8}}{9^{8} \Delta^{12}}$
$\Rightarrow \sum \mathbf{a}^{2}+\mathbf{r}^{2}+\sum \mathbf{r a}_{\mathrm{a}}^{2} \leq \frac{64\left(\prod \mathrm{~m}_{\mathrm{a}}\right)^{6}\left(\sum \mathrm{~m}_{\mathrm{a}}\right)^{8}}{\mathbf{9}^{8} \Delta^{12}} \Rightarrow$
$\Rightarrow \frac{\sum \mathrm{a}^{2}}{\Delta^{2}}+\frac{\mathbf{1}}{\mathbf{s}^{2}}+\left(\frac{\Delta^{2}}{\Delta^{2}}\right) \sum \frac{4}{(\mathrm{~b}+\mathbf{c}-\mathrm{a})^{2}} \leq \frac{64\left(\prod \mathrm{~m}_{\mathrm{a}}\right)^{6}\left(\sum \mathrm{~m}_{\mathrm{a}}\right)^{8}}{\mathbf{9}^{8} \Delta^{14}}$
$\Rightarrow \frac{\frac{4}{3} \sum \mathrm{~m}_{\mathrm{a}}{ }^{2}}{\Delta^{2}}+\frac{\mathbf{4}}{\left(\sum \mathrm{a}\right)^{2}}+\sum \frac{4}{(\mathrm{~b}+\mathbf{c}-\mathrm{a})^{2}} \stackrel{(\mathrm{v})}{\sim} \underset{\sim}{64\left(\prod \mathrm{~m}_{\mathrm{a}}\right)^{6}\left(\sum \mathrm{~m}_{\mathrm{a}}\right)^{8}} \mathbf{9}^{8} \Delta^{14}$
Now, applying (v) on $\triangle P Q R$, we get :

$$
\begin{gathered}
\frac{\frac{4}{12} \sum a^{2}}{\frac{\Delta^{2}}{9}}+\frac{4}{\frac{4\left(\sum m_{a}\right)^{2}}{9}}+\sum \frac{4}{\frac{4\left(m_{b}+m_{c}-m_{a}\right)^{2}}{9}} \leq \frac{64\left(\frac{a b c}{8}\right)^{6}\left(\frac{\sum a}{2}\right)^{8}}{9^{8}\left(\frac{\Delta}{3}\right)^{14}} \\
\Rightarrow \frac{\sum a^{2}}{3 \Delta^{2}}+\frac{1}{\left(\sum m_{a}\right)^{2}}+\sum \frac{1}{\left(m_{b}+m_{c}-m_{a}\right)^{2}} \leq \frac{64 s^{8}}{81 \Delta^{14}}\left(\frac{4 R \Delta}{8}\right)^{6}=\frac{R^{6}}{81 r^{8}} \\
\Rightarrow \frac{\sum a^{2}}{3 S^{2}}+\frac{1}{\left(\sum m_{a}\right)^{2}}+\sum \frac{1}{\left(m_{b}+m_{c}-m_{a}\right)^{2}} \leq \frac{R^{6}}{81 r^{8}} \\
\Rightarrow(2) \text { is true (Proved) }
\end{gathered}
$$

1317. In $\triangle A B C$ the following relationship holds:

$$
\left(\sum_{c y c} m_{a}\right)\left(\sum_{c y c} \sqrt{\frac{s^{2}-r_{b} r_{c}}{h_{b} h_{c}}}\right) \geq 3 \sqrt{2}\left(r_{a}+r_{b}+r_{c}\right)
$$

\mathbb{R}

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \frac{b+c}{2} \geq \sqrt{2 r\left(r_{b}+r_{c}\right)} \Leftrightarrow\left(\frac{b+c}{2}\right)^{2} \geq 2 r^{2} s\left(\frac{1}{s-b}+\frac{1}{s-c}\right) \\
& =\frac{2(s-a)(s-b)(s-c)(2 s-b-c)}{(s-b)(s-c)}=a(b+c-a) \Leftrightarrow \\
& (b+c-a+a)^{2} \geq 4 a(b+c-a) \\
& \rightarrow \text { true } \because(x+a)^{2} \geq 4 x a, \text { where } x=b+c-a \Rightarrow \frac{b+c}{2} \stackrel{(1)}{\geq} \sqrt{2 r\left(r_{b}+r_{c}\right)} \\
& N o w, r_{b}+r_{c}=s\left(\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}+\frac{\sin \frac{C}{2}}{\cos \frac{C}{2}}\right)=\frac{\operatorname{scos} \frac{A}{2} \sin \left(\frac{B+C}{2}\right)}{\prod \cos \frac{A}{2}}=\frac{s \cos ^{2} \frac{A}{2}}{\left(\frac{S}{4 R}\right)}=4 R \cos ^{2} \frac{A}{2} \\
& \text { (2) } \\
& \text { (3) } \\
& \therefore r_{b}+r_{c} \stackrel{(2)}{\cong} 4 R \cos ^{2} \frac{A}{2},(1),(2) \Rightarrow \frac{b+c}{2} \stackrel{(3)}{\geq} \sqrt{8 R r} \cos \frac{A}{2} \text { and analogs }
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{2 R r}\left(3+1+\frac{r}{R}\right) \Rightarrow \sum m_{a} \geq \frac{\sqrt{2 R r}}{R}(4 R+r) \Rightarrow \sum m_{a} \stackrel{(4)}{\geq} \sqrt{\frac{2 r}{R}}\left(\sum r_{a}\right) \\
& \text { Again }, \sum \sqrt{\frac{s^{2}-r_{b} r_{c}}{h_{b} h_{c}}}=\sum \sqrt{\frac{s^{2}-\frac{s(s-a)(s-b)(s-c)}{(s-b)(s-c)}}{\frac{4 r^{2} s^{2}}{b c}}}=\sum \sqrt{\frac{s a b c}{4 r^{2} s^{2}}}=\sum \sqrt{\frac{4 R r s^{2}}{4 r^{2} s^{2}}}= \\
& =3 \sqrt{\frac{R}{r}} \Rightarrow \sum \sqrt{\frac{s^{2}-r_{b} r_{c}}{h_{b} h_{c}}} \stackrel{(5)}{\geq} 3 \sqrt{\frac{R}{r}} \\
& \text { (4) and (5) } \Rightarrow\left(\sum m_{a}\right)\left(\sum \sqrt{\frac{s^{2}-r_{b} r_{c}}{h_{b} h_{c}}}\right) \geq 3 \sqrt{2}\left(\sum r_{a}\right) \text { (Proved) }
\end{aligned}
$$

1318. In acute $\triangle A B C, H$ - orthocenter, the following relationship holds:

$$
\left(A^{2}+B^{2}+C^{2}\right)\left(\frac{a^{5}}{A H}+\frac{b^{5}}{B H}+\frac{c^{5}}{C H}\right) \geq \frac{32 \pi^{2} s^{5}}{243 R}
$$

Proposed by Radu Diaconu-Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by Șerban George Florin-Romania

$$
\begin{gathered}
H^{2}=(A+B+C)^{2} \stackrel{\text { c.B.S. }}{\leq} 3\left(A^{2}+B^{2}+C^{2}\right) \Rightarrow \sum A^{2} \geq \frac{H^{2}}{3} \\
\sum \frac{a^{5}}{A H} \stackrel{\text { Holder }}{\geq} \frac{(a+b+c)^{5}}{3^{5-2} \sum A H}=\frac{2^{5} s^{5}}{27 \sum A H} \\
\Rightarrow\left(\sum A^{2}\right) \cdot\left(\sum \frac{a^{5}}{A H}\right) \geq \frac{H^{2}}{3} \cdot \frac{32 s^{5}}{27 \cdot \sum A H}=\frac{32 s^{5} H^{2}}{81 \sum A H} \\
\sum A H=\sum 2 R \cos A=2 R \sum \cos A=2 R\left(1+\frac{r}{R}\right) \leq 2 R\left(1+\frac{1}{2}\right)=3 R \\
\Rightarrow \sum A H \leq 3 R \Rightarrow\left(\sum A^{2}\right)\left(\sum \frac{a^{5}}{A H}\right) \geq \frac{321^{5} H^{2}}{81 \sum A H} \geq \frac{32 s^{5} H^{2}}{81 \cdot 3 R}=\frac{32 s^{5} H^{2}}{243 R} \text { (true) }
\end{gathered}
$$

1319. In $\triangle A B C$ the following relationship holds:

$$
\left(w_{a}+w_{b}+w_{c}\right)\left(\frac{A}{b+c}+\frac{B}{c+a}+\frac{C}{a+b}\right) \geq \frac{27 \pi r}{4 s}
$$

Proposed by Radu Diaconu - Romania
Solution 1 by Șerban George Florin - Romania

$$
\begin{gathered}
\text { WLOG: } A \leq B \leq C \Rightarrow a \leq b \leq c \Rightarrow b+c \geq a+c \geq a+b \\
\Rightarrow \frac{1}{b+c} \leq \frac{1}{a+c} \leq \frac{1}{a+b} . \text { Applying Cebyshev's inequality } \\
\sum \frac{A}{b+c} \geq \frac{\left(\sum A\right)\left(\sum \frac{1}{b+c}\right)}{3}=\frac{\pi \cdot \sum \frac{1}{b+c}}{3}
\end{gathered}
$$

$$
\sum \frac{1}{b+c} \geq \sum \frac{1^{2}}{b+c} \stackrel{\text { Bergstrom }}{\geq} \frac{(1+1+1)^{2}}{\sum(b+c)}=\frac{9}{4 s} \Rightarrow \sum \frac{A}{b+c} \geq \frac{\pi \cdot \frac{9}{4 s}}{3}=\frac{3 \pi}{4 s}
$$

Applying the following inequality: $w_{a}+w_{b}+w_{c} \geq 9 r$

$$
\Rightarrow\left(\sum w_{a}\right)\left(\sum \frac{A}{b+c}\right) \geq 9 r \cdot \frac{3 \pi}{4 s}=\frac{27 \pi r}{4 s} \text { true } .
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum \frac{A}{b+c}=\sum \frac{A^{2}}{A(b+c)} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum A\right)^{2}}{\sum A(b+c)} \therefore \sum \frac{A}{b+c} \stackrel{\sim}{n}_{\geq}^{(1)} \frac{\pi^{2}}{\sum A(b+c)} \\
\quad \text { Now,WLOG, we may assume } \\
a \geq b \geq c \therefore A \geq B \geq C \text { and }(b+c) \leq(c+a) \leq(a+b)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
\therefore via Chebyshev and using (1), we get : $\sum \frac{A}{b+c} \geq \frac{\pi^{2}}{\frac{1}{3}\left(\sum A\right)\left(\sum(b+c)\right)}=\frac{3 \pi^{2}}{4 s \pi}=\frac{3 \pi}{4 s}$

$$
\therefore \sum w_{a}\left(\sum \frac{A}{b+c}\right) \geq \sum w_{a}\left(\frac{3 \pi}{4 s}\right) \stackrel{?}{2} \frac{27 \pi r}{4 s} \Leftrightarrow \sum w_{a}{\underset{(2)}{?} 9 r}_{\sim}^{2}
$$

$$
\begin{aligned}
& \text { Now, } s^{2} \stackrel{\text { Gerretsen }}{\gtrless} 16 R r-5 r^{2}=14 R r-r^{2}+2 r(R-2 r) \\
& \Rightarrow(3) \Rightarrow(2) \Rightarrow \text { proposed inequality is true (Proved) }
\end{aligned}
$$

1320. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a}}{r_{b}}+\frac{r_{b}}{r_{c}}+\frac{r_{c}}{r_{a}}+\frac{4 r}{R} \geq 5
$$

Proposed by Rahim Shahbazov-Baku-Azerbaijan

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { Let } s-a=x, s-b=y, s-c=z \\
& \therefore 3 s-\sum a=3 s-2 s=s=\sum x \Rightarrow a=y+z, b=z+x, c=x+y \\
& \text { Now, } \sum \frac{r_{a}}{r_{b}}+\frac{4 r}{R}=\sum \frac{s-b}{s-a}+4\left(\frac{\Delta}{s}\right)\left(\frac{4 \Delta}{a b c}\right)=\sum \frac{y}{x}+\frac{16 s(s-a)(s-b)(s-c)}{s a b c} \\
& =\frac{\sum x^{2} y}{x y z}+\frac{16 x y z}{\prod(x+y)}=\frac{\left(\prod(x+y)\right)\left(\sum x^{2} y\right)+16 x^{2} y^{2} z^{2}}{x y z \cdot \prod(x+y)} \geq 5 \\
& \Leftrightarrow\left(\sum x^{2} y\right) \cdot \prod(x+y)+16 x^{2} y^{2} z^{2} \geq 5 x y z \cdot \prod(x+y) \\
& \Leftrightarrow \sum x^{4} y^{2}+\sum x^{3} y^{3}+x y z\left(\sum x^{3}\right)+9 x^{2} y^{2} z^{2} \stackrel{(1)}{\geq} 3 x y z\left(\sum x^{2} y+\sum x y^{2}\right) \\
& \text { Now, } x y z\left(\sum x^{3}\right)+3 x^{2} y^{2} z^{2} \underset{(i)}{\stackrel{\text { schur }}{z}} x y z\left(\sum x^{2} y+\sum x y^{2}\right) \\
& \text { Also, } \sum x^{3} y^{3}+3 x^{2} y^{2} z^{2} \underset{(\text { iii) }}{\stackrel{\text { Schur }}{ }} x y z\left(\sum x^{2} y+\sum x y^{2}\right) \\
& \text { Again, as, } 4+2=3+3 \text { and } 4>3, \therefore(4,2) \succ(3,3) \\
& \Rightarrow \sum x^{4} y^{2} \stackrel{\text { Muirhead }}{\geq} \sum x^{3} y^{3} \Rightarrow \sum x^{4} y^{2}+3 x^{2} y^{2} z^{2}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \geq \sum x^{3} y^{3}+3 x^{2} y^{2} z^{2} \stackrel{\text { Schur }}{\geq} x y z\left(\sum x^{2} y+\sum x y^{2}\right) \\
& \therefore \sum x^{4} y^{2}+3 x^{2} y^{2} z^{2} \stackrel{(i i i)}{\geq} x y z\left(\sum x^{2} y+\sum x y^{2}\right) \\
& \text { (i) }+ \text { (ii) }+ \text { (iii) } \Rightarrow \text { (1) is true } \therefore \sum \frac{r_{a}}{r_{b}}+\frac{4 r}{R} \geq 5 \text { (Proved) }
\end{aligned}
$$

1321. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a} \sqrt{h_{a}}}{w_{a}}+\frac{m_{b} \sqrt{h_{b}}}{w_{b}}+\frac{m_{c} \sqrt{h_{c}}}{w_{c}} \geq s \sqrt{\frac{2}{R}}
$$

Proposed by Bogdan Fuștei - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum \frac{m_{a} \sqrt{h_{a}}}{w_{a}}=\sum \frac{m_{a} \sqrt{\frac{b c}{2 R}}(b+c)}{2 b c \sqrt{\frac{s(s-a)}{b c}}}=\frac{1}{2 \sqrt{2 R}} \sum\left(\frac{m_{a}}{\sqrt{s(s-a)}} \cdot(b+c)\right) \\
\geq \frac{1}{2 \sqrt{2 R}} \sum(b+c)\left(\because m_{a} \geq \sqrt{s(s-a)}\right. \text { and analogs) } \\
=\frac{4 s}{2 \sqrt{2 R}}=s \sqrt{\frac{2}{R}} \text { (Proved) }
\end{gathered}
$$

1322. In $\triangle A B C, n_{a}-$ Nagel's cevian then the following relationship holds:

$$
2+\frac{a^{2}+b^{2}+c^{2}}{4 r^{2}} \geq \frac{4 R}{r}+\sum_{c y c} \frac{n_{a} n_{b}}{h_{a} h_{b}}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { Stewart's theorem } \Rightarrow b^{2}(s-c)+c^{2}(s-b)=a n_{a}^{2}+a(s-b)(s-c) \\
\Rightarrow s\left(b^{2}+c^{2}\right)-b c(2 s-a)=a n_{a}^{2}+a\left(s^{2}-s(2 s-a)+b c\right) \\
\Rightarrow s\left(b^{2}+c^{2}\right)-2 s b c=a n_{a}^{2}+a\left(a s-s^{2}\right) \Rightarrow s\left(b^{2}+c^{2}-a^{2}-2 b c\right)=a n_{a}^{2}-a s^{2} \\
\Rightarrow a n_{a}^{2}=a s^{2}+s(2 b c \cos A-2 b c)=a s^{2}-4 s b c \sin ^{2} \frac{A}{2} \\
=a s^{2}-\frac{4 s b c(s-b)(s-c)}{b c}=a s^{2}-\frac{4 s(s-b)(s-c)(s-a)}{s-a}=a s^{2}-\frac{4 r^{2} s^{2}}{s-a}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\Rightarrow a^{2} n_{a}^{2} \stackrel{(a)}{=} a^{2} s^{2}-4 r^{2} s^{2}\left(\frac{a}{s-a}\right)
$$

Similarly, $b^{2} n_{b} \stackrel{(b)}{=} b^{2} s^{2}-4 r^{2} s^{2}\left(\frac{b}{s-b}\right) a n d, c^{2} n_{c}^{2} \stackrel{(c)}{=} c^{2} s^{2}-4 r^{2} s^{2}\left(\frac{c}{s-c}\right)$

$$
\text { Now, } \sum \frac{n_{a} n_{b}}{h_{a} h_{b}}=\sum \frac{a n_{a} \cdot b n_{b}}{4 r^{2} s^{2}}=\frac{\sum a n_{a} \cdot b n_{b}}{4 r^{2} s^{2}} \leq \frac{\sum a^{2} n_{a}^{2}}{4 r^{2} s^{2}}\left(\because x y+y z+z x \leq \sum x^{2}\right)
$$

$$
\begin{gathered}
\stackrel{\operatorname{by}}{\stackrel{(a)+(b)}{=}+(c)}\left(\frac{1}{4 r^{2} s^{2}}\right) \sum\left(a^{2} s^{2}-4 r^{2} s^{2}\left(\frac{a}{s-a}\right)\right)=\frac{s^{2} \sum a^{2}}{4 r^{2} s^{2}}-\sum\left(\frac{a-s+s}{s-a}\right) \\
=\frac{\sum a^{2}}{4 r^{2}}-\left(-3+\frac{s \sum(s-b)(s-c)}{r^{2} s}\right)=\frac{\sum a^{2}}{4 r^{2}}+3-\frac{\sum\left(s^{2}-s(b+c)+b c\right)}{r^{2}} \\
=\frac{\sum a^{2}}{4 r^{2}}+3-\frac{3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}}{r^{2}}=\frac{\sum a^{2}}{4 r^{2}}+3-\frac{4 R+r}{r} \\
=\frac{\sum a^{2}}{4 r^{2}}+2-\frac{4 R}{r} \Rightarrow 2+\frac{\sum a^{2}}{4 r^{2}} \geq \frac{4 R}{r}+\sum \frac{n_{a} n_{b}}{h_{a} h_{b}} \text { (Proved) }
\end{gathered}
$$

1323. In $\triangle A B C, I$ - incenter, n_{a}-Nagel's cevian the following relationship holds:

$$
\frac{n_{a}+r_{a}}{A I}+\frac{n_{b}+r_{b}}{B I}+\frac{n_{c}+r_{c}}{C I} \leq\left(\sqrt{3}-\sqrt{\frac{r}{R}}\right)\left(1+\frac{4 R}{r}\right)
$$

Proposed by Bogdan Fuștei - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { Stewart's theorem } \Rightarrow b^{2}(s-c)+c^{2}(s-b)=a n_{a}^{2}+a(s-b)(s-c) \\
\Rightarrow s\left(b^{2}+c^{2}\right)-b c(2 s-a)=a n_{a}^{2}+a\left(s^{2}-s(2 s-a)+b c\right) \\
\Rightarrow s\left(b^{2}+c^{2}\right)-2 s b c=a n_{a}^{2}+a\left(a s-s^{2}\right) \Rightarrow s\left(b^{2}+c^{2}-a^{2}-2 b c\right)=a n_{a}^{2}-a s^{2} \\
\Rightarrow a n_{a}^{2}=a s^{2}+s(2 b c \cos A-2 b c)=a s^{2}-4 s b c \sin ^{2} \frac{A}{2} \\
=a s^{2}-\frac{4 s b c(s-b)(s-c)(s-a)}{b c(s-a)}=a s^{2}-\frac{4 \Delta^{2}}{s-a}=a s^{2}-2 a\left(\frac{2 \Delta}{a}\right)\left(\frac{\Delta}{s-a}\right) \\
=a s^{2}-2 a h_{a} n_{a} \Rightarrow n_{a}^{2}=s^{2}-2 h_{a} n_{a} \\
\Rightarrow n_{a}^{2}=s^{2}-\frac{4 r s^{2} \tan \frac{A}{2}}{4 R \tan \frac{A}{2} \cos ^{2} \frac{A}{2}}\left(\because n_{a}=s \tan \frac{A}{2} a n d a=4 R \tan \frac{A}{2} \cos ^{2} \frac{A}{2}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{aligned}
& \text { www.ssmrmh.ro } \\
& \Rightarrow \boldsymbol{n}_{a}^{2} \stackrel{(1)}{=} \boldsymbol{s}^{2}-\frac{r s^{2}}{R \cos ^{2} \frac{2}{2}} . \text { Now, } \frac{n_{a}+r_{a}}{A I}+\sqrt{\frac{r}{R}}\left(\frac{r_{a}}{r}\right) \\
& =\frac{1}{r}\left(n_{a} \sin \frac{A}{2}+n_{a} \sin \frac{A}{2}+\sqrt{\frac{r}{R}} n_{a}\right)\left(\because A I=\frac{r}{\sin \frac{A}{2}}\right) \\
& \stackrel{C B S}{\leq} \frac{\sqrt{3}}{r} \sqrt{n_{a}^{2} \sin ^{2} \frac{A}{2}+r_{a}^{2} \sin ^{2} \frac{A}{2}+\frac{r}{R} r_{a}^{2}} \\
& \stackrel{b y(1)}{=} \frac{\sqrt{3}}{r} \sqrt{s^{2} \sin ^{2} \frac{A}{2}-\frac{r s^{2}}{R}\left(\frac{\sin ^{2} \frac{A}{2}}{\cos ^{2} \frac{A}{2}}\right)+n_{a}^{2} \sin ^{2} \frac{A}{2}+\frac{r}{R} n_{a}^{2}} \\
& =\frac{\sqrt{3}}{r} \sqrt{\sin ^{2} \frac{A}{2}\left(s^{2}+r_{a}^{2}\right)-\frac{r}{R}\left(s \tan \frac{A}{2}\right)^{2}+\frac{r}{R} r_{a}^{2}} \\
& =\frac{\sqrt{3}}{r} \sqrt{\sin ^{2} \frac{A}{2}\left(s^{2}+s^{2} \tan ^{2} \frac{A}{2}\right)-\frac{r}{R} r_{a}^{2}+\frac{r}{R} r_{a}^{2}} \\
& =\frac{\sqrt{3}}{r} \sqrt{s^{2}\left(\frac{\sin ^{2} \frac{A}{2}}{\cos ^{2} \frac{A}{2}}\right)}=\frac{\sqrt{3}}{r}\left(s \tan \frac{A}{2}\right)=\frac{\sqrt{3}}{r} r_{a} \\
& \therefore \frac{\boldsymbol{n}_{a}+\boldsymbol{r}_{a}}{\boldsymbol{A I}}+\sqrt{\frac{r}{R}} \frac{\boldsymbol{r}_{a}}{\boldsymbol{r}} \leq \frac{\sqrt{3}}{\boldsymbol{r}} \boldsymbol{n}_{a} \Rightarrow \frac{\boldsymbol{n}_{a}+\boldsymbol{r}_{a}}{\boldsymbol{A I}} \stackrel{(a)}{\leq}\left(\sqrt{3}-\sqrt{\frac{\boldsymbol{r}}{\boldsymbol{R}}}\right) \boldsymbol{r}_{a}\left(\frac{\mathbf{1}}{\boldsymbol{r}}\right)
\end{aligned}
$$

Similarly, $\frac{n_{b}+r_{b}}{B I} \stackrel{(b)}{\leq}\left(\sqrt{3}-\sqrt{\frac{r}{R}}\right) r_{b}\left(\frac{1}{r}\right)$ and $\frac{n_{c}+r_{c}}{C I} \stackrel{(c)}{\leq}\left(\sqrt{3}-\sqrt{\frac{r}{R}}\right) r_{c} \cdot\left(\frac{1}{r}\right)$

$$
\begin{aligned}
(a)+(b)+(c) \Rightarrow & \sum \frac{n_{a}+r_{a}}{A I} \leq\left(\sqrt{3}-\sqrt{\frac{r}{R}}\right)\left(\frac{\sum n_{a}}{r}\right)=\left(\sqrt{3}-\sqrt{\frac{r}{R}}\right)\left(\frac{4 R+r}{r}\right) \\
& =\left(\sqrt{3}-\sqrt{\frac{r}{R}}\right)\left(1+\frac{4 R}{r}\right) \text { (Proved) }
\end{aligned}
$$

1324. In $\triangle A B C$ the following relationship holds:

$$
\frac{a}{m_{a}}+\frac{b}{m_{b}}+\frac{c}{m_{c}} \leq 2 \sqrt{3\left(\frac{R}{2 r}\right)^{3}}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Marian Ursărescu-Romania
We must show: $\left(\frac{a}{m_{a}}+\frac{b}{m_{b}}+\frac{c}{m_{c}}\right)^{2} \leq \frac{3}{2}\left(\frac{R}{r}\right)^{3}$
From Cauchy's inequality: $\left(\frac{a}{m_{a}}+\frac{b}{m_{b}}+\frac{c}{m_{c}}\right)^{2} \leq 3\left(\frac{a^{2}}{m_{a}^{2}}+\frac{b^{2}}{m_{b}^{2}}+\frac{c^{2}}{m_{c}^{2}}\right)$
From (1)+(2): We must show: $\frac{a^{2}}{m_{a}^{2}}+\frac{b^{2}}{m_{b}^{2}}+\frac{c^{2}}{m_{c}^{2}} \leq \frac{1}{2}\left(\frac{R}{r}\right)^{3}$
But in any $\triangle A B C$ we have: $m_{a} \geq \sqrt{s(s-a)}$; $s=\frac{a+b+c}{2}$

$$
\Rightarrow m_{a}^{2} \geq s(s-a) \text { (4) }
$$

From (3)+(4) we must show: $\frac{1}{s}\left(\frac{a^{2}}{s-a}+\frac{b^{2}}{s-b}+\frac{c^{2}}{s-c}\right) \leq \frac{1}{2}\left(\frac{R}{r}\right)^{3}$

$$
\begin{equation*}
\text { But } \frac{a^{2}}{s-a}+\frac{b^{2}}{s-b}+\frac{c^{2}}{s-c}=\frac{4 s(R-r)}{r} \tag{5}
\end{equation*}
$$

From (5)+(6) we must show: $4\left(\frac{R}{r}-1\right) \leq \frac{1}{2}\left(\frac{R}{r}\right)^{3}$. Let $\frac{R}{r}=x, x \geq 2 \quad$ (Euler)
We must show: $\frac{1}{2} x^{3} \geq 4(x-1) \Leftrightarrow x^{3}-8 x+8 \geq 0 \Leftrightarrow$

$$
(x-2)\left(x^{2}+2 x-4\right) \geq 0, \text { true because } x \geq 2
$$

Solution 2 by Șerban George Florin-Romania

$$
\begin{gathered}
a \leq b \leq c \Rightarrow m_{a} \geq m_{b} \geq m_{c} \text {. Applying Chebyshev's inequality } \\
\Rightarrow 3 \sum_{c y c} \frac{a}{m_{a}} \leq \sum_{c y c} a \cdot \sum_{c y c} \frac{1}{m_{a}} \Rightarrow \sum \frac{a}{m_{a}} \leq \frac{2 s}{3} \cdot \sum \frac{1}{m_{a}} \\
\text { We prove that } \sum \frac{1}{m_{a}} \leq \frac{1}{n},\left(\sum_{c y c} \frac{1}{m_{a}}\right)^{2}=\left(\sum \frac{2}{(b+c) \cos \frac{A}{2}}\right)^{2} \stackrel{{ }_{A M-G M}}{\leq} \\
\left(\left(\sum \frac{2}{2 b c \sqrt{\frac{s(s-a)}{b c}}}\right)^{2}=\frac{1}{s}\left(\sum \frac{1}{s-a}\right)^{2} \stackrel{C B S}{\leq} \frac{3}{s} \sum \frac{1}{s-a}=\frac{3}{s} \cdot \frac{4 R+r}{r s} \leq\right. \\
\leq \frac{1}{r^{2}} \Rightarrow 3(4 R+r) r \leq s^{2} \Rightarrow s^{2} \geq 12 R r+3 r^{2}, \text { applying Gerretsen's inequality } \\
s^{2} \geq 16 R r-5 r^{2} \geq 12 R r+3 r^{2} \Rightarrow 4 R r \geq 8 r^{2} \\
\Rightarrow R \geq 2 r, \text { true (Euler's inequality) } \Rightarrow \sum \frac{1}{m_{a}} \leq \frac{1}{r}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$$
\begin{gathered}
\Rightarrow \sum \frac{a}{m_{a}} \leq \frac{2 s}{3} \sum \frac{1}{m_{a}} \leq \frac{2 s}{3} \cdot \frac{1}{r}=\frac{2 s}{3 r} \leq 2 \sqrt{3\left(\frac{R}{2 r}\right)^{3}} \\
\\
\frac{s}{3 r} \leq \sqrt{3\left(\frac{R}{2 r}\right)^{3}} \Rightarrow \frac{s^{2}}{9 r^{2}} \leq 3 \cdot \frac{R^{3}}{8 r^{3}}, 8 s^{2} r \leq 27 R^{3} \\
s^{2} \leq \frac{27 R^{3}}{8 r}, \text { Applying Mitrinovic's inequality } s \leq \frac{3 \sqrt{3} R}{2} \\
\Rightarrow s^{2} \leq \frac{27 R^{2}}{4} \leq \frac{27 R^{3}}{8 r} \Rightarrow 2 R \leq R, \text { true, Euler's inequality. }
\end{gathered}
$$

Solution 3 by Avishek Mitra-West Bengal-India

$$
\begin{gathered}
\Leftrightarrow\left(\sum \frac{a}{m_{a}}\right)^{2} \stackrel{\text { CBS }}{\leq}\left(\sum a^{2}\right)\left(\sum \frac{1}{m_{a}^{2}}\right) \\
\Rightarrow \Omega^{2} \stackrel{\text { Leibnitz }}{\leq} 9 R^{2}\left(\sum \frac{1}{m_{a}^{2}}\right)^{m_{a} \geq \sqrt{s(s-a)}} \leq 9 R^{2}\left(\sum \frac{1}{s(s-a)}\right) \\
\Rightarrow \Omega^{2} \leq 9 R^{2} \cdot \frac{1}{s}\left(\frac{\sum r_{a}}{\Delta}\right)=\frac{9 R^{2}(4 R+r)}{s^{2} r} \\
\Leftrightarrow \text { Given } \Omega=\sum \frac{a}{m_{a}} \leq 2 \sqrt{3\left(\frac{R}{2 r}\right)^{3}} \Rightarrow\left(\sum \frac{a}{m_{a}}\right)^{2} \leq \frac{12 R^{3}}{8 r^{3}} \\
\Leftrightarrow \text { Need to show } \frac{9 R^{2}(4 R+r)}{s^{2} r} \leq \frac{12 R^{3}}{8 r^{3}} \Rightarrow \frac{4 R+r}{s^{2}} \leq \frac{R}{6 r^{2}} \\
\Leftrightarrow \frac{9 R}{2 s^{2}} \leq \frac{R}{6 r^{2}} \Rightarrow s^{2} \geq 27 r^{2} \Rightarrow s \stackrel{4 R+r}{s^{2}} \leq \frac{s^{2}}{\leq}=\frac{9 R}{2 s^{2}} \\
\Leftrightarrow \frac{a}{m_{a}}+\frac{b}{m_{b}}+\frac{c}{m_{c}} \leq 2 \sqrt{3\left(\frac{R}{2 r}\right)^{3}} \\
\text { (Proved) }
\end{gathered}
$$

1325. If in $\triangle A B C, R_{a}, R_{b}, R_{c}$-are circumradii of
$B I C, \triangle C I A, \triangle A I B, I$-incenter then the following relationship holds:

$$
\sum_{c y c}\left(h_{a}-2 r\right) \sqrt{\frac{R_{a}}{A I}} \leq(R+r) \sqrt{\frac{2 r}{R}}
$$

\mathbb{R}

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India

$$
\angle \mathrm{BIC}=\pi-\left(\frac{\mathrm{B}+\mathbf{C}}{2}\right)=\pi-\left(\frac{\pi-\mathbf{A}}{2}\right)=\frac{\pi}{2}+\frac{\mathbf{A}}{2}
$$

Using sine rule on $\triangle B I C, 2 R_{a} \sin \left(\frac{\pi}{2}+\frac{A}{2}\right)=4 R \sin \frac{A}{2} \cos \frac{A}{2} \Rightarrow R_{a} \stackrel{(a)}{=} 2 R \sin \frac{A}{2}$

$$
\begin{gathered}
\text { Similarly, } \mathrm{R}_{\mathrm{b}} \stackrel{(\mathrm{~m})}{\leftrightarrows} 2 R \sin \frac{B}{2} \text { and } \mathrm{R}_{\mathrm{c}} \stackrel{(c)}{=} 2 R \sin \frac{C}{2} \\
\text { Also, } \mathrm{b}+\mathrm{c}-\mathrm{a}=4 \mathrm{R} \cos \frac{A}{2} \cos \frac{B-C}{2}-4 R \sin \frac{A}{2} \cos \frac{A}{2}= \\
4 R \cos \frac{A}{2}\left(\cos \frac{B-C}{2}-\cos \frac{B+C}{2}\right)=8 R \cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \Rightarrow \\
\Rightarrow s-a \stackrel{\text { (i) }}{=} 4 R \cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
\end{gathered}
$$

Similarly, $s-b \stackrel{(\text { (ii) }}{=} 4 R \cos \frac{B}{2} \sin \frac{C}{2} \sin \frac{A}{2}$ and $s-c \stackrel{\text { (iii) }}{=} 4 R \cos \frac{C}{2} \sin \frac{A}{2} \sin \frac{B}{2}$

$$
\begin{aligned}
& U \operatorname{sing}(\mathbf{a}),(\mathbf{b}),(\mathbf{c}), \sum\left(\mathbf{h}_{\mathrm{a}}-2 \mathrm{r}\right) \sqrt{\frac{\mathbf{R}_{\mathrm{a}}}{\mathrm{AI}}}=\sum\left(\frac{2 \mathrm{rs}}{\mathrm{a}}-2 \mathrm{r}\right) \sqrt{\frac{2 \operatorname{Rsin}^{2} \frac{\mathbf{A}}{\mathbf{2}}}{\mathrm{r}}}= \\
& =2 r \sqrt{\frac{2 R}{r}} \Sigma\left(\frac{s-a}{a} \sin \frac{A}{2}\right) \stackrel{\text { by (i),(ii),(iii) }}{=} 2 r \sqrt{\frac{2 R}{r}} \sum\left(\frac{4 R \cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{4 R \sin \frac{A}{2} \cos \frac{A}{2}} \sin \frac{A}{2}\right) \\
& =2 r \sqrt{\frac{2 R}{r}}\left(\frac{r}{4 R}\right) \sum \operatorname{cosec} \frac{A}{2}=\sqrt{\frac{2 R}{r}}\left(\frac{r^{2}}{2 R}\right) \sum \sqrt{\frac{b c(s-a)}{(s-a)(s-b)(s-c)}}= \\
& =\sqrt{\frac{2 R}{\mathbf{r s}}}\left(\frac{\mathbf{r}}{2 \mathrm{R}}\right) \sum \sqrt{\mathbf{b c}(\mathbf{s}-\mathbf{a})} \stackrel{\mathrm{CBS}}{\stackrel{\text { CB }}{\leq}} \sqrt{\frac{2 R}{\mathrm{rs}}}\left(\frac{\mathbf{r}}{2 \mathrm{R}}\right) \sqrt{\sum \mathbf{a b}} \sqrt{\sum(\mathbf{s}-\mathbf{a})}= \\
& =\sqrt{\frac{2 R}{r}}\left(\frac{\mathbf{r}}{2 \mathbf{R}}\right) \sqrt{\mathbf{s}^{2}+4 \mathbf{R r}+\mathbf{r}^{2}}
\end{aligned}
$$

$\stackrel{\text { Gerretsen }}{\sim} \sqrt{\frac{r}{2 R}} \sqrt{4 R^{2}+8 R r+4 r^{2}}=2(R+r) \sqrt{\frac{r}{2 R}}=(r+R) \sqrt{\frac{2 r}{R}}$ (Proved)

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

1326. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a}^{2}}{r_{b}^{2}}+\frac{r_{b}^{2}}{r_{c}^{2}}+\frac{r_{c}^{2}}{r_{a}^{2}}+\frac{2 n r}{R} \geq n+3, n \leq 4
$$

Proposed by Marin Chirciu - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\text { We shall first prove : } \sum \frac{\mathbf{r}_{a}^{2}}{\mathbf{r}_{b}^{2}}+\frac{8 r^{(a)}}{\mathrm{R}} \stackrel{\text { n }}{\geqq} 7
$$

Proof:Let $\mathrm{s}-\mathrm{a}=\mathrm{x}, \mathrm{s}-\mathrm{b}=\mathrm{y}, \mathrm{s}-\mathrm{c}=\mathrm{z}$

$$
\therefore 3 s-2 s=s=\sum x \Rightarrow \mathbf{a}=\mathbf{y}+\mathbf{z}, \mathbf{b}=\mathbf{z}+\mathbf{x}, \mathbf{c}=\mathbf{x}+\mathbf{y}
$$

$$
\text { Now, }(a) \Leftrightarrow \sum\left(\frac{s-b}{s-a}\right)^{2}+8\left(\frac{\Delta}{s}\right)\left(\frac{4 \Delta}{a b c}\right) \geq 7
$$

$$
\begin{aligned}
& \text { via above transformation } \sum \frac{\mathbf{y}^{2}}{\mathbf{x}^{2}}+\frac{32 s(s-a)(s-b)(s-c)}{s \prod(x+y)} \geq 7 \Leftrightarrow \sum \frac{\mathbf{y}^{2}}{x^{2}}+\frac{32 x y z}{\prod(x+y)} \geq 7 \\
& \Leftrightarrow \sum \frac{\mathbf{y}^{2}}{\mathbf{x}^{2}}+3+\frac{32 x y z}{\prod(x+y)} \geq 10 \Leftrightarrow \sum \frac{\mathbf{y}^{2}+x^{2}}{\mathbf{x}^{2}}+\frac{32 x y z}{\prod(x+y)} \stackrel{(1)}{\geq} 10 \\
& \text { Now, } \sum \frac{\mathrm{y}^{2}+\mathrm{x}^{2}}{\mathrm{x}^{2}}+\frac{32 \mathrm{xyz}}{\prod(\mathrm{x}+\mathrm{y})}=\sum \frac{\mathrm{y}^{2}+\mathrm{x}^{2}}{\mathrm{x}^{2}}+\frac{16 \mathrm{xyz}}{\prod(\mathrm{x}+\mathrm{y})}+\frac{16 \mathrm{xyz}}{\prod(\mathrm{x}+\mathrm{y})} \stackrel{\mathrm{A}-\mathrm{G}}{\stackrel{\sim}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow(1) \Rightarrow(a) \text { is true } \\
& \text { Now, } \sum \frac{\mathbf{r}_{\mathbf{a}}^{2}}{\mathbf{r}_{\mathbf{b}}^{2}}+\frac{2 \mathrm{nr}}{\mathbf{R}}=\sum \frac{\mathbf{r}_{\mathbf{a}}^{2}}{\mathbf{r}_{\mathbf{b}}^{2}}+\frac{(2 \mathrm{n}-8+8) \mathbf{r}}{\mathbf{R}}=
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \frac{(2 n-8) r}{R} \stackrel{?}{\dot{?}} n-4 \Leftrightarrow(n-4)\left(\frac{2 r}{R}-1\right) \stackrel{?}{n} 0 \\
& \rightarrow \text { true } \because(n-4),\left(\frac{2 r}{R}-1\right) \leq 0\left(\because \frac{2 r}{R} \stackrel{\text { Euler }}{\stackrel{\sim}{s}} 1\right) \Rightarrow(n-4)\left(\frac{2 r}{R}-1\right) \geq 0
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\therefore \sum \frac{\mathbf{r a}_{\mathbf{a}}^{2}}{\mathbf{r}_{\mathbf{b}}^{2}}+\frac{2 \mathrm{nr}}{\mathbf{R}} \geq \mathbf{n}+3 \forall \mathbf{n} \leq 4$ (Proved)
1327. In $\triangle A B C$ the following relationship holds:

$$
8 \leq \frac{\left(b^{3}+c^{3}\right)\left(c^{3}+a^{3}\right)\left(a^{3}+b^{3}\right)}{a^{3} b^{3} c^{3}} \leq \frac{1}{8}\left(\frac{R}{r}\right)^{6}
$$

Proposed by Marin Chirciu - Romania
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \frac{\Pi\left(b^{3}+c^{3}\right)}{a^{3} b^{3} c^{3}}=\frac{\Pi(b+c) \cdot \Pi\left(b^{2}+c^{2}-b c\right)}{a^{3} b^{3} c^{3}} \\
& \stackrel{G \leq A}{\leq} \frac{2 s\left(s^{2}+2 R r+r^{2}\right)}{4 R r s \cdot 16 R^{2} r^{2} s^{2}} \cdot \frac{\left(2 \sum a^{3}-2 \sum a b\right)^{3}}{27} \\
& \stackrel{\text { Gerretsen }}{\leq} \frac{\left(4 R^{2}+6 R r+4 r^{2}\right)}{2 R r} \cdot \frac{\left(4\left(s^{2}-4 R r-r^{2}\right)-s^{2}-4 R r-r^{2}\right)^{3}}{27 \cdot 16 R^{2} r^{2} s^{2}} \\
& =\frac{\left(2 R^{2}+3 R r+2 r^{2}\right)}{R r} \cdot \frac{\left(3 s^{2}-20 R r-5 r^{2}\right)^{3}}{27 \cdot 16 R^{2} r^{2} s^{2}} \\
& \underset{\leq}{\text { Gerretsen }} \frac{\left(2 R^{2}+3 R r+2 r^{2}\right)}{R r} \cdot \frac{\left(12 R^{2}-8 R r+4 r^{2}\right)^{3}}{27 \cdot 16 R^{2} r^{2}\left(16 R r-5 r^{2}\right)} \\
& =\frac{4\left(2 R^{2}+3 R r+2 r^{2}\right)\left(3 R^{2}-2 R r+r^{2}\right)^{3}}{27 R^{3} r^{4}(16 R-5 r)} \stackrel{?}{\leq} \frac{1}{8}\left(\frac{R}{r}\right)^{6} \\
& \Leftrightarrow 27 R^{9}(16 R-5 r) \stackrel{?}{\geq} 32\left(2 R^{2}+3 R r+2 r^{2}\right)\left(3 R^{2}-2 R r+r^{2}\right)^{3} r^{2} \\
& \Leftrightarrow 432 t^{10}-135 t^{9}-1728 t^{8}+864 t^{7}-576 t^{6}+224 t^{5}- \\
& -1152 t^{4}+1184 t^{3}-832 t^{2}+288 t-64 \stackrel{?}{\geq} 0 \quad\left(t=\frac{R}{r}\right) \\
& \Leftrightarrow(t-2)\left[\begin{array}{c}
(t-2)\left(432 t^{8}+1593 t^{7}+2916 t^{6}+6156 t^{5}\right. \\
+12384 t^{4}+25136 t^{3}+49856 t^{2}+100064 t+ \\
+200000)+4000032
\end{array}\right] \stackrel{?}{\geq} 0 \\
& \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow \frac{\Pi\left(b^{3}+c^{3}\right)}{a^{3} b^{3} c^{3}} \leq \frac{1}{8}\left(\frac{R}{r}\right)^{6} \\
& \text { Also, } \frac{\Pi\left(b^{3}+c^{3}\right)}{a^{3} b^{3} c^{3}} \stackrel{\text { Cesaro }}{\geq} 8 \text { (Hence proved) }
\end{aligned}
$$

Solution 2 by Boris Colakovic-Belgrade-Serbie

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$a^{3}+b^{3} \geq a b(a+b) \geq 2 a b \sqrt{a b}$
$b^{3}+c^{3} \geq b c(b+c) \geq 2 b c \sqrt{b c}$
$c^{3}+a^{3} \geq c a(c+a) \geq 2 c a \sqrt{c a}$
$\left(a^{3}+b^{3}\right)\left(b^{3}+c^{3}\right)\left(c^{3}+a^{3}\right) \geq 8 a^{2} b^{2} c^{2} \cdot a b c=8 a^{3} b^{3} c^{3}$
$\frac{\left(a^{3}+b^{3}\right)\left(b^{3}+c^{3}\right)\left(c^{3}+a^{3}\right)}{a^{3} b^{3} c^{3}} \geq 8$
$\frac{\left(a^{3}+b^{3}\right)\left(b^{3}+c^{3}\right)\left(c^{3}+a^{3}\right)}{a^{3} b^{3} c^{3}} \leq \frac{8}{27}\left(\frac{a^{3}+b^{3}+c^{3}}{a b c}\right)^{3}=\frac{64}{27} \cdot \frac{1}{64}\left(\frac{s^{3}-3 r^{2} s-6 R r s}{R r s}\right)^{3}=$ $=\frac{1}{27}\left(\frac{s^{2}-3 r^{2}-6 R r}{R r}\right)^{3} \stackrel{\text { Gerretsen }}{\leq} \frac{1}{27}\left(\frac{4 R^{2}+4 R r+3 r^{2}-3 r^{2}-6 R r}{R r}\right)^{3}=\frac{8}{27}\left(\frac{2 R-r}{r}\right)^{3}=$

Now, is $\frac{8}{27}\left(\frac{2 R r}{r}\right)^{3} \leq \frac{1}{8}\left(\frac{R}{r}\right)^{6} \Leftrightarrow 3 R^{2}-8 R r+4 r^{2} \geq 0 \Leftrightarrow(R-2 r)(3 R-2 r) \geq 0$ $\Rightarrow R \geq 2 r$ (Euler)
1328. In $\triangle A B C$ the following relationship holds:

$$
2\left(\frac{m_{a}^{5}}{m_{b}^{3}}+\frac{m_{b}^{5}}{m_{c}^{3}}+\frac{m_{c}^{5}}{m_{a}^{3}}\right) \geq s^{2}+3 r^{2}+12 R r
$$

Proposed by Mokhtar Khassani-Mostaganem-Algerie

Solution 1 by Marian Ursărescu-Romania

$$
\begin{align*}
& \text { First, we want to show: } \frac{x^{5}}{y^{3}}+\frac{y^{5}}{z^{3}}+\frac{z^{5}}{x^{3}} \geq x^{2}+y^{2}+z^{2} \Leftrightarrow \\
& \qquad x^{8} z^{3}+y^{8} x^{3}+z^{8} y^{3} \geq x^{3} y^{3} z^{3}\left(x^{2}+y^{2}+z^{2}\right) \text { (1) } \tag{1}
\end{align*}
$$

From inequality of weighted means we have:

$$
\begin{equation*}
\frac{275}{539} x^{8} z^{3}+\frac{165}{539} y^{8} x^{3}+\frac{99}{539} z^{8} y^{3} \geq \sqrt[539]{\left(x^{8} z^{3}\right)^{275} \cdot\left(y^{8} x^{3}\right)^{165} \cdot\left(z^{8} y^{3}\right)^{99}}=x^{5} y^{3} z^{3} \tag{2}
\end{equation*}
$$

By permutation we have:

$$
\begin{align*}
& \frac{275}{539} y^{8} x^{3}+\frac{165}{539} z^{8} y^{3}+\frac{99}{539} x^{8} z^{3} \geq x^{3} y^{5} z^{3} \tag{3}\\
& \frac{275}{539} z^{8} y^{3}+\frac{165}{539} x^{8} z^{3}+\frac{99}{539} y^{8} x^{3} \geq x^{3} y^{3} z^{5} \tag{4}\\
& \text { (4) } \\
& \quad x^{8} z^{3}+y^{8} z^{3}+z^{8} x^{3} \geq x^{3} y^{3} z^{3}\left(x^{2}+y^{2}+z^{2}\right)
\end{align*}
$$

Now, in our case $x=m_{a}, y=m_{b}, z=m_{c} \Rightarrow$ from (1) \Rightarrow

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{align*}
& 2\left(\frac{m_{a}^{5}}{m_{b}^{3}}+\frac{m_{b}^{5}}{m_{c}^{3}}+\frac{m_{c}^{5}}{m_{a}^{3}}\right) \geq 2\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right) \tag{5}\\
& \text { But } m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right) \tag{6}
\end{align*}
$$

From (5) $+(6) \Rightarrow$

$$
\begin{equation*}
2\left(\frac{m_{a}^{5}}{m_{b}^{3}}+\frac{m_{b}^{5}}{m_{c}^{3}}+\frac{m_{c}^{5}}{m_{a}^{3}}\right) \geq \frac{3}{2}\left(a^{2}+b^{2}+c^{2}\right) \tag{7}
\end{equation*}
$$

$$
\text { But } a^{2}+b^{2}+c^{2}=2\left(s^{2}-r^{2}-4 R r\right)(8)
$$

From $(7)+(8) \Rightarrow 2\left(\frac{m_{a}^{5}}{m_{b}^{3}}+\frac{m_{b}^{5}}{m_{c}^{3}}+\frac{m_{c}^{5}}{m_{a}^{3}}\right) \geq 3\left(s^{2}-r^{2}-4 R r\right) \Rightarrow$ we must show:

$$
3 s^{2}-3 r^{2}-12 R r \geq s^{2}+3 r^{2}+12 R r \Leftrightarrow
$$

$2 s^{2} \geq 24 R r+6 r^{2} \Leftrightarrow s^{2} \geq 12 R r+3 r^{2}$, inequality which it is true, because it is

Carlitz inequality.

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \mathbf{2}\left(\frac{m_{a}^{5}}{m_{b}^{3}}+\frac{m_{b}^{5}}{m_{c}^{3}}+\frac{m_{c}^{5}}{m_{a}^{3}}\right) \stackrel{(1)}{\geq} s^{2}+3 r^{2}+12 R r \\
& s^{2} \stackrel{\text { Gerretsen }}{\geq} 16 R r-5 r^{2} \stackrel{?}{\geq} 12 R r+3 r^{2} \\
& \Leftrightarrow 4 R r \stackrel{?}{\geq} 8 r^{2} \Leftrightarrow R \stackrel{?}{\otimes} 2 r \rightarrow \text { true (Euler) }
\end{aligned}
$$

$$
\therefore 12 R r+3 r^{2} \leq s^{2} \Rightarrow s^{2}+3 r^{2}+12 R r \stackrel{(i)}{\leq} 2 s^{2}
$$

(i) \Rightarrow in order to prove (1), it suffices to prove: $\sum \frac{m_{a}^{5}}{m_{b}^{3}} \stackrel{(2)}{\geq} s^{2}$

$$
\text { We shall now prove: } \sum \frac{a^{5}}{b^{3}} \stackrel{(i i)}{\geq} \frac{4}{3} \sum m_{a}^{2}
$$

$$
(i i) \Leftrightarrow \sum \frac{a^{5}}{b^{3}} \stackrel{(i i i)}{\geq} \frac{4}{3} \cdot \frac{3}{4} \sum a^{2}=\sum a^{2}
$$

$$
\text { Now, } \sum \frac{a^{5}}{b^{3}}=\sum \frac{a^{6}}{a b^{3}} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum a^{3}\right)^{2}}{\sum a b^{3}} \stackrel{?}{\geq} \sum a^{2}
$$

$$
\Leftrightarrow \sum a^{6}+\sum a^{3} b^{3} \underset{(\overline{i v})}{(1)} \sum a b^{5}+a b c\left(\sum a^{2} b\right)
$$

$$
\because 6+0=1+5 \text { and } 6>1, \therefore(6,0)>(1,5)
$$

$$
\therefore \sum a^{6} \underset{(a)}{\text { Muirhead }} \sum a b^{5}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\text { Also, } \because x^{3}+y^{3}+z^{3} \geq \sum x y^{2}
$$

$$
\therefore \sum a^{3} b^{3} \geq \sum a b\left(b^{2} c^{2}\right)=\sum a b^{3} c^{2}=a b c\left(\sum b^{2} c\right) \Rightarrow \sum a^{3} b^{3} \stackrel{(b)}{\geq} a b c\left(\sum a^{2} b\right)
$$

$$
(a)+(b) \Rightarrow(i v) \Rightarrow(i i i) \Rightarrow(i i) \text { is true. }
$$

Applying (ii) on a triangle with sides $\frac{2 m_{a}}{3}, \frac{2 m_{b}}{3}, \frac{2 m_{c}}{3}$ whose medians will of course be

$$
\begin{gathered}
\frac{a}{2}, \frac{b}{2}, \frac{c}{2} \text { we get, } \sum \frac{\left(\frac{2}{3} m_{a}\right)^{5}}{\left(\frac{2}{3} m_{b}\right)^{3}} \geq \frac{4}{3} \sum\left(\frac{a}{2}\right)^{2} \Rightarrow \frac{4}{9} \sum \frac{m_{a}^{5}}{m_{b}^{3}} \geq \frac{1}{3} \sum a^{2} \\
\Rightarrow \sum \frac{m_{a}^{5}}{m_{b}^{3}} \geq \frac{1}{4} \cdot 3 \sum a^{2} \geq \frac{1}{4}\left(\sum a\right)^{2}=\frac{4 s^{2}}{4}=s^{2} \Rightarrow \text { (2) } \Rightarrow \text { (1) is true (Proved) }
\end{gathered}
$$

1329. In $\triangle A B C, H$ - orthocenter the following relationship holds:

$$
A H \cdot C H^{3}+B H \cdot A H^{3}+C H \cdot B H^{3} \leq \frac{16}{3}\left(4 R^{2}-13 r^{2}\right)^{2}
$$

Proposed by Marian Ursărescu-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
A H=2 R|\cos A| \text { and analogs. Now, } A H \cdot C H^{3}=16 R^{4}|\cos A||\cos C|^{3} \\
=16 R^{4}|\cos A||\cos C| \cos ^{2} C \stackrel{(i)}{\leq} \frac{16 R^{4}}{2}\left(\cos ^{2} A+\cos ^{2} C\right) \cos ^{2} C \\
=8 R^{4}\left(\cos ^{2} A \cos ^{2} C+\cos ^{4} C\right) \\
\text { Similarly, } B H \cdot A H^{3} \stackrel{(i i)}{\leq} 8 R^{4}\left(\cos ^{2} B \cos ^{2} A+\cos ^{4} A\right) \text { and } \\
C H \cdot B H^{3} \stackrel{(i i i)}{\leq} 8 R^{4}\left(\cos ^{2} C \cos ^{2} B+\cos ^{4} B\right) \\
=\sum\left(1-\sin ^{2} B-\sin ^{2} C+\sin ^{2} B \sin ^{2} C\right)=3-2 \sum \frac{(1)}{4 R^{2}}+\frac{1}{16 R^{4}} \sum b^{2} c^{2} \\
\text { (i) }+(i i)+(i i i) \Rightarrow L H S \stackrel{4}{\leq}\left(\sum \cos ^{2} B \cos ^{2} C+\sum \cos ^{4} A\right) \\
\text { Now, } \sum \cos ^{2} C \cos ^{2} B=\sum\left(1-\sin ^{2} B\right)\left(1-\sin ^{2} C\right)= \\
\stackrel{(a)}{=} 3-\frac{\sum a^{2}}{2 R^{2}}+\frac{\sum b^{2} c^{2}}{16 R^{4}} \\
\text { Again, } \sum \cos ^{4} A=\sum\left(1-\sin ^{2} A\right)^{2}=\sum\left(1+\sin ^{4} A-2 \sin ^{2} A\right)
\end{gathered}
$$

$$
\stackrel{(b)}{=} 3+\frac{\sum a^{4}}{16 R^{4}}-\frac{\sum a^{2}}{2 R^{2}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\text { (a), (b), (1) } \Rightarrow L H S \stackrel{(m)}{\leq} 8 R^{4}\left(6+\frac{\sum a^{4}+\sum a^{2} b^{2}}{16 R^{4}}-\frac{\sum a^{2}}{R^{2}}\right) \\
=48 R^{4}+\frac{\sum a^{4}+\sum a^{2} b^{2}}{2}-8 R^{2} \sum a^{2} \leq \frac{16}{3}\left(4 R^{2}-13 r^{2}\right)^{2} \\
\Leftrightarrow 288 R^{4}-48 R^{2} \sum a^{2}+3\left(\sum a^{4}+\sum a^{2} b^{2}\right) \frac{?}{\overline{(2)}} 32\left(4 R^{2}-13 r^{2}\right)^{2} \\
\text { Now, } \sum a^{4}+\sum a^{2} b^{2}=\left(\sum a^{2}\right)^{2}-\sum a^{2} b^{2} \\
=4\left(s^{2}-4 R r-r^{2}\right)^{2}-\left\{\left(s^{2}+4 R r+r^{2}\right)^{2}-2 a b c(2 s)\right\} \\
=4\left(s^{2}-4 R r-r^{2}\right)^{2}-\left(s^{2}+4 R r+r^{2}\right)^{2}-16 R r s^{2} \\
=3 s^{4}-s^{2}\left(24 R r+10 r^{2}\right)+3 r^{2}(4 R+r)^{2}
\end{gathered}
$$

$$
\underset{(\overline{i v})}{\operatorname{Gerretsen}} 3 s^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)-s^{2}\left(24 R r+10 r^{2}\right)+3 r^{2}(4 R+r)^{2}
$$

$$
=s^{2}\left(12 R^{2}-12 R r-r^{2}\right)+3 r^{2}(4 R+r)^{2}
$$

$$
(i v) \Rightarrow L H S \text { of }(2) \leq 288 R^{4}-96 R^{2}\left(s^{2}-4 R r-r^{2}\right)+
$$

$$
+s^{2}\left(36 R^{2}-36 R r-3 r^{2}\right)+9 r^{2}(4 R+r)^{2} \stackrel{?}{\leq} 32\left(4 R^{2}-13 r^{2}\right)^{2}
$$

$$
\Leftrightarrow 288 R^{4}+96 R^{2}\left(4 R r+r^{2}\right)+9 r^{2}(4 R+r)^{2}
$$

$$
\underset{(3)}{\stackrel{?}{<}} 32\left(4 R^{2}-13 r^{2}\right)^{2}+s^{2}\left(60 R^{2}+36 R r+3 r^{2}\right)
$$

Now, RHS of $(3) \geq 32\left(4 R^{2}-13 r^{2}\right)^{2}+\left(16 R r-5 r^{2}\right)\left(60 R^{2}+36 R r+3 r^{2}\right)$

$$
\begin{gathered}
\stackrel{?}{\geq} 288 R^{4}+96 R^{2}\left(4 R r+r^{2}\right)+9 r^{2}(4 R+r)^{2} \\
\Leftrightarrow \\
\hline
\end{gathered} 6^{4}+144 t^{3}-823 t^{2}-51 t+1346 \stackrel{?}{\geq} 0\left(t=\frac{R}{t}\right) .
$$

\rightarrow true $\because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(3) \Rightarrow(2)$ is true and $\therefore(m) \Rightarrow L H S \leq \frac{16}{3}\left(4 R^{2}-13 r^{2}\right)^{2} \quad$ (Proved) 1330. In $\triangle A B C$ the following relationship holds:

$$
\left(\sum r_{a} r_{b}\right)\left(\sum\left(r_{a}+r_{b}\right)^{2}\left(r_{a}+r_{c}\right)^{2}\right) \geq\left(\prod\left(r_{a}+r_{b}\right)^{2}\right)\left(\sum \cos ^{2}\left(\frac{A}{2}\right)\right)
$$

Proposed by Mokhtar Khassani-Mostaganem-Algerie
Solution by Soumava Chakraborty-Kolkata-India

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\left(\sum r_{a} r_{b}\right)\left(\sum\left(r_{a}+r_{b}\right)^{2}\left(r_{a}+r_{c}\right)^{2}\right) \stackrel{(1)}{\geq}\left(\prod\left(r_{a}+r_{b}\right)^{2}\right)\left(\sum \cos ^{2}\left(\frac{A}{2}\right)\right) \\
r_{b}+r_{c}=s\left(\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}+\frac{\sin \frac{C}{2}}{\cos \frac{C}{2}}\right)=\frac{s \sin \left(\frac{B+C}{2}\right) \cos \frac{A}{2}}{\cos \frac{B}{2} \cos \frac{C}{2} \cos \frac{A}{2}}=\left(\frac{s}{\frac{s}{4 R}}\right) \cos ^{2} \frac{A}{2}=4 R \cos ^{2} \frac{A}{2} \\
\therefore r_{b}+r_{c} \stackrel{(a)}{=} 4 R \cos ^{2} \frac{A}{2} \text { and analogs }
\end{gathered}
$$

$$
\text { Now, LHS of }(1)=s^{2} \cdot \sum\left(r_{a}^{2}+\sum r_{a} r_{b}\right)^{2}=s^{2} \sum\left(s^{2} \tan ^{2} \frac{A}{2}+s^{2}\right)^{2} \stackrel{(i)}{=} s^{6} \sum \sec ^{4} \frac{A}{2}
$$

Using (a) and its analogs, RHS of (1)

$$
\begin{gathered}
=\prod\left(16 R^{2} \cos ^{4} \frac{A}{2}\right) \sum \cos ^{2} \frac{A}{2} \\
=16^{3} R^{6}\left(\frac{s}{4 R}\right)^{4}\left(\sum \cos ^{2} \frac{A}{2}\right) \stackrel{(i i)}{=} 16 R^{2} s^{4}\left(\sum \cos ^{2} \frac{A}{2}\right) \\
\text { (i), (ii) } \Rightarrow(1) \Leftrightarrow\left(\frac{s}{4 R}\right)^{2} \sum \sec ^{4} \frac{A}{2} \geq \sum \cos ^{2} \frac{A}{2} \\
\Leftrightarrow\left(\prod \cos ^{2} \frac{A}{2}\right) \sum \sec ^{4} \frac{A}{2} \geq \sum \cos ^{2} \frac{A}{2} \Leftrightarrow \sum \sec ^{4} \frac{A}{2} \geq \sum \sec ^{2} \frac{B}{2} \sec ^{2} \frac{C}{2}
\end{gathered}
$$

\rightarrow true $\because x^{2}+y^{2}+z^{2} \geq x y+y z+z x$, where $x=\sec ^{2} \frac{A}{2}, y=\sec ^{2} \frac{B}{2}, z=\sec ^{2} \frac{C}{2}$

1331. A TERESHIN TYPE INEQUALITY BY BOGDAN FUȘTEI

In $\triangle A B C$ the following relaionship holds:

$$
m_{a} \geq \frac{n_{a}^{2}+g_{a}^{2}+2 r r_{a}}{4 R}, n_{a}-\text { Nagel's cevian, } g_{a}-\text { Gergonne's cevian }
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { Stewart's theorem } \Rightarrow b^{2}(s-c)+c^{2}(s-b)=a n_{a}^{2}+a(s-b)(s-c) \\
\Rightarrow s\left(b^{2}+c^{2}\right)-b c(2 s-a)=a n_{a}^{2}+a\left(s^{2}-s(2 s-a)+b c\right) \\
\Rightarrow s\left(b^{2}+c^{2}\right)-2 s b c=a n_{a}^{2}+a\left(a s-s^{2}\right) \Rightarrow s\left(b^{2}+c^{2}-a^{2}-2 b c\right)=a n_{a}^{2}-a s^{2} \\
\Rightarrow a n_{a}^{2}=a s^{2}+s(2 b c \cos A-2 b c)=a s^{2}-4 s b c \sin ^{2} \frac{A}{2} \\
=a s^{2}-\frac{4 s b c(s-b)(s-c)(s-a)}{b c(s-a)}=a s^{2}-\frac{4 \Delta^{2}}{s-a}=a s^{2}-2 a\left(\frac{2 \Delta}{a}\right)\left(\frac{\Delta}{s-a}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
=a s^{2}-2 a h_{a} r_{a} \Rightarrow n_{a}^{2} \stackrel{(1)}{=} s^{2}-2 h_{a} r_{a}
$$

Again, Stewart's theorem $\Rightarrow b^{2}(s-b)+c^{2}(s-c)=a g_{a}^{2}+a(s-b)(s-c)$
$\Rightarrow s\left(b^{2}+c^{2}\right)-\left(b^{3}+c^{3}\right)=a g_{a}^{2}+a\left(s^{2}-s(2 s-a)+b c\right)=a g_{a}^{2}+a\left(-s^{2}+a s+b c\right)$
$\Rightarrow a g_{a}^{2}=a s^{2}+\frac{\left(b^{2}+c^{2}\right)\left(\sum a\right)-2\left(b^{3}+c^{3}\right)-a^{2}\left(\sum a\right)-2 a b c}{2}$
$=a s^{2}+\frac{a b^{2}+a c^{2}+b^{3}+b c^{2}+b^{2} c+c^{3}-2\left(b^{3}+c^{3}\right)-a^{3}-a^{2} b-a^{2} c-2 a b c}{2}$
$=a s^{2}+\frac{a(b-c)^{2}-\left(a^{3}+b^{3}+c^{3}\right)+b^{2} c+b c^{2}-a^{2} b-a^{2} c}{2}$
$=a s^{2}+\frac{a(b-c)^{2}-a^{2}\left(\sum a\right)-(b+c)\left(b^{2}-b c+c^{2}\right)+b c(b+c)}{2}$

$$
=a s^{2}+\frac{a(b-c)^{2}-2 s a^{2}-(2 s-a)(b-c)^{2}}{2}
$$

$$
=a s^{2}+\frac{2 a(b-c)^{2}-2 s a^{2}-2 s\left(b^{2}+c^{2}-2 b c\right)}{2}=a s^{2}+a(b-c)^{2}-s \sum a^{2}+2 s b c
$$

$$
\Rightarrow g_{a}^{2} \stackrel{(2)}{=}(b-c)^{2}+s^{2}-\frac{s \sum a^{2}}{a}+\frac{2 s b c}{a}
$$

$$
(1)+(2) \Rightarrow n_{a}^{2}+g_{a}^{2}+2 r_{b} r_{c}
$$

$$
=2 s^{2}+(b-c)^{2}-\frac{s \sum a^{2}}{a}+\frac{2 s b c}{a}-2\left(\frac{2 \Delta}{a}\right)\left(\frac{\Delta}{s-a}\right)+2 \frac{\Delta^{2}}{(s-b)(s-c)}
$$

$$
=2 s^{2}+(b-c)^{2}-\frac{s \sum a^{2}}{a}+\frac{2 s b c}{a}-\frac{4 s(s-a)(s-b)(s-c)}{a(s-a)}+\frac{2 s(s-a)(s-b)(s-c)}{(s-b)(s-c)}
$$

$$
=(b-c)^{2}+2 s(s-a)+2 s^{2}-s\left\{\frac{\sum a^{2}+4(s-b)(s-c)-2 b c}{a}\right\}
$$

$$
=(b-c)^{2}+2 s(s-a)+2 s^{2}-s\left\{\frac{a^{2}-(b-c)^{2}+a^{2}+\left(b^{2}+c^{2}-2 b c\right)}{a}\right\}
$$

$$
=(b-c)^{2}+2 s(s-a)+2 s^{2}-s\left(\frac{2 a^{2}}{a}\right)=(b-c)^{2}+4 s(s-a)
$$

$$
=(b-c)^{2}+(b+c+a)(b+c-a)
$$

$$
=(b-c)^{2}+(b+c)^{2}-a^{2}=2 b^{2}+2 c^{2}-a^{2}=4 m_{a}^{2}
$$

$$
\therefore n_{a}^{2}+g_{a}^{2}+2 r_{b} r_{c}=4 m_{a}^{2} \Rightarrow n_{a}^{2}+g_{a}^{2}+2 r r_{a}=4 m_{a}^{2}-2 r_{b} r_{c}+2 r r_{a}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{array}{r}
=2 b^{2}+2 c^{2}-a^{2}-\frac{2 s(s-a)(s-b)(s-c)}{(s-b)(s-c)}+\frac{2 s(s-a)(s-b)(s-c)}{s(s-a)} \\
=b^{2}+c^{2}+\left(b^{2}+c^{2}-a^{2}\right)-2 s(s-a)+2(s-b)(s-c) \\
=(b-c)^{2}+2 b c+2 b c \cos A+2\left(s^{2}-s(2 s-a)+b c-s(s-a)\right) \\
=(b-c)^{2}+2 b c \cdot \frac{2 s(s-a)}{b c}+2\left(-2 s^{2}+2 a s+b c\right) \\
=(b-c)^{2}+4 s(s-a)-4 s(s-a)+2 b c=b^{2}+c^{2} \\
\therefore n_{a}^{2}+g_{a}^{2}+2 r r_{a}=b^{2}+c^{2} \Rightarrow \frac{n_{a}^{2}+g_{a}^{2}+2 r r_{a}}{4 R}=\frac{b^{2}+c^{2}}{4 R} \stackrel{\text { Tereshin }}{\leq} m_{a} \text { (proved) }
\end{array}
$$

1332. In $\triangle A B C, n_{a}$ - Nagel's cevian, the following relationship holds:

$$
n_{a}+n_{b}+n_{c}+r_{a}+r_{b}+r_{c} \leq\left(\sqrt{\frac{6 R}{r}}-\sqrt{2}\right) \sum_{c y c} \sqrt{h_{a} r_{a}}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sqrt{h_{a} r_{a}}=\sqrt{\frac{2 r s}{a b c} \cdot \frac{b c r s^{2}}{s(s-a)}}=\sqrt{\frac{2 r^{2} s}{4 R r s}\left(s^{2} \sec ^{2} \frac{A}{2}\right)}=\sqrt{\frac{r}{2 R}} s \sec \frac{A}{2} \\
\text { and analogs } \Rightarrow \sum \sqrt{h_{a} r_{a}}=s \sqrt{\frac{r}{2 R}} \sum \sec \frac{A}{2}
\end{gathered}
$$

$$
\Rightarrow \sqrt{\frac{6 R}{r}} \sum \sqrt{h_{a} r_{a}}=\left(s \sqrt{\frac{6 R}{r}} \sqrt{\frac{r}{2 R}}\right) \sum \sec \frac{A}{2} \stackrel{(1)}{=} \sqrt{3} s \sum \sec \frac{A}{2}
$$

Now, Stewarts theorem $\Rightarrow b^{2}(s-c)+c^{2}(s-b)=a n_{a}^{2}+a(s-b)(s-c)$

$$
\begin{gathered}
\Rightarrow s\left(b^{2}+c^{2}\right)-b c(2 s-a)=a n_{a}^{2}+a\left(s^{2}-s(2 s-a)+b c\right) \\
\Rightarrow s\left(b^{2}+c^{2}\right)-2 s b c=a n_{a}+a\left(a s-s^{2}\right) \Rightarrow s\left(b^{2}+c^{2}-a^{2}-2 b c\right)=a n_{a}^{2}-a s^{2} \\
\Rightarrow a n_{a}^{2}=a s^{2}+s(2 b c \cos A-2 b c)=a s^{2}-4 s b c \sin ^{2} \frac{A}{2} \\
=a s^{2}-\frac{4 s b c(s-b)(s-c)(s-a)}{b c(s-a)}=a s^{2}-\frac{4 \Delta^{2}}{s-a}=a s^{2}-2 a\left(\frac{2 \Delta}{a}\right)\left(\frac{\Delta}{s-a}\right) \\
=a s^{2}-2 a h_{a} r_{a} \Rightarrow n_{a}^{2} \stackrel{(2)}{=} s^{2}-2 h_{a} r_{a}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Now, $n_{a}+\sqrt{2 h_{a} r_{a}}+r_{a} \stackrel{\text { CBS }}{\leq} \sqrt{3} \sqrt{n_{a}^{2}+2 h_{a} r_{a}+r_{a}^{2}} \stackrel{\text { by (1) }}{=} \sqrt{3} \sqrt{s^{2}-2 h_{a} r_{a}+2 h_{a} r_{a}+r_{a}^{2}}$

$$
=\sqrt{3} \sqrt{s^{2}+s^{2} \tan ^{2} \frac{A}{2}}=\sqrt{3} s \sec \frac{A}{2} \Rightarrow n_{a}+r_{a} \stackrel{(a)}{=} \sqrt{3} s \sec \frac{A}{2}-\sqrt{2 h_{a} r_{a}}
$$

Similarly, $n_{b}+r_{b} \stackrel{(b)}{\leq} \sqrt{3} s \sec \frac{B}{2}-\sqrt{2 h_{b} r_{b}}$ and, $n_{c}+r_{c} \stackrel{(c)}{\leq} \sqrt{3} s \sec \frac{c}{2}-\sqrt{2 h_{c} r_{c}}$

$$
(a)+(b)+(c) \Rightarrow \sum n_{a}+\sum r_{a} \stackrel{(i)}{\leq} \sqrt{3} s \sum \sec \frac{A}{2}-\sqrt{2} \sum \sqrt{h_{a} r_{a}}
$$

$$
\stackrel{b y(1)}{=} \sqrt{\frac{6 R}{r}} \sum \sqrt{h_{a} r_{a}}-\sqrt{2} \sum \sqrt{h_{a} r_{a}}=\left(\sqrt{\frac{6 R}{r}}-\sqrt{2}\right) \sum \sqrt{h_{a} r_{a}} \text { (Proved) }
$$

1333. In $\triangle A B C$ the following relationship holds:

$$
\frac{\sqrt{3}}{2 R^{2}} \leq \frac{r_{a}}{a^{3}}+\frac{r_{b}}{b^{3}}+\frac{r_{c}}{c^{3}} \leq \frac{\sqrt{3}}{8 r^{2}}
$$

Proposed by George Apostolopoulos-Messolonghi-Greece
Solution 1 by Marian Ursărescu-Romania

$$
\begin{equation*}
\frac{r_{a}}{a^{3}}+\frac{r_{b}}{b^{3}}+\frac{r_{c}}{c^{3}} \geq 3 \sqrt[3]{\frac{r_{a} r_{b} r_{c}}{(a b c)^{3}}} \tag{1}
\end{equation*}
$$

$$
\text { But } r_{a} r_{b} r_{c}=s^{2} r \text { and } a b c=4 s R r(2), s=\frac{a+b+c}{2}
$$

From (1)+(2) we must show: $3 \sqrt[3]{\frac{s^{2} r}{64 s^{3} R^{3} r^{3}}} \geq \frac{\sqrt{3}}{2 R^{2}} \Leftrightarrow 27 \frac{1}{64 s R^{3} r^{2}} \geq \frac{3 \sqrt{3}}{8 R^{6}} \Leftrightarrow$
$\Leftrightarrow 3 \sqrt{3} R^{3} \geq 8 s r^{2}$, true because $R^{2} \geq 4 r^{2}$ and $3 \sqrt{3} R \geq 2 s$
Now, $r \cdot r_{a}=\frac{s}{s} \cdot \frac{s}{s-a}=\frac{s(s-a)(s-b)(s-c)}{s(s-a)}=(s-b)(s-c) \leq \frac{a^{2}}{4}$

$$
\Rightarrow r_{a} \leq \frac{a^{2}}{4 r} \Rightarrow \frac{r_{a}}{a^{3}} \leq \frac{1}{4 a r} \Rightarrow \text { we must show: }
$$

$\frac{1}{4 r}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \leq \frac{\sqrt{3}}{8 r^{2}} \Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{\sqrt{3}}{2 r^{\prime}}$ true, because it is Steining inequality.

Solution 2 by Soumava Chakraborty-Kolkata-India

Firstly, $\left(\sum a b\right)^{2} \geq 24 R r s^{2} \Leftrightarrow\left(s^{2}+4 R r+r^{2}\right)^{2} \geq 24 R r s^{2}$

$$
\begin{gathered}
\Leftrightarrow s^{4}+\left(4 R r+r^{2}\right)^{2}+2\left(4 R r+r^{2}\right) s^{2} \geq 24 R r s^{2} \\
\Leftrightarrow s^{4}+\left(4 R r+r^{2}\right)^{2} \stackrel{(i)}{\geq} s^{2}\left(16 R r-2 r^{2}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Now, LHS of $(i) \stackrel{\text { Gerretsen }}{\geq} s^{2}\left(16 R r-5 r^{2}\right)+\left(4 R r+r^{2}\right)^{2} \stackrel{?}{\geq} s^{2}\left(16 R r-2 r^{2}\right)$

$$
\Leftrightarrow\left(4 R r+r^{2}\right)^{2} \stackrel{?}{\geq} 3 r^{2} s^{2} \Leftrightarrow 4 R+r \stackrel{(i)}{\geq} s \sqrt{3} \rightarrow \text { true (Trucht) } \Rightarrow \text { (i) is true. }
$$

$$
\therefore\left(\sum a b\right)^{2} \stackrel{(1)}{\geq} 24 R r s^{2}
$$

Secondly, $\left(\sum a b\right)^{2} \leq 12 R^{2} s^{2} \Leftrightarrow s^{4}+\left(4 R r+r^{2}\right)^{2}+2\left(4 R r+r^{2}\right) s^{2} \leq 12 R^{2} s^{2}$

$$
\Leftrightarrow s^{4}+\left(4 R r+r^{2}\right)^{2} \stackrel{(i i)}{\leq} s^{2}\left(12 R^{2}-8 R r-2 r^{2}\right)
$$

$$
\text { Now, LHS of (ii) } \stackrel{\text { Gerretsen }}{\leq} s^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)+\left(4 R r+r^{2}\right)^{2}
$$

$$
\stackrel{?}{\leq} s^{2}\left(12 R^{2}-8 R r-2 r^{2}\right) \Leftrightarrow s^{2}\left(8 R^{2}-12 R r-5 r^{2}\right) \underset{(i i i)}{\stackrel{?}{\gtrless}}\left(4 R+r^{2}\right)^{2}
$$

$$
\text { Again, LHS of }(\text { iii }) \stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)\left(8 R^{2}-12 R r-5 r^{2}\right) \stackrel{?}{\geq}\left(4 R r+r^{2}\right)^{2}
$$

$$
\begin{gathered}
\Leftrightarrow 32 t^{3}-62 t^{2}-7 t+6 \stackrel{?}{\geq} 0\left(t=\frac{R}{r}\right) \Leftrightarrow(t-2)\left(32 t^{2}+2(t-2)+1\right) \stackrel{?}{\geq} 0 \\
\rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow\left(\text { iii) } \Rightarrow \text { (ii) is true } \therefore\left(\sum a b\right)^{2} \stackrel{(2)}{\leq} 12 R^{2} s^{2}\right.
\end{gathered}
$$

$$
\text { Now, } \sum \frac{r_{a}}{a^{3}}=\sum\left[\frac{\left(\frac{1}{a}\right)^{3}}{\left(\frac{1}{r_{a}}\right)}\right] \stackrel{\text { Holder }}{\geq} \frac{\left(\sum_{a}^{\frac{1}{a}}\right)^{3}}{3\left(\sum \frac{1}{r_{a}}\right)}=\frac{r}{3}\left(\frac{\sum a b}{4 R r s}\right)^{3 b y(1)} \stackrel{24 R r^{2} s^{2}\left(\sum a b\right)}{192 R^{3} r^{3} s^{3}}
$$

$$
\stackrel{\substack{\text { Ionescu } \\ \text { Weitzenbock }}}{\geq} \frac{96 \sqrt{3} R^{3} s^{3}}{192 R^{3} r^{3} s^{3}}=\frac{\sqrt{3}}{2 R^{2}} \therefore \frac{\sqrt{3}}{2 R^{2}} \leq \sum \frac{r_{a}}{a^{3}}
$$

$$
\text { Now, } a^{3}=((s-b)+(s-c))^{3}=(s-b)^{3}+(s-c)^{3}+3(s-b)(s-c) a
$$

$$
\geq(s-b)(s-c) a+3(s-b)(s-c) a=4 a(s-b)(s-c)
$$

$$
=4 a\left(\frac{(s-a)(s-b)(s-c)}{s-a}\right)=\frac{4 a r^{2} s}{s-a}=4 a r\left(\frac{r s}{s-a}\right)=4 a r r_{a} \Rightarrow a^{3} \stackrel{(a)}{\geq} 4 a r r_{a}
$$

Similarly, $b^{3} \stackrel{(b)}{\geq} 4$ brr $_{b}, c^{3} \stackrel{(c)}{\geq} 4 c r r_{c}$
(a), (b), (c) $\Rightarrow \sum \frac{r_{a}}{a^{3}} \leq \sum \frac{1}{4 a r}=\frac{1}{4 r}\left(\frac{\sum a b}{4 R r s}\right)=\frac{\sum a b}{16 R r^{2} s} \stackrel{?}{\leq} \frac{\sqrt{3}}{8 r^{2}}$

$$
\Leftrightarrow 2 \sqrt{3} R s \stackrel{?}{\geq} \sum a b \Leftrightarrow 12 R^{2} s^{2} \stackrel{?}{\geq}\left(\sum a b\right)^{2} \rightarrow \text { true by }(2) \therefore \sum \frac{r_{a}}{a^{3}} \leq \frac{\sqrt{3}}{8 r^{2}} \text { (Done) }
$$

1334. In $\triangle A B C$ the following relationship holds:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$4\left(\sum_{c y c} \frac{r_{a}}{a}\right)\left(\sum_{c y c} \frac{r_{a}^{2}}{r_{b}+r_{c}}\right) \geq 9 s$
Proposed by Mokhtar Khassani-Mostaganem-Algerie
Solution 1 by Șerban George Florin-Romania

$$
\begin{gathered}
\left(\sum \frac{r_{a}}{a}\right) \cdot\left(\sum \frac{r_{a}^{2}}{r_{b}+r_{c}}\right) \geq \frac{9 s}{4} \\
\left(\sum \frac{r_{a}}{a}\right) \cdot\left(\sum \frac{r_{a}^{2}}{r_{b}+r_{c}}\right)^{\text {Bergstrom }} \geq\left(\sum \frac{r_{a}}{a}\right) \cdot \frac{\left(r_{a}+r_{b}+r_{c}\right)^{2}}{\sum\left(r_{b}+r_{c}\right)}=\left(\sum \frac{r_{a}}{a}\right) \cdot \frac{\left(r_{a}+r_{b}+r_{c}\right)^{2}}{2\left(r_{a}+r_{b}+r_{c}\right)} \\
=\left(\sum \frac{r_{a}}{a}\right) \cdot \frac{r_{a}+r_{b}+r_{c}}{2}=\sum \frac{S}{a(s-a)} \cdot \frac{S}{2} \cdot \sum \frac{1}{s-a}=\frac{S^{2}}{2} \cdot \sum \frac{1}{a(s-a)} \cdot \sum \frac{1}{s-a} \\
=\frac{S^{2}}{2} \cdot \frac{s^{2}+(4 R+r)^{2}}{4 R r s^{2}} \cdot \frac{4 R+r}{r s}=\frac{S^{2}\left[s^{2}+(4 R+r)^{2}\right] \cdot(4 R+r)}{8 R r^{2} s^{3}}= \\
=\frac{\left[s^{2}+(4 R+r)^{2}\right] \cdot(4 R+r) \cdot r^{2}}{8 R r^{2} s}=\frac{\left[s^{2}+(4 R+r)^{2}\right] \cdot(4 R+r)}{8 R s} \geq \frac{9 s}{4} \\
\Rightarrow\left[s^{2}+(4 R+r)^{2}\right] \cdot(4 R+r) \geq \frac{72 R s^{2}}{4}=18 R s^{2} \\
s^{2}(4 R+r)+(4 R+r)^{3} \geq 18 R s^{2}, s^{2}(18 R-4 R-r) \leq(4 R+r)^{3} \\
s^{2}(14 R-r) \leq(4 R+r)^{3} ; R \geq 2 r(E u l e r) \Rightarrow 14 R \geq 28 r \\
\Rightarrow 14 R-r \geq 28 r-r=27 r>0 \Rightarrow s^{2} \leq \frac{(4 R+r)^{3}}{14 R-r} \\
A p p l y i n g ~ G e r r e t s e n ' s i n e q u a l i t y s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \\
s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \leq \frac{(4 R+r)^{3}}{14 R-r} \\
\Rightarrow(14 R-r)\left(4 R^{2}+4 R r+3 r^{2}\right) \leq(4 R+r)^{3} \left\lvert\,: r^{3}, \frac{R}{r}=t \geq 2(E u l e r)\right. \\
\Rightarrow(14 t-1)\left(4 t^{2}+4 t+3\right) \leq(4 t+1)^{3}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
4 t^{2}(t-2)+6 t(t-2)-(t-2) \geq 0,(t-2)\left(4 t^{2}+6 t-1\right) \geq 0 \\
t-2 \geq 0 \text { because } t \geq 2 \text { (Euler) } \\
4 t^{2}+6 t-1 \geq 4 \cdot 2^{2}+6 \cdot 2-1=16+12-1=27>0 \Rightarrow \text { true. }
\end{gathered}
$$

Solution 2 by Marian Ursărescu-Romania

(another approach). From Cauchy inequality we have:

$$
\begin{gather*}
\sum \frac{r_{a}}{a} \cdot \sum \frac{a}{r_{a}} \geq 9 \tag{1}\\
\text { But } \sum \frac{a}{r_{a}}=\frac{2(4 R+r)}{s} \tag{2}
\end{gather*}
$$

From (1) + (2) $\Rightarrow \sum \frac{r_{a}}{a} \cdot \frac{2(4 R+r)}{s} \geq 9 \Rightarrow \sum \frac{r_{a}}{a} \geq \frac{9 s}{2(4 R+r)}$ (3)
From (3) we must show: $4 \cdot \frac{9 s}{2(4 R+r)} \cdot\left(\sum \frac{r_{a}^{2}}{r_{b}+r_{c}}\right) \geq 9 s \Leftrightarrow$

$$
\begin{equation*}
\sum \frac{r_{a}^{2}}{r_{b}+r_{c}} \geq \frac{4 R+r}{2} \tag{4}
\end{equation*}
$$

From Bergström we have:

$$
\begin{gather*}
\sum \frac{r_{a}^{2}}{r_{b}+r_{c}} \geq \frac{\left(r_{a}+r_{b}+r_{c}\right)^{2}}{2\left(r_{a}+r_{b}+r_{c}\right)}=\frac{r_{a}+r_{b}+r_{c}}{2} \tag{5}\\
\text { But } r_{a}+r_{b}+r_{c}=4 R+r \tag{6}
\end{gather*}
$$

From (5) + (6) $\Rightarrow \sum \frac{r_{a}^{2}}{r_{b}+r_{c}} \geq \frac{4 R+r}{2} \Rightarrow$ (4) it is true.
Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
r_{b}+r_{c}=s\left(\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}+\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}\right)=\frac{s \sin \left(\frac{B+C}{2}\right) \cos \frac{A}{2}}{\prod \cos \frac{A}{2}}=\frac{s}{\frac{s}{4 R}} \cos ^{2} \frac{A(1)}{2} \stackrel{(1)}{=} 4 R \cos ^{2} \frac{A}{2} \\
\text { Using (1) and analogs, } 4\left(\sum \frac{r_{a}}{a}\right)\left(\sum \frac{r_{a}^{2}}{r_{b}+r_{c}}\right)
\end{gathered} \quad \begin{gathered}
4\left(\sum \frac{s \tan \frac{A}{2}}{4 R \tan \frac{A}{2} \cos ^{2} \frac{A}{2}}\right)\left(\sum \frac{s^{2} \tan ^{2} \frac{A}{2}}{4 R \cos ^{2} \frac{A}{2}}\right) \\
=\frac{s^{3}}{4 R^{2}}\left(\sum \sec ^{2} \frac{A}{2}\right)\left(\sum \tan ^{2} \frac{A}{2} \sec ^{2} \frac{A}{2}\right) \\
\begin{array}{c}
\text { Chebyshev } \\
\geq \\
\frac{s^{3}}{4 R^{2}}\left(\sum \sec ^{2} \frac{A}{2}\right) \cdot \frac{1}{3}\left(\sum \tan ^{2} \frac{A}{2}\right)\left(\sum \sec ^{2} \frac{A}{2}\right) \\
(\because \text { if we assume } a \geq b \geq c t h e n
\end{array}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\left.\left.\begin{array}{c}
\tan ^{2} \frac{A}{2} \geq \tan ^{2} \frac{B}{2}
\end{array} \geq \tan ^{2} \frac{C}{2} \text { and } \sec ^{2} \frac{A}{2} \geq \sec ^{2} \frac{B}{2} \geq \sec ^{2} \frac{C}{2}\right)\right] \text { Jensen } 16 s^{3}\left(\sum \tan ^{2} \frac{A}{2}\right)
$$

$$
\begin{gathered}
\left(\because f(x)=\sec ^{2} \frac{x}{2} \text { is convex } \forall x \in(0, \pi) \Rightarrow \sum \sec ^{2} \frac{A}{2} \stackrel{\text { Jensen }}{\geq} 3 \sec ^{2} \frac{\pi}{6}=4\right) \\
=\frac{4 s}{3 R^{2}} \sum r_{a}^{2}=\frac{4 s}{3 R^{2}}\left((4 R+r)^{2}-2 s^{2}\right) \stackrel{?}{\geq} 9 s \\
\Leftrightarrow 4(4 R+r)^{2}-27 R^{2} \underset{(2)}{?} 8 s^{2}
\end{gathered}
$$

$$
\text { Now, RHS of (2) } \stackrel{\text { Gerretsen }}{\leq} 8\left(4 R^{2}+4 R r+3 r^{2}\right) \stackrel{?}{\leq}
$$

$$
4(4 R+r)^{2}-27 R^{2} \Leftrightarrow R^{2} \stackrel{?}{\geq} 4 r^{2} \rightarrow \text { true (Euler) }
$$

$$
\Rightarrow(2) \text { is true } \Rightarrow 4\left(\sum \frac{r_{a}}{a}\right)\left(\sum \frac{r_{a}^{2}}{r_{b}+r_{c}}\right) \geq 9 s
$$

(proved)

1335. FUȘTEI'S REFINEMENT FOR EULER'S INEQUALITY

In $\triangle A B C, n_{a}-$ Nagel's cevian the following relationship holds:

$$
R \geq r\left(1+\sqrt[3]{\frac{n_{a} n_{b} n_{c}}{h_{a} h_{b} h_{c}}}\right) \geq 2 r
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
R \stackrel{(1)}{\geq} r\left(1+\sqrt[3]{\frac{n_{a} n_{b} n_{c}}{h_{a} h_{b} h_{c}}}\right) \stackrel{(2)}{\geq} 2 r
$$

$$
\begin{aligned}
& \text { Stewart's theorem } \Rightarrow b^{2}(s-c)+c^{2}(s-b)=a n_{a}^{2}+a(s-b)(s-c) \\
& \qquad \begin{array}{r}
\Rightarrow s\left(b^{2}+c^{2}\right)-b c(2 s-a)=a n_{a}^{2}+a\left(s^{2}-s(2 s-a)+b c\right) \\
\Rightarrow s\left(b^{2}+c^{2}\right)-2 s b c=a n_{a}^{2}+a\left(a s-s^{2}\right) \\
\Rightarrow s\left(b^{2}+c^{2}-a^{2}-2 b c\right)=a n_{a}^{2}-a s^{2}
\end{array} \\
& \Rightarrow a n_{a}^{2}=a s^{2}+s(2 b c \cos A-2 b c)=a s^{2}-4 s b c \sin ^{2} \frac{A}{2}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$=a s^{2}-\frac{4 s b c(s-b)(s-c)(s-a)}{b c(s-a)}=a s^{2}-\frac{4 r^{2} s^{2}}{s-a} \Rightarrow a n_{a}^{2} \stackrel{(a)}{=} a^{2} s^{2}-4 r^{2} S^{2}\left(\frac{a}{s-a}\right)$

$$
\text { Similarly, } b^{2} n_{b}^{2} \stackrel{(b)}{=} b^{2} s^{2}-4 r^{2} S^{2}\left(\frac{b}{s-b}\right) \text { and } c^{2} n_{c}^{2} \stackrel{(c)}{=} c^{2} s^{2}-4 r^{2} S^{2}\left(\frac{c}{s-c}\right)
$$

Now, (1) $\Leftrightarrow \frac{R-r}{r} \geq \sqrt[3]{\frac{n_{a} n_{b} n_{c}}{h_{a} h_{b} h_{c}}} \Leftrightarrow \sqrt[3]{\frac{n_{a}^{2} n_{b}^{2} n_{c}^{2}}{h_{a}^{2} h_{b}^{2} h_{c}^{2}}} \leq\left(\frac{R-r}{r}\right)^{2}$
$\Leftrightarrow \sqrt[3]{\frac{\left(a^{2} n_{a}^{2}\right)\left(b^{2} n_{b}^{2}\right)\left(c^{2} n_{c}^{2}\right)}{\left(4 r^{2} S^{2}\right)^{3}}} \leq\left(\frac{R-r}{r}\right)^{2} \Leftrightarrow \frac{1}{4 s^{2}} \sqrt[3]{\prod\left(a^{2} n_{a}^{2}\right)} \stackrel{(i)}{\leq}(R-r)^{2}$
$G M \leq A M \Rightarrow L H S$ of $(i) \leq \frac{1}{4 s^{2}}\left(\frac{\sum a^{2} n_{a}^{2}}{3}\right)=\frac{\sum\left[a^{2} s^{2}-4 r^{2} s^{2}\left(\frac{a}{s-a}\right)\right]}{12 s^{2}}$ (using (a), (b), (c))
$=\frac{2\left(s^{2}-4 R r-r^{2}\right)-4 r^{2} \sum\left(\frac{a-s+s}{s-a}\right)}{12}$
$=\frac{s^{2}-4 R r-r^{2}-2 r^{2}\left(-3+\frac{s}{r^{2} s} \sum(s-b)(s-c)\right)}{6}$
$=\frac{s^{2}-4 R r-r^{2}-2 r^{2}\left(-3+\frac{4 R r+r^{2}}{r^{2}}\right)}{6}=\frac{s^{2}-4 R r-r^{2}-2 r(4 R-2 r)}{6}$

$$
=\frac{s^{2}-12 R r+3 r^{2}}{6} \Rightarrow \text { LHS of (i) } \stackrel{(i i)}{\leq} \frac{s^{2}-12 R r+3 r^{2}}{6}
$$

(ii) \Rightarrow in order to prove (i), it suffices to prove:

$$
\begin{gathered}
s^{2}-12 R r+3 r^{2} \leq 6\left(R^{2}-2 R r+r^{2}\right) \Leftrightarrow s^{2} \leq 6 R^{2}+3 r^{2} \\
\Leftrightarrow\left(s^{2}-4 R^{2}-4 R r-3 r^{2}\right)-2 R(R-2 r) \leq 0 \\
\rightarrow \text { true } \because s^{2}-4 R^{2}-4 R r-3 r^{2} \quad \leq \quad 0 \text { and } R-2 r \stackrel{\text { Guler }}{\geq} 0 \\
\Rightarrow(i) \Rightarrow(1) \text { is true } \Rightarrow R \geq r\left(1+\sqrt[3]{\frac{n_{a} n_{b} n_{c}}{h_{a} h_{b} h_{c}}}\right)
\end{gathered}
$$

Also, \because perpedincular distance from a vertex to opposite side is least among all line segments from that vertex to opposite side, $\therefore n_{a} \geq h_{a}$ etc

$$
\Rightarrow \sqrt[3]{\frac{n_{a} n_{b} n_{c}}{h_{a} h_{b} h_{c}}} \geq 1 \Rightarrow r\left(1+\sqrt[3]{\frac{n_{a} n_{b} n_{c}}{h_{a} h_{b} h_{c}}}\right) \geq 2 r \text { (Proved) }
$$

1336. In $\triangle A B C$ the following relationship holds:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $8 \cos A \cos B \cos C \leq\left(\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}\right)^{2}$

Proposed by Rahim Shahbazov-Baku-Azerbaijan
Solution 1 by Marian Ursărescu-Romania
First, we prove: $\cos A \cos B \cos C \leq \frac{1}{2}\left(\frac{r}{R}\right)^{2}$ (1)
Because $\cos A \cos B \cos C=\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}, s=\frac{a+b+c}{2} \Rightarrow$
We must show: $\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}} \leq \frac{r^{2}}{2 R^{2}} \Leftrightarrow$
$s^{2}-4 R^{2}-4 R r-r^{2} \leq 2 r^{2} \Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$, which it is true, because it is
Gerretsen inequality. From (1) we must show:

$$
\begin{gather*}
4\left(\frac{r}{R}\right)^{2} \leq\left(\frac{a b+b c+a c}{a^{2}+b^{2}+c^{2}}\right)^{2} \Leftrightarrow \frac{a b+b c+a c}{a^{2}+b^{2}+c^{2}} \geq \frac{2 r}{R} \tag{2}\\
\text { But } a b+a b+a c=s^{2}+r^{2}+4 R r \text { (3) } \\
\text { and } a^{2}+b^{2}+c^{2}=2\left(s^{2}-r^{2}-4 R r\right) \text { (4) } \tag{4}\\
\text { From (2)+(3)+(4) we must show: } \\
\frac{s^{2}+r^{2}+4 R r}{2\left(s^{2}-r^{2}-4 R r\right)} \geq \frac{2 r}{R} \Leftrightarrow R\left(s^{2}+r^{2}+4 R r\right) \geq 4 r\left(s^{2}-r^{2}-4 R r\right) \tag{5}
\end{gather*}
$$

Now, using Gerretsen's inequality:

$$
\begin{equation*}
16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \tag{6}
\end{equation*}
$$

From (5)+(6), we must show:

$$
\begin{gathered}
R\left(20 R r-4 r^{2}\right) \geq 4 r\left(4 R^{2}+2 r^{2}\right) \Leftrightarrow R\left(5 R r-r^{2}\right) \geq r\left(4 R^{2}+2 r^{2}\right) \\
\Leftrightarrow 5 R^{2} r-R r^{2} \geq 4 R^{2} r+2 r^{3} \Leftrightarrow R^{2} r \geq R r^{2}+2 r^{3} \Leftrightarrow \\
\Leftrightarrow R^{2} \geq R r+2 r^{2} \Leftrightarrow(R-2 r)(R+r) \geq 0, \text { true (Euler). }
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\left(\frac{\sum a b}{\sum a^{2}}\right)^{2} \geq \frac{2 r}{R} \Leftrightarrow R\left(s^{2}+4 R r+r^{2}\right)^{2} \geq 8 r\left(s^{2}-4 R r-r^{2}\right)^{2} \\
\Leftrightarrow R\left(s^{4}+\left(4 R r+r^{2}\right)^{2}+2 s^{2}\left(4 R r+r^{2}\right)\right) \geq 8 r\left(s^{4}+\left(4 R r+r^{2}\right)^{2}-2 s^{2}\left(4 R r+r^{2}\right)\right) \\
\Leftrightarrow(R-2 r) s^{4}+2(R+8 r)\left(4 R r+r^{2}\right) s^{2}+(R-8 r)\left(4 R r+r^{2}\right)^{2} \stackrel{(1)}{\geq} 6 r s^{4}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Now, LHS of (1) $\underset{(i)}{\substack{\text { Gerretsen }}}(R-2 r)\left(16 R r-5 r^{2}\right) s^{2}+2(R+8 r)\left(4 R r+s^{2}\right) s^{2}+$

$$
+(R-8 r)\left(4 R r+r^{2}\right)^{2}
$$

and, RHS of (1) $\underset{(\text { (ii) }}{\text { Gerretsen }} 6 r\left(4 R^{2}+4 R r+3 r^{2}\right) s^{2}$
(i), (ii) \Rightarrow in order to prove (1), it suffices to prove:
$s^{2}\left((R-2 r)\left(16 R r-5 r^{2}\right)+2(R+8 r)\left(4 R r+r^{2}\right)-6 r\left(4 R^{2}+4 R r+3 r^{2}\right)\right)+$

$$
+(R-8 r)\left(4 R r+r^{2}\right)^{2} \geq 0 \Leftrightarrow s^{2}(5 R+8 r)+(R-8 r)(4 R+r)^{2} \stackrel{(2)}{\geq} 0
$$

Now, LHS of (2) $\stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)(5 R+8 r)+(R-8 r)(4 R+r)^{2} \stackrel{?}{\geq} 0$

$$
\begin{gathered}
\Leftrightarrow 2 t^{3}-5 t^{2}+5 t-6 \stackrel{?}{\geq} 0\left(t=\frac{R}{r}\right) \Leftrightarrow(t-2)((t-2)(2 t+3)+9) \stackrel{?}{\geq} 0 \\
\rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(2) \Rightarrow(1) \text { is } \operatorname{true} \Rightarrow\left(\frac{\sum a b}{\sum a^{2}}\right)^{2} \stackrel{(a)}{\geq} \frac{2 r}{R} \stackrel{?}{\geq} 8 \Pi \cos A \\
\Leftrightarrow \frac{2 r}{R}-\frac{2\left(s^{2}-(2 R+r)^{2}\right)}{R^{2}} \stackrel{?}{\geq} 0 \Leftrightarrow \frac{R r-s^{2}+(2 R+r)^{2}}{R^{2}} \stackrel{?}{\geq} 0 \\
\Leftrightarrow 4 R^{2}+5 R r+r^{2} \sum_{(3)}^{?} s^{2}
\end{gathered}
$$

Now, $\stackrel{\text { Gerretsen }}{\leq} 4 R^{2}+4 R r+3 r^{2} \stackrel{?}{\leq} 4 R^{2}+5 R r+r^{2} \Leftrightarrow R r \stackrel{?}{\geq} 2 r^{2} \rightarrow$ true (Euler)

$$
\Rightarrow \text { (3) is true } \Rightarrow \frac{2 r}{R} \stackrel{?}{\geq} 8 \Pi \cos A \therefore(a) \Rightarrow\left(\frac{\sum a b}{\sum a^{2}}\right)^{2} \geq 8 \Pi \cos A \text { (Proved) }
$$

1337. In $\triangle A B C$ the following relationship holds:

$$
\prod_{c y c}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right) \leq \frac{1}{(a+b)(b+c)(c+a)}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Boris Colakovic-Belgrade-Serbie

$$
\begin{gathered}
\text { Substitutions: } \frac{1}{a+b}=x, \frac{1}{b+c}=y, \frac{1}{c+a}=z \\
\text { WLOG } x \geq y \geq z
\end{gathered}
$$

Given inequality becomes $(x+y-z)(y+z-x)(x+z-y) \leq x y z$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
(x-y)^{2} \geq 0 \Leftrightarrow z^{2}+(x-y)^{2} \geq z^{2} \Leftrightarrow z^{2} \geq z^{2}-(x-y)^{2}=(x+z-y)(y+z-x) .
$$

Similarly $y^{2} \geq(x+y-z)(y+z-x) ; x^{2} \geq(x+y-z)(x+z-y)$

$$
\begin{aligned}
& x^{2} y^{2} z^{2} \geq(x+y-z)^{2}(y+z-x)^{2}(x+z-y)^{2} \Leftrightarrow \\
& \Leftrightarrow x y z \geq|\underbrace{(x+y-z)}_{>0} \underbrace{(y+z-x)}_{>0} \underbrace{(x+z-y)}_{>0}|
\end{aligned}
$$

Triangle's rule

$$
\text { Sign "=" holds for } x=y=z
$$

$x+y-z=\frac{1}{a+b}+\frac{1}{b+c}-\frac{1}{c+a} \geq \frac{4}{a+2 b+c}-\frac{1}{c+a}>\frac{4}{3(a+c)}-\frac{1}{c+a}=\frac{1}{3(a+c)}>0$
From triangle's rule $\boldsymbol{a}+\boldsymbol{c}>b \Rightarrow 2(\boldsymbol{a}+\boldsymbol{c})>2 b \Rightarrow 3(\boldsymbol{a}+\boldsymbol{c})>a+2 \boldsymbol{b}+\boldsymbol{c} \Rightarrow$

$$
\Rightarrow \frac{1}{a+2 b+c}>\frac{1}{3(a+c)}
$$

$y+z-x=\frac{1}{b+c}+\frac{1}{c+a}-\frac{1}{a+b} \geq \frac{4}{a+b+2 c}-\frac{1}{a+b}>\frac{4}{3(a+b)}-\frac{1}{a+b}=\frac{1}{3(a+b)}>0$
From triangle's rule: $a+b>c \Rightarrow 2(a+b)>2 c \Leftrightarrow 3(a+b)>a+b+2 c \Rightarrow$

$$
\Rightarrow \frac{1}{a+b+2 c}>\frac{1}{3(a+b)}
$$

$$
x+z-y=\frac{1}{a+b}+\frac{1}{c+a}-\frac{1}{b+c} \geq \frac{4}{2 a+b+c}-\frac{1}{b+c}>\frac{4}{3(b+c)}-\frac{1}{b+c}=\frac{1}{3(b+c)}>0
$$

From triangle's rule $b+c \Leftrightarrow 2(b+c)>2 a \Rightarrow 3(b+c)>2 a+b+c \Rightarrow$

$$
\Rightarrow \frac{1}{2 a b+b+c}>\frac{1}{3(b+c)}
$$

Solution 2 by Ravi Prakash-New Delhi-India

As a, b, c are the sides of a triangle, $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are also sides of a triangle.

$$
\begin{gathered}
\text { Let } x=\frac{1}{b+c}, y=\frac{1}{c+a}, z=\frac{1}{a+b} . \text { Then } x+y-z>0, \text { etc. } \\
L H S=\prod_{c y c}(x+y-z) \\
=\sqrt{(x+y-z)(y+z-x)} \sqrt{(x+y-z)(z+x-y)} \\
\sqrt{(y+z-x)(z+x-y)} \\
\leq\left[\frac{1}{2}(x+y-z+y+z-x)\right]\left[\frac{1}{2}(x+y-z+z+x-y)\right]
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\times\left[\frac{1}{2}(y+z-x+z+x-y)\right]=x y z=\left(\frac{1}{b+c}\right)\left(\frac{1}{c+a}\right)\left(\frac{1}{a+b}\right)
$$

Equality when triangle is equilateral. Let's assume $a \geq b \geq c, 2 s=a+b+c$

$$
\begin{gathered}
\Rightarrow 2 s-a \leq 2 s-b \leq 2 s-c \Rightarrow \frac{1}{b+c} \geq \frac{1}{c+a} \geq \frac{1}{a+b} \\
\text { It is sufficient to show that: } \frac{1}{b+c}<\frac{1}{c+a}+\frac{1}{a+b} \\
\Leftrightarrow(c+a)(a+b)<(a+b)(b+c)+(b+c)(c+a) \\
\Leftrightarrow b c+a(a+b+c)<a c+b(a+b+c)+a b+c(a+b+c) \\
\Leftrightarrow b c<a(b+c)+(a+b+c)(b+c-a) \\
\Leftrightarrow b c<a(b+c)+(b+c)^{2}-a^{2} \Leftrightarrow 0<a(b+c-a)+b^{2}+c^{2}+b c
\end{gathered}
$$

Which is true.
Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\text { Let } b+c=x, c+a=y, a+b=z
$$

Then, the proposed inequality gets transformed into:

$$
\begin{gathered}
\frac{1}{x y z}-\left(\frac{1}{z}+\frac{1}{x}-\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\right)\left(\frac{1}{y}+\frac{1}{z}-\frac{1}{x}\right) \geq 0 \Leftrightarrow \\
\Leftrightarrow \frac{x^{2} y^{2} z^{2}-(x y+y z-z x)(y z+z x-x y)(z x+x y-y z)}{(x y z)^{3}} \geq 0 \\
\Leftrightarrow \sum x^{3} y^{3}+3 x^{2} y^{2} z^{2} \geq x y z\left(\sum x^{2} y+\sum x y^{2}\right) \rightarrow \text { true }
\end{gathered}
$$

$\because \sum m^{3}+3 m n p \stackrel{\text { Schur }}{\geq} \sum m^{2} n+\sum m n^{2}$, where $m=x y, n=y z, p=z x$
$\therefore \prod\left(\frac{1}{a+b}+\frac{1}{b+c}-\frac{1}{c+a}\right) \leq \frac{1}{(a+b)(b+c)(c+a)}($ proved $)$
1338. If in $\triangle A B C, a+b+c=1$ then the following relationship holds:

$$
\sum_{c y c}\left(\frac{\mu^{2}(A)}{9}+\frac{2 \mu(A)}{3 \tan \frac{A}{3}}+\frac{a b}{c}\right)>7
$$

Solution by Soumava Chakraborty-Kolkata-India

ROMANIAN MATHEMATICAL MAGAZINE

$$
\text { Case 1 } x \geq \frac{3 \pi}{4} \therefore \cot ^{2} \frac{x}{3}-1 \leq 0 \Rightarrow x\left(\cot ^{2} \frac{x}{3}-1\right) \leq 0<3 \cot \frac{x}{3}\left(\because \frac{\pi}{4} \leq \frac{x}{3}<\frac{\pi}{3}\right)
$$

$$
\Rightarrow(1) \text { is true } \Rightarrow f^{\prime}(x)>0
$$

$\therefore g^{\prime}(x)>0 \Rightarrow g(x)$ is \uparrow on $\left(0, \frac{3 \pi}{4}\right) \Rightarrow g(x)>\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}} \frac{3 \cot \frac{x}{3} \sin ^{2} \frac{x}{3}}{\sin ^{2} \frac{x}{3} \cot ^{2} \frac{x}{3}-\sin ^{2} \frac{x}{3}}=$

$$
\begin{aligned}
& \text { Case 2 } x<\frac{3 \pi}{4} \text {. } \therefore \frac{x}{3}<\frac{\pi}{4} \Rightarrow \cot \frac{x}{3}>1 \Rightarrow \cot ^{2} \frac{x}{3}-1>0 \\
& \therefore(1) \Leftrightarrow \frac{3 \cot \frac{x}{3}}{\cot ^{2} \frac{x}{3}-1}>x \Leftrightarrow \frac{3 \cot \frac{x}{3}}{\cot ^{2} \frac{x}{3}-1}-x \stackrel{(2)}{>} 0 \\
& \operatorname{Let} \mathrm{~g}(\mathrm{x})=\frac{3 \cot \frac{\mathrm{x}}{3}}{\cot ^{2} \frac{x}{3}-1}-\mathrm{x} \forall \mathrm{x} \in\left(0, \frac{3 \pi}{4}\right) \\
& \therefore g^{\prime}(x)=\frac{\csc ^{2} \frac{x}{3}}{1-\cot ^{2} \frac{x}{3}}+\frac{2 \cot ^{2} \frac{x}{3} \csc ^{2} \frac{x}{3}}{\left(1-\cot ^{2} \frac{x}{3}\right)^{2}}-1=\frac{\csc ^{2} \frac{x}{3}}{1-\cot ^{2} \frac{x}{3}}\left(1+\frac{2 \cot ^{2} \frac{x}{3}}{1-\cot ^{2} \frac{x}{3}}\right)-1 \\
& =\left(\frac{1+\cot ^{2} \frac{x}{3}}{1-\cot ^{2} \frac{x}{3}}\right)\left(\frac{1+\cot ^{2} \frac{x}{3}}{1-\cot ^{2} \frac{x}{3}}\right)-1=\left(\frac{1+\cot ^{2} \frac{x}{3}}{1-\cot ^{2} \frac{x}{3}}\right)^{2}-1=\left(\frac{1+\frac{\cos ^{2} \frac{x}{3}}{\sin ^{2} \frac{x}{3}}}{1-\frac{\cos ^{2} \frac{x}{3}}{\sin ^{2} \frac{x}{3}}}\right)^{2}-1 \\
& =\frac{\left(\cos ^{2} \frac{x}{3}+\sin ^{2} \frac{x}{3}\right)^{2}}{\left(\cos ^{2} \frac{x}{3}-\sin ^{2} \frac{x}{3}\right)^{2}}-1=\frac{1}{\cos ^{2}\left(\frac{2 x}{3}\right)}-1>0
\end{aligned}
$$

$$
\begin{aligned}
& \text { www.ssmrmh.ro } \\
& \text { Let } f(x)=\frac{x^{2}}{9}+\frac{2 x \cot \frac{x}{3}}{3} \forall x \in(0, \pi) \\
& \therefore f^{\prime}(x)=\frac{6 \cot \frac{x}{3}-2 x\left(\csc ^{2} \frac{x}{3}-2\right)}{9}>0 \Leftrightarrow 3 \cot \frac{x^{(1)}}{3} \stackrel{y}{8}_{x}\left(\cot ^{2} \frac{x}{3}-1\right) \\
& \text { Now, } \cot ^{2} \frac{\mathrm{x}}{3}-1 \leq 0 \Leftrightarrow \cot \frac{\mathrm{x}}{3} \leq 1 \Leftrightarrow \frac{\mathrm{x}}{3} \geq \frac{\pi}{4} \Leftrightarrow \mathrm{x} \geq \frac{3 \pi}{4}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\lim _{x \rightarrow 0^{+}} \frac{\left(\frac{3}{2}\right) 2 \cos \frac{x}{3} \sin \frac{x}{3}}{\cos ^{2} \frac{x}{3}-\sin ^{2} \frac{x}{3}}=\left(\frac{3}{2}\right) \lim _{x \rightarrow 0^{+}}\left(\frac{\sin \frac{2 x}{3}}{\cos \frac{2 x}{3}}\right) \\
=\left(\frac{3}{2}\right)\left[\lim _{\frac{2 x}{3} \rightarrow 0^{+}}\left(\frac{\sin \frac{2 x}{3}}{\frac{2 x}{3}}\right)\right]\left[\lim _{\frac{2 x}{3} \rightarrow 0^{+}}\left(\frac{2 x}{3}\right)\right]\left[\lim _{\frac{2 x}{3} \rightarrow 0^{+}} \sec \frac{2 x}{3}\right]=\left(\frac{3}{2}\right)(1)(0)(1)=0 \Rightarrow g(x)= \\
=\frac{3 \cot \frac{x}{3}}{\cot ^{2} \frac{x}{3}-1}-x>0 \forall x \in\left(0, \frac{3 \pi}{4}\right) \Rightarrow(2) \Rightarrow(1) \text { is true } \Rightarrow f^{\prime}(x)>0
\end{gathered}
$$

Combining both the cases,

$$
\begin{aligned}
& f^{\prime}(\mathrm{x})>0 \forall x \in(0, \pi) \Rightarrow f(x) \text { is } \uparrow \text { on }(0, \pi) \Rightarrow \\
& f(x)>\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(\frac{x^{2}}{9}\right)+\lim _{x \rightarrow 0^{+}}\left(\frac{2 x \cot \frac{x}{3}}{3}\right) \\
& =0+3\left(\frac{2}{3}\right)\left[\lim _{\frac{2 x}{3} \rightarrow 0^{+}}\left(\frac{\frac{x}{3}}{\sin \frac{x}{3}}\right)\right]\left[\lim _{\frac{2 x}{3} \rightarrow 0^{+}} \cos \frac{x}{3}\right]=2(1)(1)=2 \\
& \therefore f(x)=\frac{\mathrm{x}^{2}}{9}+\frac{2 x \cot \frac{\mathrm{x}}{3} \stackrel{(i)}{3}_{s}^{s} 2 \forall x \in(0, \pi)}{} \\
& \operatorname{Via}(i), \Sigma\left(\frac{1}{9} \cdot \mu^{2}(A)+\frac{2}{3} \cdot \frac{\mu(A)}{\tan \frac{A}{3}}+\frac{\mathbf{a b}}{c}\right)> \\
& >\sum\left(2+\frac{a b}{c}\right)=6+\frac{\sum a^{2} b^{2}}{a b c} \geq 6+\frac{a b c \sum a^{* \sum a=1}}{a b c} \stackrel{\substack{\text { a }}}{\cong} 6+1=7 \text { (Proved) }
\end{aligned}
$$

1339. In acute $\triangle A B C$ the following relationship holds:

$$
\left(\sum_{c y c} \sin ^{2} A\right)\left(\sum_{c y c}\left(\frac{\mu(A)}{\cos A}\right)^{2}\right)>\frac{8 \pi^{2}}{3}
$$

Proposed by Radu Diaconu-Romania

Solution 1 by Soumava Chakraborty-Kolkata-India

For the sake of simplicity let us denote $\mu(\mathrm{A})$ by $A, \mu(\mathrm{~B})$ by B and $\mu(\mathrm{C})$ by C.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\left(\sum \sin ^{2} \mathbf{A}\right)\left(\sum\left(\frac{\mu(A)}{\cos \mathbf{A}}\right)^{2}\right) \stackrel{\text { reverse CBS }}{\geq}\left(\sum \frac{A \sin A}{\cos A}\right)^{2}=\left(\sum A \tan A\right)^{2} \stackrel{?}{>} \frac{8 \pi^{2}}{3} \Leftrightarrow \sum \operatorname{Atan} A{\underset{(1)}{2}}_{\underset{\sim}{2}}^{2 \sqrt{2} \pi}$ Let $f(x)=x \tan x \forall x \in\left(0, \frac{\pi}{2}\right)$. Then $f^{\prime \prime}(x)=2 \sec ^{2} x(x \tan x+1)>0 \because x \in\left(0, \frac{\pi}{2}\right) \Rightarrow f(x)$ is convex.

$$
\begin{aligned}
& \Rightarrow(1) \text { is true } \therefore\left(\sum \sin ^{2} A\right)\left(\sum\left(\frac{\mu(A)}{\cos A}\right)^{2}\right)>\frac{8 \pi^{2}}{3} \text { (Proved) }
\end{aligned}
$$

Solution 2 by Șerban George Florin-Romania

$$
\begin{gathered}
\left(\sum \sin ^{2} A\right) \cdot\left(\sum\left(\frac{A}{\cos A}\right)^{2}\right) \stackrel{C B S}{\geq}\left(\sum A \cdot \tan A\right)^{2} \\
\mu(A) \leq \mu(B) \leq \mu(C) \Rightarrow \tan A \leq \tan B \leq \tan C
\end{gathered}
$$

Applying Chebyshev's inequality $\Rightarrow \sum A \tan A \geq \frac{1}{3} \sum A \sum \tan A=\frac{\pi}{3} \cdot \pi \tan A$

$$
\begin{gathered}
\left(\sum \sin ^{2} A\right)\left(\sum\left(\frac{A}{\cos A}\right)^{2}\right) \geq\left(\sum A \tan A\right)^{2} \geq \frac{\pi^{2}}{9}(\pi \tan A)^{2} \geq \frac{8 \pi^{2}}{3} \\
(\pi \tan A)^{2} \geq 24, \tan A \tan B \tan C \geq 2 \sqrt{6} \\
\tan A \tan B \tan C=\frac{2 r s}{s^{2}-(2 R+r)^{2}} \geq 2 \sqrt{6}, s^{2}-(2 R+r)^{2} \leq \frac{r A}{\sqrt{6}} \\
s^{2} \leq(2 R+r)^{2}+\frac{s}{\sqrt{6}}
\end{gathered}
$$

Applying Mitrinovic's inequality:

$$
\begin{aligned}
& s \leq \frac{R \sqrt{3}}{2} \Rightarrow s^{2} \leq \frac{3 R^{2}}{4} \leq 4 R^{2}+4 R r+r^{2}+\frac{S}{\sqrt{6}} \\
& \Rightarrow \frac{13}{4} R^{2}+4 R r+r^{2}+\frac{s}{\sqrt{6}} \geq 0, \text { true }
\end{aligned}
$$

1340. If $m \geq 0$ then in $\triangle A B C$ the following relationship holds:

$$
\frac{a^{2} \sin ^{2 m} A}{(\sin B \sin C)^{m}}+\frac{b^{2} \sin ^{2 m} B}{(\sin C \sin A)^{m}}+\frac{c^{2} \sin ^{2 m} C}{(\sin A \sin B)^{m}} \geq 36 r^{2}
$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gather*}
\frac{a^{2} \sin ^{2 m} A}{(\sin B \sin C)^{m}}+\frac{b^{2} \sin 2^{2 m} B}{(\sin C \sin A)^{m}}+\frac{c^{2} \sin ^{2 m} C}{(\sin A \sin B)^{m}} \geq 36 r^{2} \\
\frac{a}{\sin A}=2 R \Rightarrow \sin A=\frac{a}{2 R} \Rightarrow \sin ^{2 m} A=\frac{a^{2 m}}{2^{2 m} \cdot R^{2 m}} \\
(\sin B \cdot \sin C)^{m}=\left(\frac{b}{2 R} \cdot \frac{c}{2 R}\right)^{m}=\frac{b^{m} c^{m}}{2^{2 m} \cdot R^{2 m}} \\
(1) \Leftrightarrow \frac{a^{2} \cdot a^{2 m}}{b^{m} \cdot c^{m}}+\frac{b^{2} \cdot b^{2 m}}{a^{m} \cdot c^{m}}+\frac{c^{2} \cdot c^{2 m}}{a^{m} \cdot b^{m}} \geq 36 r^{2} \\
=3 \sqrt[3]{16 R^{2} S^{2}}=3 \sqrt[3]{16 R^{2} s^{2} r^{2}} \geq 3 \sqrt[3]{16 \cdot 4 r^{2} \cdot s^{2} \cdot r^{2}}=3 \sqrt[3]{64 s^{2} r^{4}}= \\
\frac{a^{2} \cdot a^{2 m}}{b^{m} \cdot c^{m}}+\frac{b^{2} \cdot b^{2 m}}{a^{m} \cdot c^{m}}+\frac{c^{2} \cdot c^{2 m}}{a^{m} \cdot b^{m}} \geq 3 \sqrt[3]{\frac{a^{2} b^{2} c^{2} \cdot a^{2 m} \cdot b^{2 m} \cdot c^{2 m}}{a^{2 m} \cdot b^{2 m} \cdot c^{2 m}}}=3 \sqrt[3]{a^{2} b^{2} c^{2}}= \\
\left.=3 \cdot \frac{3}{s^{2} r^{4}} \geq 36 r^{2} \right\rvert\,: 12 \\
\sqrt[3]{s^{2} r^{4}} \geq 3 r^{2} \Leftrightarrow s^{2} r^{4} \geq 27 r^{6} \mid: r^{4} \\
s^{2} \geq 27 r^{2} \Leftrightarrow s \geq 3 \sqrt{3} r \quad(A) \tag{A}
\end{gather*}
$$

(Mitrinovic)
Solution 2 by Avishek Mitra-West Bengal-India

$$
\begin{gathered}
\Leftrightarrow \Omega=\sum \frac{a^{2} \cdot \sin ^{2 m} A}{(\sin B \cdot \sin C)^{m}} \stackrel{A M-G M}{\geq} 3\left\{a^{2} b^{2} c^{2} \frac{(\sin A \cdot \sin B \cdot \sin C)^{2 m}}{\left(\sin ^{2} A \cdot \sin ^{2} B \cdot \sin ^{2} C\right)^{m}}\right\}^{\frac{1}{3}} \\
\Rightarrow \Omega \geq 3(a b c)^{\frac{2}{3}}=3(4 R r s)^{\frac{2}{3}} \\
\Rightarrow \Omega \geq 3(4 \cdot 2 r \cdot 3 \sqrt{3} r)^{\frac{2}{r}}[\because R \geq 2 r, s \geq 3 \sqrt{3} r] \\
\Rightarrow \Omega \geq 3 \cdot 8^{\frac{2}{3}} \cdot\left(3^{\frac{3}{2}}\right)^{\frac{2}{3}}\left(r^{3}\right)^{\frac{2}{3}} \Leftrightarrow \Omega \geq 36 r^{2} \text { (proved) }
\end{gathered}
$$

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
L H S=4 R^{2} \sum \frac{\left(\sin ^{2} A\right)^{m+1}}{(\sin B \sin C)^{m}}
$$

$$
\begin{aligned}
& \stackrel{\text { Radon }}{\geq} 4 R^{2} \frac{\left(\sum \sin ^{2} A\right)^{m+1}}{\left(\sum \sin B \sin C\right)^{m}} \geq \frac{4 R^{2}\left(\sum \sin ^{2} A\right)^{m+1}}{\left(\sum \sin ^{2} A\right)^{m}} \\
& =4 R^{2} \sum \sin ^{2} A=\sum a^{\text {Ionescu-Weitzenbock }} \geq \geq \sqrt{3} r s
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\stackrel{\text { Mitrinovic }}{\geq}(4 \sqrt{3} r)(3 \sqrt{3} r)=36 r^{2}$ (proved)
1341. If in $\triangle A B C, \mu(B)=2 \mu(A), \mu(C)=2 \mu(B)$ then the following relationship holds:

$$
h_{a}^{2}+h_{b}^{2}+h_{c}^{2}>\frac{7 \sqrt{21}}{10} R^{2}
$$

Proposed by Daniel Sitaru-Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\pi=A+2 A+4 A \Rightarrow A=\frac{\pi}{7}, B=\frac{2 \pi}{7} \text { and } C=\frac{4 \pi}{7}
$$

Now, $\cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{5 \pi}{7}=\frac{2 \sin \frac{\pi}{7} \cos \frac{\pi}{7}+2 \sin \frac{\pi}{7} \cos \frac{3 \pi}{7}+2 \sin \frac{\pi}{7} \cos \frac{5 \pi}{7}}{2 \sin \frac{\pi}{7}}=$

$$
\frac{\sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}-\sin \frac{2 \pi}{7}+\sin \frac{6 \pi}{7}-\sin \frac{4 \pi}{7}}{2 \sin \frac{\pi}{7}}
$$

$$
=\frac{\sin \left(\pi-\frac{\pi}{7}\right)}{2 \sin \frac{\pi}{7}}=\frac{\sin \frac{\pi}{7}}{2 \sin \frac{\pi}{7}}=\frac{1}{2} . \therefore \cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{5 \pi}{7} \stackrel{(1)}{=} \frac{1}{2}
$$

$\therefore \cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{8 \pi}{7}=-\left(\cos \frac{5 \pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{\pi}{7}\right) \stackrel{\text { by (1) }}{\cong}-\frac{1}{2}$

$$
\therefore \cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{8 \pi}{7} \stackrel{(2)}{=}-\frac{1}{2}
$$

Now, $\left(\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{8 \pi}{7}\right)^{2}+\left(\sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}+\sin \frac{8 \pi}{7}\right)^{2}=$

$$
=3+2 \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}+2 \cos \frac{4 \pi}{7} \cos \frac{8 \pi}{7}+2 \cos \frac{8 \pi}{7} \cos \frac{2 \pi}{7}
$$

$$
+2 \sin \frac{2 \pi}{7} \sin \frac{4 \pi}{7}+2 \sin \frac{4 \pi}{7} \sin \frac{8 \pi}{7}+2 \sin \frac{8 \pi}{7} \sin \frac{2 \pi}{7}=
$$

$$
=3+2\left(\cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}-\sin \frac{2 \pi}{7} \sin \frac{4 \pi}{7}\right)+2\left(\cos \frac{4 \pi}{7} \cos \frac{8 \pi}{7}-\sin \frac{4 \pi}{7} \sin \frac{8 \pi}{7}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE

$+2\left(\cos \frac{8 \pi}{7} \cos \frac{2 \pi}{7}-\sin \frac{8 \pi}{7} \sin \frac{2 \pi}{7}\right)=3+2\left(\cos \frac{6 \pi}{7}+\cos \frac{12 \pi}{7}+\cos \frac{10 \pi}{7}\right)=$ $=3-2\left(\cos \frac{\pi}{7}+\cos \frac{5 \pi}{7}+\cos \frac{3 \pi}{7}\right) \stackrel{\text { by }(1)}{=} 3-1=2$
$\therefore\left(\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{8 \pi}{7}\right)^{2}+\left(\sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}+\sin \frac{8 \pi}{7}\right)^{2}=2$

$$
\stackrel{\text { by (2) }}{\Rightarrow} \frac{1}{4}+\left(\sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}+\sin \frac{8 \pi}{7}\right)^{2}=2
$$

$\Rightarrow\left(\sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}+\sin \frac{8 \pi}{7}\right)^{2}=\frac{7}{4} \Rightarrow \sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}+\sin \frac{8 \pi}{7}=\frac{\sqrt{7}}{2} \Rightarrow$

$$
\Rightarrow \sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}-\sin \frac{\pi}{7} \stackrel{(3)}{=} \frac{\sqrt{7}}{2}
$$

Again, $\left(\sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7}\right)\left(\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}\right)=$

$$
=\frac{\left(2 \sin \frac{\pi}{7} \cos \frac{\pi}{7}\right)\left(2 \sin \frac{2 \pi}{7} \cos \frac{2 \pi}{7}\right)\left(2 \sin \frac{3 \pi}{7} \cos \frac{3 \pi}{7}\right)}{8}=\frac{\sin \frac{2 \pi}{7} \sin \frac{4 \pi}{7} \sin \frac{6 \pi}{7}}{8}
$$

$$
=\frac{\left(\sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7} \sin \frac{\pi}{7}\right)}{8} \Rightarrow \cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7} \stackrel{(4)}{=} \frac{1}{8}
$$

$$
\text { Also, }\left(2 \sin ^{2} \frac{\pi}{7}\right)\left(2 \sin ^{2} \frac{2 \pi}{7}\right)\left(2 \sin ^{2} \frac{3 \pi}{7}\right)=
$$

$$
=\left(1-\cos \frac{2 \pi}{7}\right)\left(1-\cos \frac{4 \pi}{7}\right)\left(1-\cos \frac{6 \pi}{7}\right)
$$

$$
=1+\frac{1}{2}\left(2 \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7}+2 \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7}+2 \cos \frac{6 \pi}{7} \cos \frac{2 \pi}{7}\right)-
$$

$$
-\cos \frac{2 \pi}{7}-\cos \frac{4 \pi}{7}-\cos \frac{6 \pi}{7}-\cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7}
$$

$$
=1+\frac{1}{2}\left(\cos \frac{6 \pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{10 \pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{8 \pi}{7}+\cos \frac{4 \pi}{7}\right)-
$$

$$
-\cos \frac{2 \pi}{7}-\cos \frac{4 \pi}{7}-\cos \frac{6 \pi}{7}-\cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7} \cos \frac{\pi}{7}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\stackrel{\text { by (4) }}{\stackrel{\text { (}}{=}} 1+\frac{1}{2}\left(-\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}-\cos \frac{3 \pi}{7}+\cos \frac{2 \pi}{7}-\cos \frac{\pi}{7}-\cos \frac{3 \pi}{7}\right)-$

$$
-\cos \frac{2 \pi}{7}-\cos \frac{4 \pi}{7}-\cos \frac{6 \pi}{7}-\frac{1}{8}
$$

$$
=\frac{7}{8}+\cos \frac{2 \pi}{7}-\cos \frac{\pi}{7}-\cos \frac{3 \pi}{7}-\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{\pi}{7}=\frac{7}{8}
$$

$$
\Rightarrow \sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7}=\sqrt{\frac{7}{64}} \therefore \sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{4 \pi}{7} \stackrel{(5)}{=} \frac{\sqrt{7}}{8}
$$

Moreover, $\frac{1}{\sin \frac{2 \pi}{7}}+\frac{1}{\sin \frac{3 \pi}{7}}=\frac{\sin \frac{3 \pi}{7}+\sin \frac{5 \pi}{7}}{\sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7}}=\frac{2 \sin \frac{4 \pi}{7} \cos \frac{\pi}{7}}{2 \sin \frac{\pi}{7} \cos \frac{\pi}{7} \sin \frac{4 \pi}{7}}=\frac{1}{\sin \frac{\pi}{7}}$

$$
\begin{aligned}
& \Rightarrow\left(\frac{1}{\sin \frac{2 \pi}{7}}+\frac{1}{\sin \frac{3 \pi}{7}}-\frac{1}{\sin \frac{\pi}{7}}\right)^{2}=0 \\
& \Rightarrow \frac{1}{\sin ^{2} \frac{2 \pi}{7}}+\frac{1}{\sin ^{2} \frac{3 \pi}{7}}+\frac{1}{\sin ^{2} \frac{\pi}{7}}+
\end{aligned}
$$

$$
+2\left(\frac{1}{\sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7}}-\frac{1}{\sin \frac{3 \pi}{7} \sin \frac{\pi}{7}}-\frac{1}{\sin \frac{\pi}{7} \sin \frac{2 \pi}{7}}\right)=0
$$

$$
\Rightarrow \frac{1}{\sin ^{2} \frac{2 \pi}{7}}+\frac{1}{\sin ^{2} \frac{3 \pi}{7}}+\frac{1}{\sin ^{2} \frac{\pi}{7}}-\left(\frac{2}{\sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{4 \pi}{7}}\right)\left(\sin \frac{2 \pi}{7}+\sin \frac{3 \pi}{7}-\sin \frac{\pi}{7}\right)=0
$$

by (3)and (5)

$$
\begin{aligned}
& \frac{1}{\sin ^{2} \frac{2 \pi}{7}}+\frac{1}{\sin ^{2} \frac{3 \pi}{7}}+\frac{1}{\sin ^{2} \frac{\pi}{7}}-\left(\frac{16}{\sqrt{7}}\right)\left(\frac{\sqrt{7}}{2}\right)=0 \\
& \Rightarrow \frac{1}{\sin ^{2} \frac{2 \pi}{7}}+\frac{1}{\sin ^{2} \frac{3 \pi}{7}}+\frac{1}{\sin ^{2} \frac{\pi}{7}} \stackrel{(6)}{=} 8
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Now, $\sum \mathbf{h a}_{\mathbf{a}}^{2}=\sum\left(\frac{\mathbf{b c}}{2 \mathbf{R}}\right)^{2}=\sum\left(\frac{4 \mathbf{R}^{2} \sin B \sin \mathrm{C}}{2 \mathbf{R}}\right)^{2}=4 \mathbf{R}^{2} \sum \sin ^{2} \mathbf{B} \sin ^{2} \mathrm{C}$

$$
=4 R^{2}\left(\sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{4 \pi}{7}\right)^{2}\left(\frac{1}{\sin ^{2} \frac{2 \pi}{7}}+\frac{1}{\sin ^{2} \frac{3 \pi}{7}}+\frac{1}{\sin ^{2} \frac{\pi}{7}}\right)
$$

$\stackrel{\text { by (5) and (6) }}{=} 4 R^{2}\left(\frac{56}{64}\right)=\frac{7 R^{2}}{2} \therefore$ LHS $=\frac{7 R^{2}}{2}>\frac{7 \sqrt{21} R^{2}}{10}$ (Proved)
1342. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{4}{(b+c)^{2}}+\frac{9}{(c+a)^{2}}+\frac{1}{(a+b)^{2}}\right)\left(\frac{9}{(b+c)^{2}}+\frac{1}{(c+a)^{2}}+\frac{4}{(a+b)^{2}}\right)>49 \Sigma \frac{1}{(a+b)^{2}(b+c)^{2}}
$$

Proposed by Daniel Sitaru-Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { LHS }=\frac{36}{(b+c)^{4}}+\frac{4}{(b+c)^{2}(c+a)^{2}}+\frac{16}{(a+b)^{2}(b+c)^{2}}+\frac{81}{(b+c)^{2}(c+a)^{2}} \\
& +\frac{9}{(c+a)^{4}}+\frac{36}{(c+a)^{2}(a+b)^{2}}+\frac{9}{(a+b)^{2}(b+c)^{2}} \\
& +\frac{1}{(c+a)^{2}(a+b)^{2}}+\frac{4}{(a+b)^{4}}>\boldsymbol{R H S}= \\
& =\frac{49}{(a+b)^{2}(b+c)^{2}}+\frac{49}{(b+c)^{2}(c+a)^{2}}+\frac{49}{(c+a)^{2}(a+b)^{2}} \\
& \Leftrightarrow\left(\frac{36}{(b+c)^{4}}+\frac{4}{(a+b)^{4}}-\frac{24}{(a+b)^{2}(b+c)^{2}}\right)+\frac{36}{(b+c)^{2}(\mathbf{c}+\mathbf{a})^{2}}+\frac{9}{(\mathbf{c}+\mathbf{a})^{4}}>\frac{12}{(\mathbf{c}+\mathbf{a})^{2}(\mathbf{a}+\mathbf{b})^{2}} \\
& \Leftrightarrow\left(\frac{6}{(b+c)^{2}}-\frac{2}{(a+b)^{2}}\right)^{2}+\left(\frac{3}{(c+a)^{2}}\right)\left(\frac{12}{(b+c)^{2}}+\frac{3}{(c+a)^{2}}-\frac{4}{(a+b)^{2}}\right) \stackrel{(1)}{>} 0 \\
& (1) \Rightarrow \text { it suffices to prove: } \frac{12}{(\mathrm{~b}+\mathrm{c})^{2}}+\frac{3}{(\mathrm{c}+\mathrm{a})^{2}}-\frac{4}{(\mathrm{a}+\mathrm{b})^{2}} \stackrel{(2)}{>} 0 \\
& \text { Let } \mathbf{s}-\mathrm{a}=\mathrm{x}, \mathrm{~s}-\mathrm{b}=\mathrm{y} \text { and } \mathrm{s}-\mathrm{c}=\mathrm{z} \therefore \mathrm{~s}=\mathrm{x}+\mathrm{y}+\mathrm{z} \\
& \Rightarrow \mathbf{a}=\mathrm{y}+\mathrm{z}, \mathrm{~b}=\mathrm{z}+\mathrm{x}, \mathrm{c}=\mathrm{x}+\mathrm{y} \text { and using this substitution, } \\
& (2) \Leftrightarrow \frac{12}{(2 x+y+z)^{2}}+\frac{3}{(2 y+z+x)^{2}}-\frac{4}{(2 z+x+y)^{2}}>0
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \Leftrightarrow 12(2 y+z+x)^{2}(2 z+x+y)^{2}+3(2 z+x+y)^{2}(2 x+y+z)^{2}- \\
& -4(2 x+y+z)^{2}(2 y+z+x)^{2}>0 \\
& \Leftrightarrow 8 x^{4}+28 x^{3} y+84 x^{3} z+63 x^{2} y^{2}+294 x^{2} y z+203 x^{2} z^{2}+82 x y^{3}+420 x^{2} z \\
& +518 x y z^{2}+180 x z^{3}+35 y^{4}+210 y^{3} z+383 y^{2} z^{2} \\
& +252 \mathrm{yz}^{3}+56 \mathrm{z}^{4}>0 \rightarrow \text { true } \Rightarrow(2) \Rightarrow(1) \\
& \Rightarrow \text { proposed inequality is true (Proved) }
\end{aligned}
$$

1343. In $\triangle A B C, I$ - incenter, R_{a}, R_{b}, R_{c} - circumradii of $\triangle B I C, \Delta C I A, \Delta A I B$ the following relationship holds:

$$
\sum_{c y c}\left(h_{a}-2 r\right) \sqrt{\frac{R_{a}}{A I}} \leq(r+R) \sqrt{\frac{2 r}{R}}
$$

Proposed by Bogdan Fuștei-Romania
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{equation*}
\angle \mathrm{BIC}=\pi-\left(\frac{\mathrm{B}+\mathbf{C}}{2}\right)=\pi-\left(\frac{\pi-\mathbf{A}}{2}\right)=\frac{\pi}{2}+\frac{\mathbf{A}}{2} \tag{a}
\end{equation*}
$$

Using sine rule on Δ BIC, $2 R_{a} \sin \left(\frac{\pi}{2}+\frac{A}{2}\right)=4 R \sin \frac{A}{2} \cos \frac{A}{2} \Rightarrow R_{a} \stackrel{(a)}{=} 2 R \sin \frac{A}{2}$

$$
\begin{aligned}
& \text { Similarly, } \mathbf{R}_{\mathrm{b}} \stackrel{(\mathrm{~b})}{\stackrel{m}{m}} 2 \operatorname{Rsin} \frac{\mathrm{~B}}{2} \text { and } \mathbf{R}_{\mathrm{c}} \stackrel{(\mathrm{c})}{\cong} 2 \operatorname{Rsin} \frac{\mathrm{C}}{2} \text {. Also, } \\
& \text { Similarly, } \mathbf{R}_{\mathrm{b}} \stackrel{(\mathrm{~b})}{\stackrel{m}{m}} 2 \operatorname{Rsin} \frac{\mathrm{~B}}{2} \text { and } \mathbf{R}_{\mathrm{c}} \stackrel{(\mathrm{c})}{\cong} 2 \operatorname{Rsin} \frac{\mathrm{C}}{2} \text {. Also, } \\
& b+c-a=4 R \cos \frac{A}{2} \cos \frac{B-C}{2}-4 R \sin \frac{A}{2} \cos \frac{A}{2}= \\
& =4 R \cos \frac{A}{2}\left(\cos \frac{B-C}{2}-\cos \frac{B+C}{2}\right)=8 R \cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \\
& \Rightarrow s-a \stackrel{(i)}{=} 4 R \cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
\end{aligned}
$$

Similarly, s-b $\stackrel{(\text { (ii) }}{=} 4$ R $\cos \frac{B}{2} \sin \frac{C}{2} \sin \frac{A}{2}$ and $s-\mathbf{c} \stackrel{(\text { (iii) }}{=} 4 R \cos \frac{C}{2} \sin \frac{A}{2} \sin \frac{B}{2}$ Using (a), (b), (c):

$$
\sum\left(h_{a}-2 r\right) \sqrt{\frac{\mathbf{R}_{\mathrm{a}}}{A I}}=\sum\left(\frac{2 r s}{a}-2 r\right) \sqrt{\frac{2 R \sin ^{2} \frac{A}{2}}{r}}=
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& =2 r \sqrt{\frac{2 R}{r}} \Sigma\left(\frac{s-a}{a} \sin \frac{A}{2}\right) \stackrel{\text { by (i),(ii),(iii) }}{=} 2 r \sqrt{\frac{2 R}{r}} \sum\left(\frac{4 R \cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{4 R \sin \frac{A}{2} \cos \frac{A}{2}} \sin \frac{A}{2}\right) \\
& =2 r \sqrt{\frac{2 R}{r}}\left(\frac{r}{4 R}\right) \sum \operatorname{cosec} \frac{A}{2}=\sqrt{\frac{2 R}{r}}\left(\frac{r^{2}}{2 R}\right) \sum \sqrt{\frac{b c(s-a)}{(s-a)(s-b)(s-c)}}=
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { Gerretsen }}{\underset{\leq}{s}} \sqrt{\frac{\mathrm{r}}{2 \mathrm{R}}} \sqrt{4 \mathbf{R}^{2}+8 R r+4 r^{2}}=2(\mathbf{R}+\mathbf{r}) \sqrt{\frac{\mathrm{r}}{2 \mathrm{R}}}=(\mathrm{r}+\mathrm{R}) \sqrt{\frac{2 \mathrm{R}}{\mathrm{R}}} \text { (Proved) }
\end{aligned}
$$

Solution 2 by Șerban George Florin-Romania

$$
\begin{aligned}
& A I=\frac{r}{\sin \frac{A}{2}}, \sigma_{B I C}=\frac{a \cdot r}{2} \\
& R_{a}=\frac{B I \cdot C I \cdot B C}{4 \sigma_{B I C}}=\frac{\frac{r}{\sin \frac{B}{2}} \cdot \frac{r}{\sin \frac{C}{2}} \cdot a}{2 a r} \\
& R_{a}=\frac{r}{2 \sin \frac{B}{2} \sin \frac{C}{2}}, \frac{R_{a}}{A I}=\frac{r}{2 \sin \frac{B}{2} \sin \frac{C}{2}} \cdot \frac{\sin \frac{A}{2}}{r}=\frac{\sin \frac{A}{2}}{2 \sin \frac{B}{2} \sin \frac{C}{2}} \\
& \frac{R_{a}}{A I}=\frac{\sqrt{\frac{(s-b)(s-c)}{b c}}}{2 \sqrt{\frac{(s-a)(s-c)}{a c}} \cdot \sqrt{\frac{(s-a)(s-b)}{a b}}}=\frac{a}{2(s-a)}, \sqrt{\frac{R_{a}}{A I}}=\frac{\sqrt{a}}{\sqrt{2} \sqrt{s-a}} \\
& h_{a}-2 r=\frac{2 S}{a}-\frac{2 S}{s}=\frac{2 S(s-a)}{a s},\left(h_{a}-2 r\right) \sqrt{\frac{R_{a}}{A I}}=\frac{2 S(s-a)}{a S} \cdot \frac{\sqrt{a}}{\sqrt{2} \cdot \sqrt{s-a}}=
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\sqrt{2} \cdot r \sqrt{\frac{s-a}{a}} \Rightarrow \sum\left(h_{a}-2 r\right) \sqrt{\frac{R_{a}}{A I}}=\sqrt{2} R \cdot \sum \sqrt{\frac{s-a}{a}} \leq(r+R) \sqrt{\frac{2 r}{R}} \\
\Rightarrow \sum \sqrt{\frac{s-a}{a}} \leq \frac{r+R}{R} \sqrt{\frac{r}{R}},\left(\sum \sqrt{\frac{s-a}{a}}\right)^{2} \stackrel{C B S}{\leq} 3 \cdot \sum\left(\sqrt{\frac{s-a}{a}}\right)^{2} \leq \\
\leq \frac{(r+R)^{2} \cdot r}{r^{2} \cdot R}, 3 \sum \frac{s-a}{a} \leq \frac{R^{2}+2 R r+r^{2}}{R r} \\
\Rightarrow 3 \cdot \frac{s^{2}+r^{2}-8 R r}{4 R r} \leq \frac{R^{2}+2 R r+r^{2}}{R r}, 3 s^{2}+3 r^{2}-24 R r \leq 4 R^{2}+8 R r+4 r^{2} \\
3 s^{2} \leq 4 R^{2}+32 R r+r^{2} \Rightarrow s^{2} \leq \frac{4 R^{2}+32 R r+r^{2}}{3}
\end{gathered}
$$

$$
\text { Applying Mitrinovic's inequality: } s \leq \frac{R \sqrt{3}}{2} \Rightarrow s^{2} \leq \frac{R \sqrt{3}}{2} \Rightarrow s^{2} \leq \frac{3 R^{2}}{4}
$$

$$
\Rightarrow s^{2} \leq \frac{3 R^{2}}{4} \leq \frac{4 R^{2}+32 R r+r^{2}}{3} \Rightarrow 9 R^{2} \leq 16 R^{2}+128 R r+4 r^{2}
$$

$$
\Rightarrow 7 R^{2}+128 R r+4 r^{2} \geq 0, \text { true }
$$

1344. Let $\Delta A^{\prime} B^{\prime} C^{\prime}$ be the orthic triangle of acute $\triangle A B C, H$ - orthocenter.

Prove that:

$$
\sum_{c y c}\left(\frac{A H}{B^{\prime} C^{\prime}}\right)^{n} \cdot \sum_{c y c}\left(\frac{a^{2}}{r_{b} r_{c}}\right)^{m} \geq \frac{1}{9}\left(\frac{2}{\sqrt{3}}\right)^{n} \cdot\left(\frac{4}{3}\right)^{m}, m, n \geq 2
$$

Proposed by Radu Diaconu-Romania

Solution by Șerban George Florin-Romania

$$
\begin{gathered}
\frac{A H}{B^{\prime} C^{\prime}}=\frac{2 R \cos A}{a \cos A}=\frac{2 R}{2 R \sin A}=\frac{1}{\sin A} \\
\sum_{c y c}\left(\frac{A H}{B^{\prime} C^{\prime}}\right)^{n} \stackrel{H o l d e r}{\geq} \frac{\left(\sum \frac{A H}{B^{\prime} C^{\prime}}\right)^{n}}{3^{n-1}}=\frac{\left(\sum \frac{1}{\sin A}\right)^{n}}{3^{n-1}} \geq \frac{(2 \sqrt{3})^{n}}{3^{n} \cdot 3^{-1}}=\left(\frac{2 \sqrt{3}}{3}\right)^{n} \cdot 3=\left(\frac{2}{\sqrt{3}}\right)^{n} \cdot 3 \\
\sum_{\text {cyc }}\left(\frac{a^{2}}{r_{b} r_{c}}\right)^{m} \stackrel{H o l d e r}{\geq} \frac{\left(\sum \frac{a^{2}}{r_{b} r_{c}}\right)^{m}}{3^{m-1}} \stackrel{\text { Bergstrom }}{\geq} \frac{\left[\frac{(a+b+c)^{2}}{\sum r_{b} r_{c}}\right]^{m}}{3^{m-1}}=\frac{\left(\frac{4 s^{2}}{s^{2}}\right)^{m}}{3^{m}} \cdot 3=\left(\frac{4}{3}\right)^{m} \cdot 3
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\Rightarrow \sum_{c y c}\left(\frac{A H}{B^{\prime} C^{\prime}}\right)^{n} \cdot \sum_{c y c}\left(\frac{a^{2}}{r_{b} r_{c}}\right)^{m} \geq\left(\frac{2}{\sqrt{3}}\right)^{n} \cdot 3 \cdot\left(\frac{4}{3}\right)^{m} \cdot 3= \\
\quad=9 \cdot\left(\frac{2}{\sqrt{3}}\right)^{n} \cdot\left(\frac{4}{3}\right)^{m}>\frac{1}{9} \cdot\left(\frac{2}{\sqrt{3}}\right)^{n} \cdot\left(\frac{4}{3}\right)^{m}, \text { true }
\end{gathered}
$$

1345. If in $\triangle A B C, A D, B E, C F$ - internal bisectors, I - incenter then the following relationship holds:

$$
\left(\sum_{c y c} r_{a}^{2 n}\right)\left(\sum_{c y c}\left(\frac{D I}{A I}\right)^{m}\right) \geq \frac{9 \cdot s^{2 n}}{2^{m} \cdot 3^{n}}, m, n \geq 2
$$

Proposed by Radu Diaconu-Romania

Solution by Marian Ursărescu-Romania

From Hölder's inequality \Rightarrow

$$
\begin{equation*}
\left(r_{a}^{2}\right)^{n}+\left(r_{b}^{2}\right)^{n}+\left(r_{c}^{2}\right)^{n} \geq \frac{\left(r_{a}^{2}+r_{b}^{2}++_{c}^{2}\right)^{n}}{3^{n-1}} \tag{1}
\end{equation*}
$$

But $r_{a}^{2}+r_{b}^{2}+r_{c}^{2} \geq s^{2}$ (Bokov's inequality)

$$
\begin{align*}
& \text { From (1)+(2) } \Rightarrow \sum r_{a}^{2 n} \geq \frac{s^{2 n}}{3^{n-1}} \tag{3}\\
& \qquad \Delta A B D \Rightarrow \frac{D I}{A I}=\frac{B D}{A B}=\frac{B D}{c}
\end{align*}
$$

But $\triangle A B C: \frac{B D}{D C}=\frac{c}{b} \Rightarrow \frac{B D}{a}=\frac{c}{b+c} \Rightarrow B D=\frac{a c}{b+c} \Rightarrow$

$$
\begin{align*}
& \frac{D I}{A I}=\frac{a}{b+c} \text {. Again Hölder's inequality } \Rightarrow \\
& \sum\left(\frac{D I}{A I}\right)^{m} \geq \frac{\left(\sum_{\frac{D I}{A I}}\right)^{m}}{3^{m-1}}=\frac{\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)^{m}}{3^{m-1}} \tag{4}
\end{align*}
$$

From Nesbitt inequality $\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \text { From }(4)+(5) \Rightarrow \sum\left(\frac{D I}{A I}\right)^{m} \geq \frac{1}{3^{m-1}}\left(\frac{3}{2}\right)^{m}=\frac{3}{2^{m}} \\
& \text { From }(3)+(6) \Rightarrow\left(\sum r_{a}^{2 n}\right) \cdot \sum\left(\frac{D I}{A I}\right)^{m} \geq 9 \cdot \frac{s^{2 n}}{3^{n} \cdot 2^{m}}
\end{aligned}
$$

1346. In $\triangle A B C, O$ - circumcentre, I - incentre the following relationship holds:

$$
\left(w_{a}-w_{b}\right)^{2}+\left(w_{b}-w_{c}\right)^{2}+\left(w_{c}-w_{a}\right)^{2} \leq n \cdot O I^{2}, n \geq \frac{35}{2}
$$

Proposed by Marin Chirciu-Romania

Solution 1 by Marian Ursărescu-Romania

We must show:

$$
\begin{gather*}
w_{a}^{2}+w_{b}^{2}+w_{c}^{2}-\left(w_{a} w_{b}+w_{b} w_{c}+w_{a} w_{c}\right) \leq \frac{n}{2} O I^{2}(1) \\
\text { But } O I^{2}=R^{2}-2 R r \text { (2) } \\
w_{a} \leq \sqrt{s(s-a), s}=\frac{a+b+c}{2} \Rightarrow w_{a}^{2}+w_{a}^{2}+w_{c}^{2} \leq \\
s(s-a)+s(s-b)+s(s-c)=s^{2} \quad \text { (3) } \\
w_{a} w_{b}+w_{b} w_{c}+w_{a} w_{c} \geq h_{a} h_{b}+h_{b} h_{c}+h_{a} h_{c}=\frac{2 s^{2} r}{R} \text { (4) } \tag{4}\\
\text { From (1)+(2)+(3)+(4) we must show: } \\
s^{2}-\frac{2 s^{2} r}{R} \leq n\left(R^{2}-2 R r\right) \Leftrightarrow \frac{s^{2}(R-2 r)}{R} \leq \frac{n R}{2}(R-2 r) \Leftrightarrow \\
s^{2} \leq \frac{n}{2} R^{2}(5)
\end{gather*}
$$

(From Euler $R \geq 2 r$)
From Mitrinovic's inequality $s^{2} \leq \frac{27}{4} R^{2} \leq \frac{n}{2} R^{2} \Leftrightarrow 27 \leq 2 n$, true because

$$
2 n \geq 35 \Rightarrow \text { (5) it is true. }
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
\sum w_{a}{ }^{2}= & \sum \frac{4 \mathbf{b c s}(\mathbf{s}-\mathbf{a})}{(\mathbf{b}+\mathbf{c})^{2}}=\sum \frac{\mathbf{b c}(\mathbf{b}+\mathbf{c}-\mathbf{a})(\mathbf{b}+\mathbf{c}+\mathbf{a})}{(\mathbf{b}+\mathbf{c})^{2}}=\sum \frac{\mathbf{b c}\left((\mathbf{b}+\mathbf{c})^{2}-\mathbf{a}^{2}\right)}{(\mathbf{b}+\mathbf{c})^{2}}= \\
& \sum \mathbf{a b}-\sum \frac{\mathbf{a}^{2} \mathbf{b c}}{\left(4 \operatorname{Rcos} \frac{\mathbf{A}}{2} \cos \frac{\mathbf{B}-\mathbf{C}}{2}\right)^{2}} \leq \sum \mathbf{a b}-\sum \frac{\mathbf{a}^{2} \mathbf{b c}}{16 \mathbf{R}^{2} \frac{\mathbf{s}(\mathbf{s}-\mathbf{a})}{\mathbf{b c}}}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{align*}
& \left(\because 0 \leq \cos \frac{B-\mathbb{C}}{2} \leq 1 \text { as } \frac{\text { B }-\mathbf{C}}{2} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right)= \\
= & s^{2}+4 R r+r^{2}-\frac{16 R^{2} r^{2} s^{2}}{16 R^{2} s \cdot r^{2} s} \sum(s-b)(s-c)= \\
= & s^{2}+4 R r+r^{2}-\left(4 R r+r^{2}\right)=s^{2} \therefore \sum w_{a}{ }^{2} \stackrel{(1)}{\leftrightarrows} s^{2}
\end{align*}
$$

Now, $2 \sum w_{a} w_{b}=2\left(\Pi w_{a}\right) \sum \frac{1}{w_{a}} \stackrel{\text { Berstrom }}{\geq} 2\left(\Pi w_{a}\right) \frac{9}{\sum w_{a}}=\frac{18\left(\Pi w_{a}\right)}{\sum m_{a}} \geq \frac{18\left(\Pi w_{a}\right)}{4 R+r}=$
(1), (2) $\Rightarrow \sum\left(w_{a}-w_{b}\right)^{2}=2 \sum w_{a}{ }^{2}-2 \sum w_{a} w_{b} \leq 2 s^{2}-\frac{288 R r^{2} s^{2}}{(4 R+r)\left(s^{2}+2 R r+r^{2}\right)}=$ $=\frac{2 s^{2}(4 R+r)\left(s^{2}+2 R r+r^{2}\right)-288 R^{2} s^{2}}{(4 R+r)\left(s^{2}+2 R r+r^{2}\right)}$ $=\frac{2(4 R+r) s^{4}+s^{2}\left\{\left(4 R r+2 r^{2}\right)(4 R+r)-288 R r^{2}\right\}}{(4 R+r)\left(s^{2}+2 R r+r^{2}\right)} \underset{\leq}{\text { Gerretsen }}$

$$
\leq \frac{s^{2}\left\{2(4 R+r)\left(4 R^{2}+4 R r+3 r^{2}\right)+\left(4 R r+2 r^{2}\right)(4 R+r)-288 R^{2}\right\}}{(4 R+r)\left(s^{2}+2 R r+r^{2}\right)}
$$

$$
=\frac{\left(32 R^{3}+56 R^{2} r-244 R r^{2}+8 r^{3}\right) s^{2}}{(4 R+r)\left(s^{2}+2 R r+r^{2}\right)}=\frac{4(R-2 r)\left(8 R^{2}+30 R r-r^{2}\right) s^{2}}{(4 R+r)\left(s^{2}+2 R r+r^{2}\right)} \stackrel{?}{\leq} n \cdot 0 I^{2}=
$$

$$
=n R(R-2 r) \Leftrightarrow n R(4 R+r)\left(s^{2}+2 R r+r^{2}\right) \stackrel{?}{\sim} 4\left(8 R^{2}+30 R r-r^{2}\right) s^{2}
$$

$$
\Leftrightarrow s^{2}\left(n \cdot 4 R^{2}+n \cdot R r-32 R^{2}-120 R r+4 r^{2}\right)+n R(4 R+r)\left(2 R r+r^{2}\right){\underset{(a)}{(a)} 0}_{\dot{n}}^{0}
$$

$$
\because \mathbf{n} \geq \frac{35}{2} \therefore \text { LHS of }(\mathbf{a}) \geq
$$

$$
\geq s^{2}\left(70 R^{2}+\frac{35}{2} R r-32 R^{2}-120 R r+4 r^{2}\right)+\left(\frac{35}{2}\right) R(4 R+r)\left(2 R r+r^{2}\right) \stackrel{?}{>} 0
$$

$$
\begin{equation*}
\Leftrightarrow s^{2}(R-2 r)(76 R-53 r)+35 R(4 R+r)\left(2 R r+r^{2}\right) \sum_{む}^{?} 98 r^{2} s^{2} \tag{b}
\end{equation*}
$$

$$
\begin{aligned}
& =\left(\frac{18}{4 R+\mathbf{r}}\right) \Pi\left(\frac{2 \mathbf{b c c o s} \frac{\mathbf{A}}{2}}{\mathbf{b}+\mathbf{c}}\right)=\left(\frac{18}{4 \mathrm{R}+\mathbf{r}}\right) \frac{128 \mathbf{R}^{2} \mathbf{r}^{2} \mathbf{s}^{2}\left(\frac{\mathbf{s}}{4 \mathrm{R}}\right)}{2 \mathbf{s}\left(\mathbf{s}^{2}+2 \mathbf{R r}+\mathbf{r}^{2}\right)} \\
& =\frac{288 R^{2} s^{2}}{(4 R+r)\left(s^{2}+2 R r+r^{2}\right)} \therefore 2 \sum \mathbf{w}_{\mathrm{a}} \mathbf{w}_{\mathrm{b}} \stackrel{(2)}{\gtrless}_{\underset{\sim}{2}}^{(4 R+\mathbf{r})\left(\mathbf{s}^{2}+2 R r+\mathbf{r}^{2}\right)}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Gerretsen \Rightarrow LHS of $(b) \stackrel{(i)}{\stackrel{(i)}{(}\left(16 R r-5 r^{2}\right)(R-2 r)(76 R-53 r)+35 R(4 R+r)\left(2 R r+r^{2}\right)}$
(ii)
and RHS of (b) $\stackrel{\text { c }}{\leq} 98 \mathrm{r}^{2}\left(4 \mathrm{R}^{2}+\mathbf{4 R r}+3 \mathrm{r}^{2}\right)$
(i), (ii) \Rightarrow in order to prove (b), it suffices to prove:
$\left(16 R r-5 r^{2}\right)(R-2 r)(76 R-53 r)+35 R(4 R+r)\left(2 R r+r^{2}\right)>$ $>98 r^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)$
$\Leftrightarrow 748 t^{3}-1921 t^{2}+1182 t-412>0\left(\right.$ where $\left.t=\frac{R}{r}\right) \Leftrightarrow$

$$
\Leftrightarrow(t-2)(748 t(t-2)+1071 t+332)+252>0 \rightarrow \text { true } \therefore t^{\text {Euler }} \stackrel{\sim}{\geq} 2
$$

$\Rightarrow(b) \Rightarrow(a) \Rightarrow$ proposed inequality is true (Proved)
1347. In acute $\triangle A B C$ the following relationship holds:

$$
\left(\sum_{c y c} a^{m} \sin ^{m} A\right)\left(\sum_{c y c}\left(\frac{a}{s-a}\right)^{q}\right) \geq \frac{9 \cdot 2^{m+q} \cdot s^{m+n}}{3^{m+n} \cdot R^{n}}, m, n, q \geq 2
$$

Proposed by Radu Diaconu-Romania

Solution by Șerban George Florin-Romania

$$
\begin{gathered}
a \leq b \leq c \Rightarrow \sin A \leq \sin B \leq \sin C \\
a^{m} \leq b^{m} \leq c^{m} \Rightarrow \sin ^{n} A \leq \sin ^{n} B \leq \sin ^{n} C \\
\sum_{c y c} a^{m} \sin ^{n} A \stackrel{\text { Chebyshev }}{\geq} \frac{1}{3}\left(\sum a^{m}\right)\left(\sum \sin ^{n} A\right) \stackrel{\text { Holder }}{\geq} \frac{1}{3} \frac{\left(\sum a\right)^{m}}{3^{m-1}} \cdot \frac{\left(\sum \sin A\right)^{n}}{3^{n-1}} \\
=\frac{(2 s)^{m} \cdot\left(\frac{a+b+c}{2 R}\right)^{n}}{3^{m+n-1}}=\frac{2^{m} \cdot s^{m} \cdot 2^{n} \cdot s^{n}}{2^{n} \cdot R^{n} \cdot 3^{m+n-1}}=\frac{2^{m} \cdot s^{m+n}}{R^{n} \cdot 3^{m+n-1}} \\
\left(\sum_{c y c}\left(\frac{a}{s-a}\right)^{q}\right) \stackrel{\text { Holder }}{\gtrless} \frac{\left(\sum \frac{a}{s-a}\right)^{q}}{3^{q-1}}=\frac{\left[\frac{2(2 R-r)}{r}\right]^{q}}{3^{q-1}} \geq \frac{6^{q}}{3^{q-1}}=3 \cdot 2^{q}
\end{gathered}
$$

$$
\text { Because (Euler) } \frac{2(2 R-r)}{r} \geq 6 \Rightarrow 4 R-2 r \geq 6 r \Rightarrow 4 R \geq 8 r, R \geq 2 r
$$

$$
\Rightarrow\left(\sum_{c y c} a^{m} \sin ^{n} A\right) \cdot\left(\sum\left(\frac{a}{s-a}\right)^{q}\right) \geq \frac{2^{m \cdot s^{m+n}}}{R^{n} \cdot 3^{m+n-1}} \cdot 3 \cdot 2^{q}=\frac{2^{m+q} \cdot s^{m+n} \cdot 9}{R^{n} \cdot 3^{m+n}}, \text { true. }
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro1348. If in $\triangle A B C, \mu(B)=2 \mu(A), \mu(C)=2 \mu(B)$ then the following relationship holds:

$$
\left(a^{2}+b^{2}+c^{2}\right)\left(a^{4}+b^{4}+c^{4}\right)>15 a^{2} b^{2} c^{2}
$$

Proposed by Daniel Sitaru - Romania

Solution by Adrian Popa - Romania

$$
\begin{aligned}
& \Delta A B C: \widehat{B}=\mathbf{2} \widehat{A} ; \widehat{C}=\mathbf{2} \widehat{B} \\
& \widehat{A}+\widehat{B}+\widehat{C}=\pi \Rightarrow \widehat{A}+2 \widehat{A}+4 \widehat{A}=\pi \\
& \widehat{A}=\frac{\pi}{7} ; \widehat{B}=\frac{2 \pi}{7} ; \widehat{C}=\frac{4 \pi}{7} \\
& \left(a^{2}+b^{2}+c^{2}\right)\left(a^{4}+b^{4}+c^{4}\right)>15 a^{2} b^{2} c^{2} \\
& \frac{a}{\sin A}+\frac{b}{\sin B}+\frac{c}{\sin C}=2 R \Rightarrow a=2 R \sin \frac{\pi}{7} \\
& b=2 R \sin \frac{2 \pi}{7} \\
& c=2 R \sin \frac{4 \pi}{7} \\
& \left(a^{2}+b^{2}+c^{2}\right)\left(a^{4}+b^{4}+c^{4}\right) \stackrel{\text { Bergstrom }}{\geq}\left(a^{2}+b^{2}+c^{2}\right)\left(\frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{3}\right)= \\
& =\frac{\left(a^{2}+b^{2}+c^{2}\right)^{3}}{3}=\frac{\left(4 R^{2}\left(\sin \frac{2 \pi}{7}+\sin ^{2} \frac{2 \pi}{7}+\sin ^{2} \frac{4 \pi}{7}\right)\right)^{3}}{3}= \\
& =\frac{64 R^{6} \cdot\left(\frac{7}{4}\right)^{3}}{3}=\frac{343 R^{6}}{3} \\
& 15 a^{2} b^{2} c^{2}=15 \cdot 4 R^{2} \sin ^{2} \frac{\pi}{7} \cdot 4 R^{2} \sin ^{2} \frac{2 \pi}{7} \cdot 4 R^{2} \sin ^{2} \frac{4 \pi}{7}= \\
& =R^{6} \cdot 15 \cdot 4^{3}\left(\sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{4 \pi}{7}\right)^{2}=15 \cdot 4^{3} \cdot \frac{7}{64}=105 R^{6} \\
& \left.\frac{\mathbf{3 4 3}}{3} R^{6} \stackrel{?}{>} 105 R^{6} \right\rvert\,: R^{6} \Rightarrow 343>3 \cdot 105 \\
& 343>315 \text { (True) }
\end{aligned}
$$

We must prove two relationships that we've used here:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

1) $\sin ^{2} \frac{\pi}{7}+\sin ^{2} \frac{2 \pi}{7}+\sin ^{2} \frac{4 \pi}{7}=\frac{9}{4}$
2) $\sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{4 \pi}{7}=\frac{\sqrt{7}}{8}$
3) $\sin ^{2} \frac{\pi}{7}+\sin ^{2} \frac{2 \pi}{7}+\sin ^{2} \frac{4 \pi}{7}=\frac{1-\cos ^{2} \frac{\pi}{7}}{2}+\frac{1-\cos \frac{4 \pi}{7}}{2}+\frac{1-\cos \frac{8 \pi}{7}}{2}=$

$$
=\frac{3}{2}-\frac{\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{8 \pi}{7}}{2}
$$

$\cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{5 \pi}{7}=\frac{2 \sin \frac{\pi}{7} \cos \frac{\pi}{7}+2 \sin \frac{\pi}{7} \cos \frac{3 \pi}{7}+2 \sin \frac{\pi}{7} \cos \frac{5 \pi}{7}}{2 \sin \frac{\pi}{7}}=$

$$
=\frac{\sin \frac{2 \pi}{7}+\sin \frac{4 \pi}{7}-\sin \frac{2 \pi}{7}+\sin \frac{6 \pi}{7}-\sin \frac{4 \pi}{7}}{2 \sin \frac{\pi}{7}}=\frac{\sin \frac{6 \pi}{7}}{2 \sin \frac{\pi}{7}}=\frac{\sin \left(\pi-\frac{\pi}{7}\right)}{2 \sin \frac{\pi}{7}}=\frac{1}{2}
$$

$$
\Rightarrow \cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{8 \pi}{7}=-\left(\cos \frac{5 \pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{\pi}{7}\right)=-\frac{1}{2} \Rightarrow
$$

$$
\Rightarrow \sin ^{2} \frac{\pi}{7}+\sin ^{2} \frac{2 \pi}{7}+\sin ^{2} \frac{4 \pi}{7}=\frac{3}{2}+\frac{1}{4}=\frac{7}{4}
$$

$$
\text { 2) }\left(\sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7}\right)\left(\cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}\right)=
$$

$$
=\frac{\left(2 \sin \frac{\pi}{7} \cos \frac{\pi}{7}\right)\left(2 \sin \frac{2 \pi}{7} \cos \frac{2 \pi}{7}\right)\left(2 \sin \frac{3 \pi}{7} \cos \frac{3 \pi}{7}\right)}{8}=
$$

$$
=\frac{\sin \frac{2 \pi}{7} \sin \frac{4 \pi}{7} \sin \frac{6 \pi}{7}}{8}=\frac{\sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7} \sin \frac{\pi}{7}}{8} \Rightarrow
$$

$$
\Rightarrow \cos \frac{\pi}{7} \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}=\frac{1}{8}
$$

Now:

$$
\begin{aligned}
&\left(2 \sin ^{2} \frac{\pi}{7}\right)\left(2 \sin ^{2} \frac{2 \pi}{7}\right)\left(2 \sin ^{2} \frac{3 \pi}{7}\right)=\left(1-\cos \frac{2 \pi}{7}\right)\left(1-\cos \frac{4 \pi}{7}\right)\left(1-\cos \frac{6 \pi}{7}\right)= \\
&= 1+\frac{1}{2}\left(2 \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{2}+2 \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7}+2 \cos \frac{6 \pi}{7} \cos \frac{2 \pi}{7}\right)- \\
& \quad-\cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7}-\cos \frac{2 \pi}{7}-\cos \frac{4 \pi}{7}-\cos \frac{6 \pi}{7}= \\
&= 1+\frac{1}{2}\left(\cos \frac{6 \pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{10 \pi}{7}+\cos \frac{2 \pi}{7}+\cos \frac{8 \pi}{7}+\cos \frac{4 \pi}{7}\right)-
\end{aligned}
$$

\mathbb{R}

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{array}{r}
-\cos \frac{2 \pi}{7}-\cos \frac{4 \pi}{7}-\cos \frac{6 \pi}{7}-\underbrace{\cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7} \cos \frac{\pi}{7}}_{\frac{1}{8}} \\
\left(2 \sin ^{2} \frac{\pi}{7}\right)\left(2 \sin ^{2} \frac{2 \pi}{7}\right)\left(2 \sin ^{2} \frac{3 \pi}{7}\right)= \\
=1+\frac{1}{2}\left(-\cos \frac{\pi}{7}+\cos \frac{2 \pi}{7}-\cos \frac{3 \pi}{7}+\cos \frac{2 \pi}{7}-\cos \frac{\pi}{7}-\cos \frac{3 \pi}{7}\right)- \\
-\cos \frac{2 \pi}{7}-\cos \frac{4 \pi}{7}-\cos \frac{6 \pi}{7}-\frac{1}{8}= \\
=\frac{7}{8}+\cos \frac{2 \pi}{7}-\cos \frac{\pi}{7}-\cos \frac{3 \pi}{7}-\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{\pi}{7}=\frac{7}{8} \\
\operatorname{So,} 2 \sin ^{2} \frac{\pi}{7} \cdot 2 \sin 2 \frac{2 \pi}{7} \cdot 2 \sin 2 \frac{3 \pi}{7}=\frac{7}{8} \Rightarrow \\
\Rightarrow \sin ^{2} \frac{\pi}{7} \sin ^{2} \frac{2 \pi}{7} \sin ^{2} \frac{3 \pi}{7}=\frac{7}{64} \Rightarrow \sin \frac{\pi}{7} \sin \frac{2 \pi}{7} \sin \frac{3 \pi}{7}=\frac{\sqrt{7}}{8}
\end{array}
$$

1349. In $\triangle A B C$ the following relationship holds:

$$
\max \left\{\mu^{2}(A), \mu^{2}(B), \mu^{2}(C)\right\}+\sum_{c y c}\left(\sin ^{2} \frac{A}{2}+\frac{1}{2} \mu(A) \tan \frac{A}{2}\right) \geq \frac{5 \pi^{2}}{18}
$$

Proposed by Radu Diaconu-Romania

Solution 1 by Șerban George Florin-Romania

$$
\begin{gathered}
\max \left(\mu^{2}(A), \mu^{2}(B), \mu^{2}(C)\right) \geq \mu^{2}(A), \max \left(\mu^{2}(A), \mu^{2}(B), \mu^{2}(C)\right) \geq \mu^{2}(B) \\
\max \left(\mu^{2}(A), \mu^{2}(B), \mu^{2}(C)\right) \geq \mu^{2}(C) \Rightarrow \max \left(\mu^{2}(A), \mu^{2}(B), \mu^{2}(C)\right) \geq \\
\geq \frac{\mu^{2}(A)+\mu^{2}(B)+\mu^{2}(C)}{3},(x+y+z)^{2} \stackrel{\text { PS }}{\leq} 3\left(x^{2}+y^{2}+z^{2}\right) \\
\Rightarrow x^{2}+y^{2}+z^{2} \geq \frac{(x+y+z)^{2}}{3} \\
\max \left(\mu^{2}(A), \mu^{2}(B), \mu^{2}(C)\right) \geq \frac{1}{3} \sum \mu^{2}(A) \stackrel{C B S}{\geq} \frac{1}{9}\left(\sum \mu(A)\right)^{2}=\frac{\pi^{2}}{9} \\
\sum \sin ^{2} \frac{A}{2}=\sum \frac{1-\cos A}{1}=\frac{3}{2}-\frac{1}{2} \sum \cos A=\frac{3}{2}-\frac{1}{2}\left(1+\frac{r}{R}\right) \\
\frac{r}{R} \leq \frac{1}{2}(\text { Euler }), 1+\frac{r}{R} \leq \frac{3}{2},-\frac{1}{2}\left(1+\frac{r}{R}\right) \geq-\frac{3}{4}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
\text { www.ssmrmh.ro } \\
\sum \sin ^{2} \frac{A}{2} \geq \frac{3}{2}-\frac{3}{4}=\frac{3}{4} \\
\mu(A) \leq \mu(B) \leq \mu(C) \Rightarrow \tan \frac{\widehat{A}}{2} \leq \tan \frac{\widehat{B}}{2} \leq \tan \frac{\widehat{C}}{2}
\end{gathered}
$$

Applying Chebyshev's inequality:

$$
\frac{1}{2} \sum \mu(A) \tan \frac{A}{2} \geq \frac{1}{2} \cdot \frac{1}{3}\left(\sum \mu(A)\right) \cdot\left(\sum \tan \frac{A}{2}\right)=\frac{\pi}{6} \cdot \frac{4 R+r}{s} \geq
$$ $\geq \frac{\pi}{6} \cdot \frac{s \sqrt{3}}{s}=\frac{\pi \sqrt{3}}{6}$, we've applied Doucet's inequality $s \sqrt{3} \leq 4 R+r$

$$
\Rightarrow \sum\left(\sin ^{2} \frac{A}{2}+\frac{1}{2} \mu(A) \tan \frac{A}{2}\right) \geq \frac{3}{4}+\frac{\pi \sqrt{3}}{6}
$$

$$
\Rightarrow \max \left(\mu^{2}(A), \mu^{2}(B), \mu^{2}(C)\right)+\sum\left(\sin ^{2} \frac{A}{2}+\frac{1}{2} \mu(A) \tan \frac{A}{2}\right) \geq
$$

$$
\geq \frac{\pi^{2}}{9}+\frac{3}{4}+\frac{\pi \sqrt{3}}{6} \geq \frac{5 \pi^{2}}{18}, \frac{3}{4}+\frac{\pi \sqrt{3}}{6} \geq \frac{5 \pi^{2}}{18}-\frac{\pi^{2}}{9}=\frac{\pi^{2}}{6}
$$

$$
\frac{3}{4}+\frac{\pi \sqrt{3}}{6} \geq \frac{\pi^{2}}{6} \Rightarrow 9+2 \pi \sqrt{3} \geq 2 \pi^{2}
$$

$$
9+2 \pi \sqrt{3} \simeq 9+2 \cdot 3.14 \cdot 1.73 \simeq 9+10.86 \simeq 19.86
$$

$$
2 \pi^{2} \bumpeq 2 \cdot 3.14^{2} \simeq 2 \cdot 9.85 \approx 19.71
$$

$$
19.86 \geq 19.71 \text { true } \Rightarrow 9+2 \pi \sqrt{3} \geq 2 \pi^{2} \text { true. }
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\operatorname{Let} f(\mathbf{x})=\mathbf{x}-\sin \mathbf{x} \forall \mathbf{x} \in[0, \pi)
$$

$$
\therefore \mathbf{f}^{\prime}(\mathbf{x})=\mathbf{1}-\mathbf{c o s} x \geq \mathbf{0} \Rightarrow \mathbf{f}(\mathbf{x}) \text { is } \uparrow \text { on }[0, \pi) \Rightarrow \mathbf{f}(\mathbf{x}) \geq \mathbf{f}(0)=\mathbf{0} \Rightarrow
$$

$$
\begin{equation*}
\Rightarrow \mathrm{x} \geq \sin \mathrm{x} \forall \mathrm{x} \in[0, \pi) \Rightarrow \forall \mathrm{x} \in(0, \pi), \mathrm{x} \stackrel{(1)}{>} \sin \mathrm{x} \tag{1}
\end{equation*}
$$

$$
\text { Let } g(x)=\sin ^{2} \frac{x}{2}+\frac{1}{2} x \tan \frac{x}{2} \forall x \in(0, \pi)
$$

$$
\therefore g^{\prime \prime}(x)=\frac{1}{4}\left(\operatorname{xsec}^{2} \frac{x}{2} \tan \frac{x}{2}-2 \sin ^{2} \frac{x}{2}+2 \sec ^{2} \frac{x}{2}+2 \cos ^{2} \frac{x}{2}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\operatorname{sy}^{\text {by }(1)} \frac{1}{4}\left({\left.\sin x \sec ^{2} \frac{x}{2} \tan \frac{x}{2}-2 \sin ^{2} \frac{x}{2}+2 \sec ^{2} \frac{x}{2}+2 \cos ^{2} \frac{x}{2}\right)}^{=} \frac{1}{4}\left(\frac{2 \cos \frac{x}{2} \sin \frac{x}{2}}{\cos ^{2} \frac{x}{2}} \cdot \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}-2 \sin ^{2} \frac{x}{2}+2 \sec ^{2} \frac{x}{2}+2 \cos ^{2} \frac{x}{2}\right)\right. \\
=\frac{1}{4}\left(2 \sin ^{2} \frac{x}{2}\left(\sec ^{2} \frac{x}{2}-1\right)+2 \sec ^{2} \frac{x}{2}+2 \cos ^{2} \frac{x}{2}\right)> \\
>\frac{1}{4}\left(2 \sec ^{2} \frac{x}{2}+2 \cos ^{2} \frac{x}{2}\right)\left(\because \sec ^{2} \frac{x}{2}>1\right)>0 \Rightarrow g(x) \text { is convex } \\
\therefore \sum\left(\sin ^{2} \frac{A}{2}+\frac{1}{2} \mu(A) \tan \frac{A}{2}\right) \stackrel{\text { Jensen }}{\geq} 3\left(\sin ^{2} \frac{\pi}{6}+\frac{\pi}{6} \tan \frac{\pi}{6}\right)=\frac{3}{4}+\frac{\pi}{2 \sqrt{3}} \Rightarrow \\
\Rightarrow \sum\left(\sin ^{2} \frac{A}{2}+\frac{1}{2} \mu(A) \tan \frac{A}{2}\right) \stackrel{(2)}{2} \frac{3}{4}+\frac{\pi}{2 \sqrt{3}}
\end{gathered}
$$

Now, WLOG, we may assume:

$$
\begin{gathered}
\left.\max \left\{\mu^{2}(A), \mu^{2}(B), \mu^{2}(C)\right)\right\}=\mu^{2}(A) \therefore 3 \mu^{2}(A) \geq \sum \mu^{2}(A) \Rightarrow \\
\left.\Rightarrow \max \left\{\mu^{2}(A), \mu^{2}(B), \mu^{2}(C)\right)\right\} \geq \frac{1}{3} \sum \mu^{2}(A) \stackrel{\text { Jensen }}{\geq} \frac{3}{3}\left(\frac{\pi}{3}\right)^{2} \\
\left(\because h(x)=x^{2} \text { is convex for all real values of } x\right) \\
\left.\therefore \max \left\{\mu^{2}(A), \mu^{2}(B), \mu^{2}(C)\right)\right\} \stackrel{(3)}{\geq} \frac{\pi^{2}}{9} \\
\therefore(2)+(3) \Rightarrow \text { LHS } \geq \frac{\pi^{2}}{9}+\frac{3}{4}+\frac{\pi}{2 \sqrt{3}} \approx 2.7535>\frac{5 \pi^{2}}{18}(\approx 2.74) \text { (Proved) }
\end{gathered}
$$

Solution 3 by Ravi Prakash-New Delhi-India

Let's assume that: $\mu(A) \geq \mu(B) \geq \mu(C)$. Then $\mu(A) \geq \frac{\pi}{3}$. Let, for $0 \leq x<\frac{\pi}{2}$

$$
f(x)=\sin ^{2} x+x \tan x-\frac{1}{2} x^{2}
$$

$$
f^{\prime}(x)=\sin 2 x+\tan x-x+x \sec ^{2} x>0 \text { for } 0<x<\frac{\pi}{2}
$$

$$
\Rightarrow f(x) \text { is increasing on }\left[0, \frac{\pi}{2}\right) \Rightarrow f(x)>f(0) \text { for } 0<x<\frac{\pi}{2}
$$

$$
\Rightarrow f\left(\frac{A}{2}\right)+f\left(\frac{B}{2}\right)+f\left(\frac{C}{2}\right)>0 \Rightarrow \sum\left[\sin ^{2}\left(\frac{A}{2}\right)+\frac{A}{2} \tan \left(\frac{A}{2}\right)\right] \geq \frac{1}{2} \sum\left(A^{2}+B^{2}+C^{2}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \Rightarrow \frac{1}{6}\left(A^{2}+B^{2}+C^{2}+2 A^{2}+2 B^{2}+2 C^{2}\right) \geq \frac{1}{6}\left(A^{2}+B^{2}+C^{2}+2 B C+2 C A+2 A B\right)= \\
& =\frac{\pi^{2}}{6} \Rightarrow \max \left(\mu(A)^{2}, \mu(B)^{2}, \mu(C)^{2}\right)+\sum\left(\sin ^{2}\left(\frac{A}{2}\right)+\frac{A}{2} \tan \left(\frac{A}{2}\right)\right) \geq \frac{\pi^{2}}{9}+\frac{\pi^{2}}{6}=\frac{5 \pi^{2}}{18}
\end{aligned}
$$

1350. In $\triangle A B C$ the following relationship holds:

$$
s_{a}+s_{b}+s_{c}<\frac{R S}{r^{2}}
$$

Proposed by lonuț Florin Voinea-Romania
Solution 1 by Adrian Popa-Romania

$$
\begin{gathered}
s_{a}+s_{b}+s_{c}<\frac{R S}{r^{2}} \\
\left.\begin{array}{c}
s_{a}=\frac{2 b c}{b^{2}+c^{2}} \cdot m_{a} \leq m_{a} \\
\text { Similarly } s_{b} \leq m_{b} ; s_{c} \leq m_{c}
\end{array}\right\} \Rightarrow s_{a}+s_{b}+s_{c} \leq m_{a}+m_{b}+m_{c}
\end{gathered}
$$

$$
\Rightarrow \mathbf{2} \boldsymbol{m}_{a}<b+c \Rightarrow \boldsymbol{m}_{a}<\frac{\boldsymbol{b}+\boldsymbol{c}}{\mathbf{2}}
$$

Similarly: $\boldsymbol{m}_{b}<\frac{a+c}{2}$

$$
m_{c}<\frac{a+c}{2}
$$

$$
\boldsymbol{m}_{\boldsymbol{a}}+\boldsymbol{m}_{\boldsymbol{b}}+\boldsymbol{m}_{\boldsymbol{c}}<a+b+c=2 \boldsymbol{s}
$$

We will have to prove that: $\left.2 s<\frac{R s}{r^{2}} \Leftrightarrow 2 s<\frac{R}{r} \cdot \frac{\stackrel{s}{s}}{r}=\frac{R s}{r} \right\rvert\,: s \Leftrightarrow$

ROMANIAN MATHEMATICAL MAGAZINE
 $\Leftrightarrow 2<\frac{R}{r}$ (true) (Euler's inequality)

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum s_{a} \stackrel{C B S}{\widetilde{\sim}} \sqrt{3} \sqrt{\sum s_{a}^{2}}=\sqrt{3} \sqrt{\sum\left(\frac{2 b c m_{a}}{b^{2}+c^{2}}\right)^{2}} \stackrel{A M-G M}{\tilde{m}} \sqrt{3} \sqrt{\sum m_{a}^{2}}=\sqrt{3} \sqrt{\frac{3}{4} \sum a^{2}}=
\end{aligned}
$$

1351. In $\triangle A B C, I$ - incenter, the following relationship holds:

$$
\left(\sum_{c y c} m_{a}^{2}\right)\left(\sum_{c y c} \frac{A I}{\mu(A)}\right) \geq \frac{486 r^{3}}{\pi}
$$

Proposed by Radu Diaconu - Romania

Solution 1 by Avishek Mitra-West Bengal-India

$$
\begin{align*}
& \Leftrightarrow \sum m_{a}^{2} \stackrel{A M-G M}{\geq} 3\left(\prod m_{a}^{2}\right)^{\frac{1}{3} m_{a} \geq \sqrt{s(s-a)}} \geq{ }^{2}\left(s^{3}(s-a)(s-b)(s-c)\right)^{\frac{1}{3}} \\
& =3\left(s^{2} \Delta^{2}\right)^{\frac{1}{3}}=3\left(s^{4} r^{2}\right)^{\frac{1}{3} \text { Mitrinovic }} \geq{ }^{\geq}\left(r^{6} 3^{6}\right)^{\frac{1}{3}}=27 r^{2} \\
& \Leftrightarrow \sum \mu(A) \stackrel{A M-G M}{\geq} 3(\Pi \mu(A))^{\frac{1}{3}} \Rightarrow 27 \Pi \mu(A) \leq\left(\sum \mu(A)\right)^{3}=\pi^{3} \Rightarrow \Pi \mu(A) \leq \frac{\pi^{3}}{27} \tag{ii}\\
& \Leftrightarrow \sum \frac{A I}{\mu(A)} \geq 3\left(\Pi \frac{A I}{\mu(A)}\right)^{\frac{1}{3}}=3\left(\frac{27}{\pi^{3}} \cdot \Pi \frac{(s-a)}{\cos _{\frac{A}{2}}^{\frac{1}{2}}}\right)^{\frac{1}{3}} \text { [From (ii)] } \\
& =\frac{9}{\pi}\left(\frac{(s-a)(s-b)(s-c) \cdot a b c}{\sqrt{s^{3}(s-a)(s-b)(s-c)}}\right)^{\frac{1}{3}}=\frac{9}{\pi}\left(\frac{a b c(s-a)(s-b)(s-c)}{s \Delta}\right)^{\frac{1}{3}}=\frac{9}{\pi}\left(\frac{a b c \cdot \Delta^{2}}{s^{2} \Delta}\right)^{\frac{1}{3}} \\
& =\frac{9}{\pi}\left(\frac{4 R r s \cdot r^{2} s^{2}}{s^{2} r s}\right)^{\frac{1}{3}}=\frac{9}{\pi}\left(4 R r^{2}\right)^{\frac{1}{3} \text { Euler }} \xrightarrow{\geq} \frac{9}{\pi}\left(4 \cdot 2 r \cdot r^{2}\right)^{\frac{1}{3}}=\frac{18 r}{\pi} \tag{iii}\\
& \Leftrightarrow\left(\sum m_{a}^{2}\right)\left(\sum \frac{A I}{\mu(A)}\right) \geq 27 r^{2} \cdot \frac{18 r}{\pi} \text { [From (i) and (iii)] } \Leftrightarrow \Omega \geq \frac{486 r^{3}}{\pi} \text { (proved) }
\end{align*}
$$

Solution 2 by Șerban George Florin-Romania

$$
\sum_{c y c} \frac{A I}{\mu(A)}=\sum \frac{r}{\mu(A) \sin \frac{A}{2}}=r \sum \frac{1}{\mu(A) \cdot \sin \frac{A}{2}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\mu(A) \leq \mu(B) \leq \mu(C) \Rightarrow \frac{1}{\mu(A)} \geq \frac{1}{\mu(B)} \geq \frac{1}{\mu(C)} \\
\mu\left(\frac{A}{2}\right) \leq \mu\left(\frac{B}{2}\right) \leq \mu\left(\frac{C}{2}\right) \Rightarrow \sin \frac{A}{2} \leq \sin \frac{B}{2} \leq \sin \frac{C}{2} \Rightarrow \frac{1}{\sin \frac{A}{2}} \geq \frac{1}{\sin \frac{B}{2}} \geq \frac{1}{\sin \frac{C}{2}}
\end{gathered}
$$

Applying Chebyshev's inequality

$$
\begin{gathered}
\sum \frac{A I}{\mu(A)}=r \sum \frac{1}{\mu(A) \sin \frac{A}{2}} \geq \frac{r}{3} \sum \frac{1}{\mu(A)} \cdot \sum \frac{1}{\sin \frac{A}{2}} \geq \\
\geq \\
\geq \frac{r}{3} \cdot \frac{9}{\sum \mu(A)} \cdot 6=\frac{18 r}{\pi}\left(\sum \frac{1}{\sin \frac{A}{2}} \geq 6\right) \\
\sum_{c y c} m_{a}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right) \\
\left(\sum m_{a}^{2}\right) \cdot\left(\sum \frac{A I}{\mu(A)}\right) \geq \frac{3}{4} \sum a^{2} \cdot \frac{18 r}{\pi} \geq \frac{486 r^{3}}{\pi} \\
\quad \frac{54 r}{4 \pi} \sum a^{2} \geq \frac{486 r^{3}}{\pi}, \sum a^{2} \geq 36 r^{2} \\
\\
A p p l y i n g \text { Ionescu - Weitzenböck } \\
a^{2}+b^{2}+c^{2} \geq 4 S \sqrt{3} \geq 36 r^{2} \Rightarrow r s \sqrt{3} \geq 9 r^{2} \\
\Rightarrow \\
\Rightarrow s \sqrt{3} \geq 9 r \Rightarrow s \geq \frac{9 r}{\sqrt{3}}=\frac{9 \sqrt{3} r}{3}=3 \sqrt{3} r \\
\Rightarrow s \geq 3 \sqrt{3} r, \text { true (Mitrinovic's inequality) }
\end{gathered}
$$

1352. In $\triangle A B C$ the following relationship holds:

$$
(\sqrt{a}+\sqrt{b}+\sqrt{c})^{2} \geq 6 \sqrt{12 R r+3 r^{2}}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Rahim Shahbazov-Baku-Azerbaijan

$$
\begin{gather*}
(\sqrt{a}+\sqrt{b}+\sqrt{c})^{2} \geq 6 \sqrt{12 R r+3 r^{2}} \tag{1}\\
(\sqrt{a}+\sqrt{b}+\sqrt{c})^{2} \geq 3(\sqrt{a b}+\sqrt{b c}+\sqrt{a c}) \text { then: } \\
\sqrt{a b}+\sqrt{b c}+\sqrt{a c} \geq 2 \sqrt{12 R r+3 r^{2}}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
after we make the substitution $a=x+y, b=y+z, c=x+z$

$$
\text { and } R r=\frac{(x+y)(y+z)(x+z)}{4(x+y+z)}, r^{2}=\frac{x y z}{x+y+z}
$$

the inequality becomes:

$$
\begin{gather*}
\sqrt{(x+y)(x+z)}+\sqrt{(y+x)(y+z)}+\sqrt{(z+x)(z+y)} \geq 2 \sqrt{3(x y+y z+x y)} \\
\text { or } \\
\sum \sqrt{x^{2}+x y+y z+x z} \geq 2 \sqrt{3(x y+y z+x z)} \tag{2}\\
x y+y z+x z=k^{2} \Rightarrow(x+y+z)^{2} \geq 3 k^{2}
\end{gather*}
$$

we must show that

$$
\begin{equation*}
\sum \sqrt{x^{2}+k^{2}} \geq 2 k \sqrt{3} \tag{3}
\end{equation*}
$$

$$
\text { LHS } \stackrel{\text { MITRINOVIC }}{\geq} \sqrt{(x+y+z)^{2}+9 k^{2}} \geq \sqrt{12 k^{2}}=2 k \sqrt{3}
$$

Solution 2 by Marian Ursărescu-Romania
Because $(\sqrt{a}+\sqrt{b}+\sqrt{c})^{2} \geq \mathbf{3}(\sqrt{a b}+\sqrt{b c}+\sqrt{a c}) \Rightarrow$ we must show:

$$
\begin{equation*}
\sqrt{a b}+\sqrt{b c}+\sqrt{a c} \geq 2 \sqrt{12 R r+3 r^{2}} \tag{1}
\end{equation*}
$$

Because in any $\triangle A B C$ we have $b+c-a+2 \sqrt{b c}>0 \Rightarrow$ $\sqrt{\boldsymbol{b}}+\sqrt{\boldsymbol{c}}>\sqrt{\boldsymbol{a}} \Rightarrow$ exists a triangle $\boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime}$ with lengths $\boldsymbol{a}^{\prime}=\sqrt{\boldsymbol{a}}, \boldsymbol{b}^{\prime}=\sqrt{\boldsymbol{b}}, \boldsymbol{c}^{\prime}=\sqrt{\boldsymbol{c}} \Rightarrow$ we prove inequality with the help of $\Delta A^{\prime} B^{\prime} C^{\prime}$
We have Gordon's inequality: $a b+a c+b c \geq 4 \sqrt{3} S \Rightarrow$ for $\Delta A^{\prime} B^{\prime} C^{\prime}$ we can write:

$$
\begin{equation*}
a^{\prime} b^{\prime}+a^{\prime} c^{\prime}+b^{\prime} c^{\prime} \geq 4 \sqrt{3} S^{\prime} \tag{2}
\end{equation*}
$$

In our case $a^{\prime}=\sqrt{a}, b^{\prime}=\sqrt{b}, c^{\prime}=\sqrt{c}$ and by calculation:

$$
\begin{equation*}
S^{\prime}=\frac{1}{2} \sqrt{4 R r+r^{2}} \tag{3}
\end{equation*}
$$

From (2) + (3) $\Rightarrow a \sqrt{a b}+\sqrt{a c}+\sqrt{b c} \geq 4 \sqrt{3} \cdot \frac{1}{2} \sqrt{4 R r+r^{2}} \Leftrightarrow$

$$
\sqrt{a b}+\sqrt{a c}+\sqrt{b c} \geq 2 \sqrt{12 R r+3 r^{2}} \Rightarrow(1) \text { it is true. }
$$

Solution 3 by proposer

$$
\begin{gathered}
(\sqrt{a}+\sqrt{b})^{2}=a+b+2 \sqrt{a b}>a+b>c=(\sqrt{c})^{2} \Rightarrow \\
\sqrt{a}+\sqrt{b}>\sqrt{c}-\text { and analogs. }
\end{gathered}
$$

By Mitrinovic's inequality in the triangle with sides $\sqrt{a}, \sqrt{b}, \sqrt{c}$:

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{gathered}
s_{1} \geq 3 \sqrt{3} r_{1} \Leftrightarrow \frac{1}{2}(\sqrt{a}+\sqrt{b}+\sqrt{c}) \geq 3 \sqrt{3} \cdot \frac{S_{1}}{s_{1}} \Leftrightarrow \\
\Leftrightarrow \frac{1}{2}(\sqrt{a}+\sqrt{b}+\sqrt{c}) \geq 3 \sqrt{3} \cdot \frac{\frac{1}{2} \sqrt{4 R r+r^{2}}}{\frac{1}{2}(\sqrt{a}+\sqrt{b}+\sqrt{c})} \Leftrightarrow \\
\Leftrightarrow \frac{1}{2}(\sqrt{a}+\sqrt{b}+\sqrt{c})^{2} \geq 3 \sqrt{12 R r+3 r^{2}} \Leftrightarrow \\
(\sqrt{a}+\sqrt{b}+\sqrt{c})^{2} \geq 6 \sqrt{12 R r+3 r^{2}}
\end{gathered}
$$

1353. In acute $\triangle A B C$ the following relationship holds:

$$
\mu(A) e^{\mu(A)+\sec A}+\mu(B) e^{\mu(B)+\sec B}+\mu(C) e^{\mu(C)+\sec C}>e \pi
$$

Proposed by Jalil Hajimir-Toronto-Canada

Solution 1 by Daniel Sitaru-Romania

$$
\begin{align*}
& f:\left(0, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, f(x)=e^{x+\frac{1}{\cos x}}, f^{\prime}(x)=\left(1+\frac{\sin x}{\cos ^{2} x}\right) e^{x+\frac{1}{\cos x}}>0 \\
& f(x)>\lim _{\substack{x \rightarrow 0 \\
x>0}} f(x)=e \rightarrow \sum_{c y c} f(A)=\sum_{c y c} e^{\mu(A)+\sec A}>3 e \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \sum_{c y c} \mu(A) e^{\mu(A)+\text { secA } A} \stackrel{\text { CEBYSHEV }}{\geqq} \frac{1}{3} \cdot \sum_{c y c} \mu(A) \cdot \sum_{c y c} e^{\mu(A)+\sec A}{ }^{(1)} \frac{1}{3} \cdot \sum_{c y c} \mu(A) \cdot 3 e= \\
& =\frac{1}{3} \cdot \pi \cdot 3 e=e \pi
\end{aligned}
$$

Solution 2 by Florentin Viṣescu-Romania

$$
\begin{gathered}
f:\left(0, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, f(x)=x e^{x+\frac{1}{\cos x}} \\
f^{\prime \prime}(x)=e^{x+\frac{1}{\cos x}}\left(2+\frac{2 \sin x}{\cos ^{2} x}+x\left(1+\frac{\sin x}{\cos ^{2} x}\right)^{2}+x \cdot \frac{1+\sin ^{2} x}{\cos ^{3} x}\right)>0
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

f-convexe. By Jensen's inequality:

$$
\begin{gathered}
\frac{1}{3}\left(f(a)+f(B)+f(C) \geq f\left(\frac{A+B+C}{3}\right)\right. \\
\sum_{c y c} A e^{A+\frac{1}{\cos A}} \geq 3 \cdot \frac{\pi}{3} e^{\frac{\pi}{3}+\frac{1}{\cos \frac{\pi}{3}}}=\pi e^{2+\frac{\pi}{3}}>\pi e
\end{gathered}
$$

1354. In $\triangle A B C$ the following relationship holds:

$$
(\mu(B)+\mu(C))^{2} \csc A+2 \csc \frac{B}{2}+2 \csc \frac{C}{2}>\frac{2 s}{r}
$$

Proposed by Emil Popa-Romania
Solution by Soumava Chakraborty-Kolkata-India
For simplicity, let us denote $\mu(B)$ by $B, \mu(C)$ by C and $\mu(A)$ by A

$$
\begin{gathered}
b+c-a=4 R \cos \frac{A}{2} \cos \frac{B-C}{2}-4 R \cos \frac{A}{2} \sin \frac{A}{2}= \\
=4 R \cos \frac{A}{2}\left(\cos \frac{B-C}{2}-\cos \frac{B+C}{2}\right)=8 R \cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \Rightarrow \\
\Rightarrow s-a \stackrel{(1)}{=} 4 R \cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
\end{gathered}
$$

Again, $\mathrm{AI}=\frac{\mathrm{r}}{\sin \frac{A}{2}}=\frac{4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{\sin \frac{A}{2}}=4 R \sin \frac{B}{2} \sin \frac{C}{2} \stackrel{\text { by }}{\cong}(1) \frac{s-a}{\cos \frac{A}{2}} \Rightarrow \cos \frac{A}{2} \stackrel{(2)}{\mathscr{m}} \frac{s-a}{A I}$

$\stackrel{(b)}{=} s-b+r \tan \frac{B}{4}$ and $C I \stackrel{(c)}{=} s-c+r \tan \frac{C}{4} \therefore(a)+(b)+(c) \Rightarrow$

$$
\text { Now, LHS }=\frac{\Rightarrow \sum A I \stackrel{(3)}{=} s+r \sum \tan \frac{A}{4}}{2 \cos \frac{A}{2} \sin \frac{A}{2}}-2 \operatorname{cosec} \frac{A}{2}+2 \sum \operatorname{cosec} \frac{A}{2}=
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
=\frac{(\pi-A)^{2}}{2 \cos \frac{A}{2} \sin \frac{A}{2}}-2 \operatorname{cosec} \frac{A}{2}+\frac{2}{r} \sum A I \stackrel{\text { by }}{\stackrel{(3)}{\leftrightarrows}} \frac{(\pi-A)^{2}}{2 \cos \frac{A}{2} \sin \frac{A}{2}}-2 \operatorname{cosec} \frac{A}{2}+\frac{2 s}{r}+2 \sum \tan \frac{A}{4}
$$

$$
=\frac{(\pi-A)^{2}}{2 \cos \frac{A}{2} \sin \frac{A}{2}}-2 \operatorname{cosec} \frac{A}{2}+\frac{2 s}{r}+2 \tan \frac{A}{4}+2 \tan \frac{B}{4}+2 \tan \frac{C}{4} \stackrel{\text { by }(i)}{\leftrightarrows}
$$

$$
=\frac{(\pi-A)^{2}}{2 \cos \frac{A}{2} \sin \frac{A}{2}}-2 \operatorname{cosec} \frac{A}{2}+\frac{2 s}{r}+2\left(\operatorname{cosec} \frac{A}{2}-\frac{2 \cos ^{2} \frac{A}{2}}{2 \cos \frac{A}{2} \sin \frac{A}{2}}\right)+2 \tan \frac{B}{4}+2 \tan \frac{C}{4}
$$

$$
=\frac{(\pi-A)^{2}}{2 \cos \frac{A}{2} \sin \frac{A}{2}}-\frac{4 \cos ^{2} \frac{A}{2}}{2 \cos \frac{A}{2} \sin \frac{A}{2}}+\frac{2 s}{r}+2 \tan \frac{B}{4}+2 \tan \frac{C}{4}>\frac{2 s}{r}+\frac{(\pi-A)^{2}-4 \cos ^{2} \frac{A}{2}}{2 \cos \frac{A}{2} \sin \frac{A}{2}}
$$

$$
\therefore \text { LHS } \stackrel{(4)}{\sim} \frac{2 s}{r}+\frac{(\pi-A)^{2}-4 \cos ^{2} \frac{A}{2}}{2 \cos \frac{A}{2} \sin \frac{A}{2}}
$$

(4) \Rightarrow it suffices to prove $:(\pi-A)^{2}>4 \cos ^{2} \frac{A}{2} \Leftrightarrow \pi-A \stackrel{(5)}{>} 2 \cos \frac{A}{2}$ Let $f(x)=2 \cos \frac{x}{2}+x-\pi \forall x \in(0, \pi]$ Then, $f^{\prime}(x)=1-\sin \frac{x}{2} \geq 0$
$\therefore \mathbf{f}(\mathbf{x})$ is increasing on $(0, \pi] \Rightarrow \mathbf{f}(\mathbf{x}) \leq \mathbf{f}(\pi)=2 \cos \frac{\pi}{2}+\pi-\pi=0$
$\Rightarrow \forall x \in(0, \pi], 2 \cos \frac{x}{2}+x \leq \pi \Rightarrow \forall x \in(0, \pi), \pi-x>2 \cos \frac{x}{2} \Rightarrow \pi-A>2 \cos \frac{A}{2}$
$\Rightarrow(5) \Rightarrow$ proposed inequality is true (Proved)
1355. In $\triangle A B C$ the following relationships holds:

$$
\mathrm{R} \geq\left(\sum \frac{1}{\mathrm{~m}_{\mathrm{a}}+\mathrm{m}_{\mathrm{b}}}\right)^{-1} \geq 2 \mathrm{r}, \quad \mathrm{R} \geq\left(\sum \frac{1}{\mathrm{w}_{\mathrm{a}}+\mathrm{w}_{\mathrm{b}}}\right)^{-1} \geq 2 \mathrm{r}
$$

Proposed by Seyran Ibrahimov-Maasilli-Azerbaijan

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum \frac{1}{m_{a}+m_{b}} \stackrel{\text { Bergstrom }}{\geq} \frac{9}{2 \sum m_{a}} \geq \frac{9}{8 R+2 r} \stackrel{\text { Euler }}{\geq} \frac{9}{8 R+R}=\frac{1}{R} \Leftrightarrow \\
R \geq\left(\sum \frac{1}{m_{a}+m_{b}}\right)^{-1 \because m_{a} \geq w_{a} \text { and analogs }} \stackrel{\text { n }}{\geq}\left(\sum \frac{1}{w_{a}+w_{b}}\right)^{-1} \rightarrow(1)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\because \mathbf{w}_{\mathbf{a}} \geq \mathbf{h}_{\mathrm{a}}$ and analogs,
$\therefore \sum \frac{1}{\mathbf{w}_{\mathbf{a}}+\mathbf{w}_{\mathbf{b}}} \leq \sum \frac{\mathbf{1}}{\mathbf{h}_{\mathrm{a}}+\mathbf{h}_{\mathbf{b}}}=\sum \frac{\mathbf{2 R}}{\mathbf{c}(\mathbf{a}+\mathbf{b})} \stackrel{\mathrm{AM}-\mathbf{G M}}{\stackrel{2}{\leq}} \sum \frac{2 R}{2 \mathbf{c} \sqrt{\mathbf{a b}}}=$
$=R \sum \frac{1}{\sqrt{c a} \sqrt{b c}} \stackrel{\text { CBS }}{\sim} \mathrm{R} \sqrt{\sum \frac{1}{c a}} \sqrt{\sum \frac{1}{b c}}=\mathbf{R} \sum \frac{1}{\mathbf{a b}}=\frac{2 \mathrm{sR}}{4 R \mathrm{Rs}}=\frac{1}{2 r}$ $\left(\sum \frac{1}{\mathrm{w}_{\mathrm{a}}+\mathrm{w}_{\mathrm{b}}}\right)^{-1} \geq 2 \mathrm{r}$ and $\because \mathrm{m}_{\mathrm{a}} \geq \mathrm{w}_{\mathrm{a}}$ and analogs,
$\therefore\left(\sum \frac{1}{\mathbf{m}_{\mathrm{a}}+\mathbf{m}_{\mathrm{b}}}\right)^{-1} \geq\left(\sum \frac{1}{\mathbf{w}_{\mathrm{a}}+\mathbf{w}_{\mathrm{b}}}\right)^{-1} \geq 2 \mathrm{r} \rightarrow(2)$
(1) and (2) $\Rightarrow R \geq\left(\sum \frac{1}{m_{a}+m_{b}}\right)^{-1} \geq 2 \mathrm{r}$ and $\mathrm{R} \geq\left(\sum \frac{1}{\mathrm{w}_{\mathrm{a}}+\mathrm{w}_{\mathrm{b}}}\right)^{-1} \geq 2 \mathrm{r}$ (Proved)
1356. In $\triangle A B C$ the following relationships holds:

$$
108 \sum \sin ^{2} A \cot B \cot C \leq\left(2\left(\frac{R}{r}\right)^{2}+1\right)^{2}
$$

Proposed by Marian Ursărescu-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& 108 \sum \sin ^{2} A \cot B \cot C=108(\Pi \cot A) \sum \tan A\left(1-\cos ^{2} A\right)= \\
& =108(\Pi \cot A) \sum \tan A-108(\Pi \cot A) \sum \tan A \cos ^{2} A \\
& =108 \sum \cot A \cot B-54\left(\prod \cot A\right) \sum(2 \sin A \cos A)= \\
& =108-54\left(\frac{\prod \cos A}{\prod \sin A}\right) \sum \sin 2 A=108-54\left(\frac{s^{2}-(2 R+r)^{2}}{4 R^{2}\left(\prod \sin A\right)}\right)(4 \Pi \sin A) \\
& =108-54\left(\frac{s^{2}-(2 R+r)^{2}}{R^{2}}\right)=\frac{108 R^{2}+54(2 R+r)^{2}-54 s^{2}}{R^{2}} \leq\left(2\left(\frac{R}{r}\right)^{2}+1\right)^{2}=\frac{\left(2 R^{2}+r^{2}\right)^{2}}{r^{4}} \\
& \Leftrightarrow \frac{108 R^{2}+54(2 R+r)^{2}}{R^{2}} \leq \frac{\left(2 R^{2}+r^{2}\right)^{2}}{r^{4}}+\frac{54 s^{2}}{R^{2}}=\frac{R^{2}\left(2 R^{2}+r^{2}\right)^{2}+54 s^{2} r^{4}}{R^{2} r^{4}} \\
& \text { (1) } \\
& \Leftrightarrow R^{2}\left(2 R^{2}+r^{2}\right)^{2}+54 s^{2} r^{4} \xrightarrow{2} r^{4}\left(108 R^{2}+54(2 R+r)^{2}\right) \\
& \text { Now, LHS of (1) } \stackrel{\text { Gerretsen }}{\stackrel{y}{\geq}} R^{2}\left(2 R^{2}+r^{2}\right)^{2}+54\left(16 R r-5 r^{2}\right) r^{4} \stackrel{\text { ? }}{\geq}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\Leftrightarrow 4 t^{6}+4 t^{4}-323 t^{2}+648 t-324 \stackrel{?}{\geq} 0\left(\text { where } t=\frac{R}{r}\right)
$$

$$
\therefore 108 \sum \sin ^{2} A \operatorname{cotBcot} \mathrm{C} \leq\left(2\left(\frac{R}{r}\right)^{2}+1\right)^{2}(\text { Proved })
$$

1357. If in acute $\triangle A B C, N$-nine-point center then:

$$
\sqrt{N A}+\sqrt{N B}+\sqrt{N C} \leq \sqrt{\frac{15 R+6 r}{2}}
$$

Proposed by Daniel Sitaru-Romania

Solution by proposer

$$
\begin{aligned}
& \mathrm{O} \text {-circumcenter, } \mathrm{H} \text {-orthocenter, } \mathrm{NA} \text {-median in } \triangle \mathrm{AOH} \\
& N A \leq \frac{O A+H A}{2}(\text { equality for } N \equiv O \equiv H \text {) } \\
& N A \leq \frac{R+2 R \cos A}{2} \Rightarrow 2 N A \leq R+2 R \cos A \\
& 2 \sum_{\text {cyc }} N A \leq 3 R+2 R \sum_{\text {cyc }} \cos A=3 R+2 R\left(1+\frac{r}{R}\right)=5 R+2 r \\
& \sum_{c y c} N A \leq \frac{5 R+2 r}{2} \\
& \sum_{c y c} \sqrt{N A} \stackrel{C B S}{\leftrightarrows} \sqrt{\left(1^{2}+1^{2}+1^{2}\right)(N A+N B+N C)} \leq \sqrt{3 \cdot \frac{5 R+2 r}{2}}=\sqrt{\frac{15 R+6 r}{2}}
\end{aligned}
$$

Equality holds for $\boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c}$.
1358. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c}\left(\frac{m_{a}}{s_{a}}\right)^{n}+\prod_{c y c}\left(\frac{2 a}{b+c}\right)^{n} \geq 4, \quad n \geq 0
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro$$
\begin{aligned}
& \text { Proof : LHS } \stackrel{A-\mathrm{G}}{\geqq} 4_{4}^{\left[\Pi\left(\frac{\mathbf{m}_{\mathrm{a}}}{\mathbf{s}_{\mathrm{a}}}\right)^{\mathrm{n}}\right]\left[\Pi\left(\frac{\mathbf{2 a}}{\mathbf{b}+\mathbf{c}}\right)^{\mathrm{n}}\right]}=4^{4} \sqrt{\left[\Pi\left(\frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathbf{2 b c}}\right) \frac{\mathbf{8 a b c}}{\Pi(\mathbf{b}+\mathbf{c})}\right]^{\mathrm{n}}}= \\
& =4 \sqrt[4]{\left[\frac{1}{\mathbf{a b c}}\left(\Pi \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathbf{b}+\mathbf{c}}\right)\right]^{\mathbf{n}}} \\
& \therefore \text { LHS } \stackrel{(1)}{\geqq} 4_{4}^{\left[\frac{1}{\mathrm{abc}}\left(\Pi \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathrm{~b}+\mathbf{c}}\right)\right]^{n}} \\
& \text { Now, } \frac{1}{\mathbf{a b c}}\left(\Pi \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathbf{b}+\mathbf{c}}\right) \geq \frac{1}{\mathbf{a b c}}\left(\Pi\left(\frac{(\mathbf{b}+\mathbf{c})^{2}}{2(\mathbf{b}+\mathbf{c})}\right)\right)=\frac{1}{\mathbf{a b c}} \Pi\left(\frac{\mathbf{b}+\mathbf{c}}{2}\right) \\
& =\frac{(\mathbf{a}+\mathbf{b})(\mathbf{b}+\mathbf{c})(\mathbf{c}+\mathbf{a})}{\text { 8abc }} \stackrel{\text { Cesaro }}{\geq} 1 \therefore \frac{1}{\mathbf{a b c}}\left(\Pi \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathbf{b}+\mathbf{c}}\right) \geq 1 \\
& \Rightarrow\left(\frac{\mathbf{n}}{4}\right) \ln \left[\frac{1}{\mathrm{abc}}\left(\Pi \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathbf{b}+\mathbf{c}}\right)\right] \geq \mathbf{0}(\because \mathbf{n} \geq 0) \Rightarrow \ln \left[\frac{1}{\mathrm{abc}}\left(\Pi \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{b+\mathbf{c}}\right)\right]^{\frac{n}{4}} \geq \mathbf{0} \\
& \Rightarrow\left[\frac{1}{\mathbf{a b c}}\left(\Pi \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathbf{b}+\mathbf{c}}\right)\right]^{\frac{\mathbf{n}}{4}} \geq 1 \Rightarrow \sqrt[4]{\left[\frac{1}{\mathbf{a b c}}\left(\Pi \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathbf{b}+\mathbf{c}}\right)\right]^{\mathbf{n}}} \geq 1 \\
& \Rightarrow 4 \sqrt[4]{\left[\frac{1}{\mathrm{abc}}\left(\Pi \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{\mathrm{~b}+\mathrm{c}}\right)\right]^{\mathrm{n}}} \stackrel{(2)}{\geq} 4 \\
& \text { (1), (2) } \Rightarrow \text { LHS } \geq 4 \text { (Proved) }
\end{aligned}
$$

1359. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{r_{a}-r}{s_{a}} \sqrt{\frac{h_{a}}{r_{a}}} \geq \sqrt{\frac{2 R}{r}}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\sum \frac{\mathbf{r}_{\mathbf{a}}-\mathbf{r}}{\mathbf{s}_{\mathbf{a}}} \sqrt{\frac{\mathbf{h}_{\mathbf{a}}}{\mathbf{r}_{\mathbf{a}}}}=\sum\left[\frac{\frac{\mathbf{r s}}{\mathbf{s - a}}-\frac{\mathbf{r s}}{\mathbf{s}}}{\left(\frac{2 \mathbf{b c}}{\mathbf{b}^{2}+\mathbf{c}^{2}}\right) \mathbf{m}_{\mathbf{a}}} \sqrt{\frac{2 \mathbf{r s}(\mathbf{s}-\mathbf{a})}{\mathbf{a r s}}}\right] \stackrel{\text { Tsintsifas }}{\sim}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \geq \sum\left[\frac{\frac{\operatorname{rs}(\mathbf{s}-(\mathbf{s}-\mathbf{a}))}{\mathbf{s}(\mathbf{s}-\mathbf{a})}}{\left(\frac{2 \mathbf{b c}}{\mathbf{b}^{2}+\mathbf{c}^{2}}\right)\left(\frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{2 \mathbf{b c}}\right) \mathbf{w}_{\mathbf{a}}} \sqrt{\frac{\mathbf{s}(\mathbf{s}-\mathbf{a})}{\mathbf{b c}}} \sqrt{\frac{2 \mathbf{a b c}}{\mathbf{s a}^{2}}}\right] \\
& =\sum\left(\frac{2 \operatorname{ra}(\mathbf{b}+\mathbf{c})}{2 \operatorname{abccos} \frac{\mathbf{A}}{2}(s-\mathbf{a})} \cos \frac{\mathbf{A}}{2} \sqrt{\frac{2 \operatorname{Rrs}}{s}}\right)=\sqrt{2 \operatorname{Rr}}\left(\sum \frac{\operatorname{ra}(\mathbf{b}+\mathbf{c})}{4 \operatorname{Rrs}(\mathbf{s}-\mathbf{a})}\right) \\
& =\left(\frac{\sqrt{2 R r}}{4 R s}\right) \sum \frac{\mathbf{a}(s+s-a)}{s-a}=\left(\frac{\sqrt{2 R r}}{4 R s}\right)\left(\sum \frac{s(a-s+s)}{s-a}+\sum a\right) \\
& =\left(\frac{\sqrt{2 R r}}{4 \operatorname{Rs}}\right)\left[\sum(-s)+\frac{s^{2} \sum(s-b)(s-c)}{\prod(s-a)}+2 s\right]=\left(\frac{\sqrt{2 R r}}{4 R s}\right)\left[-s+\frac{\left(4 \operatorname{Rr}+\mathbf{r}^{2}\right) s^{2}}{\mathbf{s r}^{2}}\right] \\
& =\left(\frac{\sqrt{2 R r}}{4 R s}\right) s\left(\frac{4 R+r}{r}-1\right)=\left(\frac{\sqrt{2 R r}}{4 R s}\right)\left(\frac{4 R s}{r}\right) \\
& =\sqrt{\frac{2 R}{r}}(\text { Proved })
\end{aligned}
$$

1360. ADIL ABDULLAYEV'S REFINEMENT FOR IONESCU - WEITZENBOCK'S INEQUALITY

In $\triangle A B C$ the following relationship holds:

$$
\frac{a^{2}+b^{2}+c^{2}}{4 \sqrt{3} S} \geq \sqrt[3]{\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}\right)^{2}} \geq 1
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan
Solution 1 by Ravi Prakash-New Delhi-India
We have

$$
\begin{aligned}
a^{2}+b^{2}+c^{2}= & \frac{1}{2}\left(a^{2}+b^{2}\right)+\frac{1}{2}\left(b^{2}+c^{2}\right)+\frac{1}{2}\left(c^{2}+a^{2}\right) \geq a b+b c+c a \\
& =2 S\left(\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C}\right) \\
\text { As } f(x) & =\frac{1}{\sin x}, 0<x<\pi, \text { is convex, we get: }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
f(A)+f(B)+f(C) \geq 3 f\left(\frac{A+B+C}{3}\right)=3 f\left(\frac{\pi}{3}\right)=\frac{(3)(2)}{\sqrt{3}}=2 \sqrt{3}
$$

Thus, $a^{2}+b^{2}+c^{2} \geq a b+b c+c a \geq 4 \sqrt{3} S$. Now, we have:

$$
\begin{gather*}
\left(a^{2}+b^{2}+c^{2}\right)^{3}(a b+b c+c a)^{2} \geq\left(a^{2}+b^{2}+c^{2}\right)\left(a^{2}+b^{2}+c^{2}\right)^{2}(a b+b c+c a)^{2} \\
\geq(4 \sqrt{3} S)(4 \sqrt{3} S)^{2}\left(a^{2}+b^{2}+c^{2}\right)^{2} \Rightarrow \frac{\left(a^{2}+b^{2}+c^{2}\right)^{3}}{(4 \sqrt{3})^{3} S^{3}} \geq\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}\right)^{2} \\
\Rightarrow \frac{a^{2}+b^{2}+c^{2}}{4 \sqrt{3} S} \geq\left[\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}\right)^{2}\right]^{\frac{1}{3}} \text { (1) } \tag{1}\\
\text { Also, } \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \geq 1 \\
\Rightarrow\left[\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}\right)^{2}\right]^{\frac{1}{3}} \geq 1
\end{gather*}
$$

The inequality follows, from (1) and (2).
Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand

$$
\begin{gathered}
\text { In a triangle ABC, we have: }\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}\right) \geq 1 \\
\Rightarrow\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}\right)^{3} \geq \frac{a^{2}+b^{2}+c^{2}}{(a b+b c+c a)} \Rightarrow \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \geq \sqrt[3]{\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}\right)^{2}} \geq 1 \\
\Rightarrow \frac{a^{2}+b^{2}+c^{2}}{4 \sqrt{3} S} \geq \frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a} \geq \sqrt[3]{\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c a}\right)^{2}} \geq 1 o k
\end{gathered}
$$

Therefore it is true.

$$
\begin{gathered}
\text { Let } x=a+b-c, y=b+c-a, z=c+a-b \\
\text { Hence } a=\frac{x+z}{2}, b=\frac{x+y}{2}, c=\frac{y+z}{2} \\
\text { We have }(x+y)(y+z)(z+x) \geq 8 x y z \\
\Rightarrow 2(x+y)(y+z)(z+x)(x+y+z) \geq 16 x y z(x+y+z) \\
\Rightarrow(x+y)(y+z)(z+x)((x+y)+(y+z)+(z+x)) \geq 16 x y z(x+y+z) \\
\Rightarrow(x+y)(y+z)(z+x)(x+y)+(x+y)(y+z)(z+x)(y+z)+ \\
+(x+y)(y+z)(z+x)(z+x) \geq 16 x y z(x+y+z) \\
\Rightarrow 3((x+y)(y+z)(z+x)(x+y)+(x+y)(y+z)(z+x)(y+z)+(x+y)(y+z)(z+x)(z+x)) \geq
\end{gathered}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\begin{array}{c}
\text { www.ssmrmh.ro } \\
\geq 16 \times 3 x y z(x+y+z)
\end{array} \\
\begin{array}{r}
\left(\frac{(x+y)}{2} \frac{(y+z)}{2}+\frac{(y+z)}{2} \frac{(z+x)}{2}+\frac{(z+x)}{2} \frac{(x+y)}{2}\right)^{2} \geq 3 x y z(x+y+z) \\
\Rightarrow\left(\frac{x+y}{2}\right)\left(\frac{y+z}{2}\right)+\left(\frac{y+z}{2}\right)\left(\frac{z+x}{2}\right)+\left(\frac{z+x}{2}\right)\left(\frac{x+y}{2}\right) \\
\geq 4 \sqrt{3} \sqrt{\frac{(x+y+z)}{2}\left(\frac{x}{2}\right)\left(\frac{y}{2}\right)\left(\frac{z}{2}\right)} \\
\Rightarrow b c+c a+a b \geq 4 \sqrt{3} \sqrt{\left(\frac{a+b+c}{2}\right)\left(\frac{a+b-c}{2}\right)\left(\frac{b+c-a}{2}\right)\left(\frac{c+a-b}{2}\right)} \\
=4 \sqrt{3} \sqrt{\left(\frac{a+b+c}{2}\right)\left(\frac{a+b+c}{2}-c\right)\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)}=4 \sqrt{3} S
\end{array}
\end{gathered}
$$

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
\text { Hadwiger - Finsler } \Rightarrow & 2 \sum a b-\sum a^{2} \geq 4 \sqrt{3} S \Rightarrow \sum a b \geq \frac{\sum a^{2}+x}{2} \\
& (\text { where } x=4 \sqrt{3} S)
\end{aligned}
$$

$$
\Rightarrow\left(\sum a b\right)^{2} \stackrel{(i)}{\geq} \frac{x^{2}+2 x \sum a^{2}+\left(\sum a^{2}\right)^{2}}{4}
$$

$$
\text { Now, }(1) \Leftrightarrow\left(\frac{\Sigma a^{2}}{x}\right)^{3} \geq\left(\frac{\sum a^{2}}{\sum a b}\right)^{2} \Leftrightarrow\left(\sum a^{2}\right)\left(\sum a b\right)^{2} \stackrel{(2)}{\geq} x^{3}
$$

$$
\text { Now, LHS of (2) } \stackrel{\text { by }(i)}{\geq}\left(\sum a^{2}\right)\left(\frac{x^{2}+2 x \sum a^{2}+\left(\sum a^{2}\right)^{2}}{4}\right) \tilde{\imath}_{\geq}^{\geq}
$$

$$
\geq x^{3} \Leftrightarrow y^{3}+2 x y^{2}+y x^{2}-4 x^{3} \stackrel{?}{\dot{\sim}} 0
$$

$$
\text { (where } y=\sum a^{2} \text {) } \Leftrightarrow t^{3}+2 t^{2}+t-4 \stackrel{?}{\dot{n}} 0
$$

$$
\left(\text { where } t=\frac{y}{x}\right) \Leftrightarrow(t-1)\left(t^{2}+3 t+4\right) \stackrel{\text { ? }}{\geq} 0 \rightarrow \text { true }
$$

$$
\because t=\frac{y}{x}=\frac{\sum a^{2} \text { Ionescu }- \text { Weitzenbock }}{4 \sqrt{3} S} \stackrel{\sim}{\geq} 1 \Rightarrow
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
(2) \Rightarrow (1) is true and $\because \sum a^{2} \geq \sum a b:\left(\frac{\sum a^{2}}{\sum a b}\right)^{2} \geq 1 \Rightarrow \sqrt[3]{\left(\frac{\sum a^{2}}{\sum a b}\right)^{2}} \geq 1$ (Proved)
1361. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{a b}+\sqrt{b c}+\sqrt{c a} \geq 2 \sqrt{3 r\left(h_{a}+h_{b}+h_{c}\right)}
$$

Proposed by Marin Chirciu - Romania
Solution 1 by Șerban George Florin-Romania

$$
\begin{gathered}
\sum \sqrt{a b}=\sqrt{a b c} \cdot \sum \frac{1}{\sqrt{a}} \\
f:(0, \infty) \rightarrow \mathbb{R}, f(x)=\frac{1}{\sqrt{x}}=x^{-\frac{1}{2}, f^{\prime}(x)=-\frac{1}{2} x^{-\frac{3}{2}}, f^{\prime \prime}(x)=\frac{3}{4} x^{-\frac{5}{2}}>0} \begin{array}{c}
\Rightarrow f \text { convexe } \Rightarrow f\left(\frac{a+b+c}{3}\right) \leq \frac{f(a)+f(b)+f(c)}{3} \\
\frac{3}{\sqrt{\frac{2 s}{3}} \leq \sum \frac{1}{\sqrt{a}} \Rightarrow \sum \frac{1}{\sqrt{a}} \geq \frac{3 \sqrt{3}}{\sqrt{2 s}}} \\
\sum \sqrt{a b}=\sqrt{a b c} \cdot \sum \frac{1}{\sqrt{a}} \geq\left. 2 \sqrt{3 r} \cdot \sum h_{a}\right|^{2} \Rightarrow(a b c) \cdot\left(\sum \frac{1}{\sqrt{a}}\right)^{2} \geq 4 \cdot 3 r \cdot 2 S \sum \frac{1}{a} \\
(a b c) \cdot\left(\sum \frac{1}{\sqrt{a}}\right)^{2} \geq 4 R S \cdot \frac{27}{s} \geq 24 s r^{2} \cdot \sum \frac{1}{a} \\
54 R r \geq 24 s r^{2} \cdot \sum \frac{1}{a} \Rightarrow \sum \frac{1}{a} \leq \frac{54 R}{24 s r}=\frac{9 R}{4 s r} \\
\sum \frac{1}{a} \leq \frac{9 R}{4 s r^{\prime}} \text { Applying Petrovnic inequality } \\
\sum \frac{9 R}{4 s r} \Rightarrow 4 s^{2} \leq 27 R^{2} \Rightarrow(2 s)^{2} \leq(3 \sqrt{3} R)^{2} \Rightarrow 2 s \leq 3 \sqrt{3} R \\
\Rightarrow s \leq \frac{3 \sqrt{3} R}{2} \text { true, Mitrinovic's inequality }
\end{array}
\end{gathered}
$$

Solution 2 by Marian Ursărescu-Romania

$$
\begin{gather*}
\sqrt{a b}+\sqrt{a c}+\sqrt{b c} \geq 3 \sqrt[3]{a b c} \Rightarrow \text { we must show: } \\
3 \sqrt[3]{a b c} \geq 2 \sqrt{3 r\left(h_{a}+h_{b}+h_{c}\right)} \leq 3^{6}(a b c)^{2} \geq 2^{6} \cdot 3^{3} r^{3}\left(h_{a}+h_{b}+h_{c}\right)^{3} \\
\text { But abc }=4 s R r \text { and } h_{a}+h_{b}+h_{c}=\frac{s^{2}+r^{2}+4 R r}{2 R} \tag{2}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
From (1)+(2) we must show:

$$
\begin{gather*}
3^{6} \cdot 2^{4} s^{2} R^{2} r^{2} \geq 2^{6} \cdot 3^{3} \cdot r^{3} \frac{\left(s^{2}+r^{2}+4 R r\right)^{3}}{8 R^{3}} \Leftrightarrow \\
\Leftrightarrow 3^{3} \cdot 2 s^{2} R^{5} \geq r\left(s^{2}+r^{2}+4 R r\right)^{3} \tag{3}
\end{gather*}
$$

But $2 s^{2} \geq 27 \operatorname{Rr}$ (Cosnita and Turtoiu) (4)
From (3)+(4) we must show:

$$
\begin{equation*}
9^{3} R^{6} \geq\left(s^{2}+r^{2}+4 R r\right)^{3} \Leftrightarrow 9 R^{2} \geq s^{2}+r^{2}+4 R r \tag{5}
\end{equation*}
$$

From Gerretsen's inequality: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \Rightarrow$

$$
\begin{equation*}
s^{2} \leq 4 R^{2}+8 R r+4 r^{2} \Rightarrow s^{2} \leq 4(R+r)^{2} \tag{6}
\end{equation*}
$$

From (5)+(6) we must show: $9 R^{2} \geq 4(R+r)^{2} \Leftrightarrow$
$\Leftrightarrow \mathbf{3 R} \geq \mathbf{2}(R+r) \Leftrightarrow R \geq \mathbf{2 r}$, true, Euler's inequality.

Solution 3 by Boris Colakovic-Belgrade-Serbie

$$
\begin{gathered}
\sqrt{a b c}\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right) \stackrel{\text { Jensen }}{\geq} \sqrt{a b c} \frac{3}{\sqrt{\frac{a+b+c}{3}}}=\frac{3 \sqrt{3} \sqrt{4 R r s}}{\sqrt{2 S}}=3 \sqrt{2} \cdot \sqrt{3} \cdot \sqrt{R} \cdot \sqrt{r} \\
3 \sqrt{2} \cdot \sqrt{3} \cdot \sqrt{R} \cdot \sqrt{r} \geq 2 \sqrt{3} \cdot \sqrt{r} \cdot \sqrt{h_{a}+h_{b}+h_{c}} \Leftrightarrow \\
\Leftrightarrow 3 \sqrt{2} \cdot \sqrt{R} \geq 2 \sqrt{h_{a}+h_{b}+h_{c}} \Leftrightarrow 18 \cdot R \geq 4\left(h_{a}+h_{b}+h_{c}\right) \Rightarrow \\
\Rightarrow \frac{9}{2 R} \geq h_{a}+h_{b}+h_{c}
\end{gathered}
$$

From well-known inequality $h_{a}+h_{b}+h_{c} \leq 2 R+5 r \Rightarrow$
$\Rightarrow h_{a}+h_{b}+h_{c} \leq 2 R+5 r \leq \frac{9}{2} R \Rightarrow 2 R+5 r \leq \frac{9}{2} R \Leftrightarrow$

$$
\Leftrightarrow 4 R+10 r \leq 9 R \Rightarrow R \geq 2 r \text { Euler }
$$

1362. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} m_{a} \cdot \sum_{c y c} \frac{1}{m_{a}} \leq 5+\frac{4}{9 S^{2}} \cdot \prod_{c y c} m_{a} \cdot \sum_{c y c} m_{a}
$$

Proposed by Adil Abdullyev-Baku-Azerbaijan
Solution by Soumava Chakraborty-Kolkata-India

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
&\left(\sum \mathrm{a}\right)\left(\sum \frac{1}{\mathrm{a}}\right) \leq 5+\frac{\operatorname{abc}\left(\sum \mathrm{a}\right)}{4 S^{2}} \Leftrightarrow \frac{s\left(\mathbf{s}^{2}+4 R r+r^{2}\right)}{2 \operatorname{Rrs}} \leq 5+\frac{8 R r s^{2}}{4 \mathbf{r}^{2} \mathbf{s}^{2}} \Leftrightarrow s^{2}+4 R r+r^{2} \\
& \leq 4 R^{2}+10 R r
\end{aligned}
$$

Now, $s^{2}+4 R r+r^{2} \stackrel{\text { Gerretsen }}{\leftrightarrows} 4 R^{2}+8 R r+4 r^{2} \stackrel{\text { Euler }}{\leq} 4 R^{2}+8 R r+2 R r=4 R^{2}+10 R r$ $\therefore\left(\sum \mathrm{a}\right)\left(\sum \frac{1}{\mathbf{a}}\right) \stackrel{\stackrel{(1)}{\sim}}{\underset{\leq}{s}} 5+\frac{\mathbf{a b c}\left(\sum \mathrm{a}\right)}{4 \mathbf{S}^{2}}$
Applying (1)on a triangle with sides $\frac{2 m_{a}}{3}, \frac{2 m_{b}}{3}, \frac{2 m_{c}}{3}$ whose area of course $=\frac{S}{3}$, we get $:$

$$
\begin{aligned}
& \frac{2}{3} \cdot \frac{3}{2}\left(\sum m_{a}\right)\left(\sum \frac{1}{\mathbf{m}_{\mathrm{a}}}\right) \leq 5+\frac{\frac{8}{27} \mathrm{~m}_{\mathrm{a}} \mathbf{m}_{\mathrm{b}} \mathbf{m}_{\mathrm{c}}\left(\frac{2}{3}\left(\sum \mathrm{~m}_{\mathrm{a}}\right)\right)}{4\left(\frac{S^{2}}{9}\right)} \Rightarrow \\
& \Rightarrow\left(\sum \mathrm{m}_{\mathrm{a}}\right)\left(\sum \frac{1}{\mathbf{m}_{\mathrm{a}}}\right) \leq 5+\frac{4 \mathrm{~m}_{\mathrm{a}} \mathrm{~m}_{\mathrm{b}} \mathrm{~m}_{\mathrm{c}}\left(\sum \mathrm{~m}_{\mathrm{a}}\right)}{\mathbf{9 S ^ { 2 }}} \text { (Proved) }
\end{aligned}
$$

1363. In $\triangle A B C$ the following relationship holds:

$$
\frac{8\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)\left(c^{2}+a^{2}\right)}{(a+b)^{2}(b+c)^{2}(c+a)^{2}} \leq\left(\frac{R}{2 r}\right)^{2}
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan
Solution by Soumava Chakraborty-Kolkata-India

$$
\therefore \frac{\mathbf{a}^{2}+\mathbf{b}^{2}}{(\mathbf{a}+\mathbf{b})^{2}} \stackrel{(a)}{s} \frac{(\mathbf{a}+\mathbf{b})^{2}}{8 \mathbf{a b}} \therefore \operatorname{similarly}, \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{(\mathbf{b}+\mathbf{c})^{2}} \stackrel{(b)}{m} \frac{(\mathbf{b}+\mathbf{c})^{2}}{8 \mathbf{b c}} \text { and } \frac{\mathbf{c}^{2}+\mathbf{a}^{2}}{(\mathbf{c}+\mathbf{a})^{2}} \stackrel{(\mathbf{c})}{\underset{\sim}{s}} \frac{(\mathbf{c}+\mathbf{a})^{2}}{8 \mathbf{c a}}
$$

$$
\begin{aligned}
& \Pi(a+b)=2 a b c+\sum \mathbf{a b}(2 s-c)=2 s\left(s^{2}+4 R r+r^{2}\right)-4 R r s= \\
& \text { (i) } \\
& =2 s\left(s^{2}+2 R r+r^{2}\right) \Rightarrow \Pi(a+b) \stackrel{\text { m }}{=} 2 s\left(s^{2}+2 R r+r^{2}\right) \\
& \text { Now, }(\mathrm{a}+\mathrm{b})^{4}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}\right)^{2} \stackrel{\text { A-G }}{\stackrel{\Omega}{\geq}} 8 \mathrm{ab}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

 $$
\Leftrightarrow s^{2}+2 R r+r^{2} \stackrel{? \sim}{\leq} \mathbf{R}^{2} \Leftrightarrow s^{2} \underset{(1)}{\stackrel{?}{\sim}} 8 R^{2}-2 R r-r^{2}
$$

$$
\begin{aligned}
& \Leftrightarrow(R-2 r)(2 R+r) \stackrel{\text { ? }}{\substack{n}} 0 \rightarrow \text { true } \because R \mathbf{R u l e r}_{\geq}^{\text {Euler }} 2 r \\
& \Rightarrow(1) \text { is true }: \frac{8\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)\left(c^{2}+a^{2}\right)}{(a+b)^{2}(b+c)^{2}(c+a)^{2}} \leq\left(\frac{R}{2 r}\right)^{2} \text { (Proved) }
\end{aligned}
$$

1364. In $\triangle A B C$ the following relationship holds:

$$
4 R \sum_{c y c} m_{a} w_{a}^{2} \geq \sum_{c y c}\left(b^{2}+c^{2}\right) h_{a}^{2}
$$

Proposed by Bogdan Fuștei-Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
4 R \sum m_{a} \mathbf{w}_{a}^{2} \stackrel{\text { Tereshin }}{\gtrless} 4 R \sum\left[\left(\frac{\mathbf{b}^{2}+c^{2}}{4 R}\right) \mathbf{w}_{a}^{2}\right] \stackrel{w_{a} \geq h_{a}}{\stackrel{y}{\geq}} \sum\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right) h_{a}^{2} \text { (Proved) }
$$

1365. In $\triangle A B C$ the following relationship holds:

$$
\left(\sum_{c y c}\left(\left(\mu(A)+2^{n}\right) \cdot \sin \frac{A}{2^{n}}\right)^{m}\right)\left(\sum_{c y c}\left(\tan \frac{A}{2}\right)^{2 q}\right)>\frac{\pi^{m}}{3^{m+q-2}}, m, n, q \geq 2
$$

Proposed by Radu Diaconu-Romania

Solution by Remus Florin Stanca-Romania

$$
\begin{equation*}
\sum_{c y c}\left(\left(A+2^{n}\right) \sin \frac{A}{2^{n}}\right)^{m} \geq \frac{\left(\sum_{c y c}\left(A+2^{n}\right) \sin \frac{A}{2^{n}}\right)^{m}}{3^{m-1}} \tag{1}
\end{equation*}
$$

Let $f:\left(0, \frac{\pi}{4}\right) \rightarrow \mathbb{R}$ be a function such that

$$
\begin{gathered}
f(x)=(x+1) \sin x \Rightarrow f^{\prime}(x)=\sin x+(x+1) \cos x \Rightarrow \\
\Rightarrow f^{\prime \prime}(x)=\cos x+\cos x-(x+1) \sin x=2 \cos x-(x+1) \sin x \Rightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $\Rightarrow f^{\prime \prime \prime}(x)=-2 \sin x-\sin x-(x+1) \sin x<0 \Rightarrow$

$\Rightarrow f^{\prime \prime}(x)$ is decreasing, let $f^{\prime \prime}\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \cdot \frac{4-\pi}{4}>0 \Rightarrow f^{\prime \prime}(x)>0 \Rightarrow f$ is convex $\stackrel{\text { Jensen }}{\Rightarrow}$

$$
\begin{equation*}
\stackrel{\text { Jensen }}{\Rightarrow} \frac{1}{3} \sum_{c y c}\left(\frac{A}{2^{n}}+1\right) \sin \left(\frac{A}{2^{n}}\right) \geq\left(\frac{\pi}{3 \cdot 2^{n}}+1\right) \sin \frac{\pi}{3 \cdot 2^{n}} \tag{2}
\end{equation*}
$$

Let's prove that $(x+1) \sin x-x \geq 0$, let $g(x)=(x+1) \sin x-x \Rightarrow$

$$
\Rightarrow g^{\prime}(x)=\sin x+(x+1) \cos x-1 \Rightarrow g^{\prime \prime}(x)=2 \cos x-(x+1) \sin x \Rightarrow
$$

$$
\Rightarrow g^{\prime \prime \prime}(x)=-2 \sin x-\sin x-(x+1) \cos x<0 \Rightarrow g^{\prime \prime}(x) \text { is decreasing }
$$

$$
g^{\prime \prime}\left(\frac{\pi}{4}\right)>0 \Rightarrow g^{\prime \prime}(x)>0 \Rightarrow g^{\prime}(x) \text { is increasing, } g^{\prime}(0)=0 \Rightarrow g^{\prime}(x)>0 \Rightarrow
$$

$$
\Rightarrow g \text { is increasing, } g(0)=0 \Rightarrow g(x)>0 \Rightarrow(x+1) \sin x \geq x \Rightarrow
$$

$$
\Rightarrow\left(\frac{\pi}{3 \cdot 2^{n}}+1\right) \sin \frac{\pi}{3 \cdot 2^{n}} \geq \frac{\pi}{3 \cdot 2^{n}} \Rightarrow
$$

$$
\Rightarrow \frac{1}{3} \sum_{c y c}\left(\frac{A}{2^{n}}+1\right) \sin \left(\frac{A}{2^{n}}\right) \geq \frac{\pi}{3 \cdot 2^{n}} \Rightarrow \sum_{c y c}\left(A+2^{n}\right) \sin \frac{A}{2^{n}} \geq \pi \stackrel{(1)}{\Rightarrow}
$$

$$
\stackrel{(1)}{\Rightarrow} \sum_{c y c}\left(\left(A+2^{n}\right) \sin \frac{A}{2^{n}}\right)^{m} \geq \frac{\pi^{m}}{3^{m-1}}
$$

$$
\sum_{c y c}\left(\tan \frac{A}{2}\right)^{2 q} \geq \frac{\left(\sum_{c y c} \tan \frac{A}{2}\right)^{2 q}}{3^{2 q-1}} \geq \frac{3^{q}}{3^{2 q-1}}=\frac{1}{3^{q-1}}
$$

$$
\underset{(3) ;(5)}{\stackrel{. "}{\Rightarrow}}\left(\sum_{c y c}\left(\left(A+2^{n}\right) \sin \frac{A}{2^{n}}\right)^{m}\right)\left(\sum_{c y c}\left(\tan \frac{A}{2}\right)^{2 q}\right) \geq \frac{\pi^{m}}{3^{m+q-2}} \quad \text { (Q.E.D.) }
$$

1366. In $\triangle A B C$ the following relationship holds:

$$
\prod_{c y c} \frac{a^{2}+b^{2}}{2 a b} \geq \max \left(\prod_{c y c} \frac{(a+b) m_{a}}{2 a r_{a}}, \prod_{c y c} \frac{m_{a}}{w_{a}}\right)
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan

Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\Pi \frac{(a+b) m_{a}}{2 a r_{a}}=\left(\frac{\Pi(b+c)}{8 a b c \prod r_{a}}\right) \Pi m_{a} \stackrel{\text { Tsintsifas }}{\varsigma} \\
\leq \frac{\Pi(b+c)}{8 a b c r s^{2}} \Pi\left(\frac{b^{2}+c^{2}}{2 b c} w_{a}\right)=\frac{\Pi(b+c)}{8 a b c r s^{2}}\left[\frac{\Pi\left(b^{2}+c^{2}\right)}{8 a^{2} b^{2} c^{2}}\right]\left[\Pi\left(\frac{2 b c \cos \frac{A}{2}}{b+c}\right)\right]
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\frac{\Pi(b+c)}{8 a b c r s^{2}}\left[\frac{\Pi\left(b^{2}+c^{2}\right)}{8 a^{2} b^{2} c^{2}}\right]\left(\frac{8 a^{2} b^{2} c^{2}}{\Pi(b+c)}\right)\left(\frac{s}{4 R}\right)= \\
=\frac{\Pi\left(b^{2}+c^{2}\right)}{8 a b c(4 R r s)}=\frac{\Pi\left(b^{2}+c^{2}\right)}{8 a b c(a b c)}=\frac{\Pi\left(b^{2}+c^{2}\right)}{\Pi(2 b c)}=\Pi \frac{a^{2}+b^{2}}{2 a b} \Rightarrow \\
\Rightarrow \Pi \frac{(a+b) m_{a}}{2 a r_{a}} \stackrel{(1)}{\leq} \Pi \frac{a^{2}+b^{2}}{2 a b}
\end{gathered}
$$

Again, by Tsintsifas,

$$
\begin{gathered}
\Pi \frac{m_{a}}{w_{a}} \leq \Pi \frac{b^{2}+c^{2}}{2 b c} \Rightarrow \Pi \frac{m_{a}}{w_{a}} \stackrel{(1)}{\leq} \Pi \frac{a^{2}+b^{2}}{2 a b} \\
\therefore(1),(2) \Rightarrow \Pi \frac{a^{2}+b^{2}}{2 a b} \geq \Pi \frac{(a+b) m_{a}}{2 a r_{a}}, \Pi \frac{m_{a}}{w_{a}} \\
\Rightarrow \Pi \frac{a^{2}+b^{2}}{2 a b} \geq \max \left(\Pi \frac{(a+b) m_{a}}{2 a r_{a}}, \Pi \frac{m_{a}}{w_{a}}\right)(\text { Proved })
\end{gathered}
$$

Solution 2 by Bogdan Fuștei-Romania

$$
\left.\begin{array}{c}
s_{a}=\frac{2 b c}{b^{2}+c^{2}} m_{a} \text { (and the analogs) } \\
s_{a} \leq w_{a} \text { (and the analogs) } \\
w_{a}=\frac{2 b c}{b+c} \cos \frac{A}{2} \text { (and the analogs) } \\
\cos \frac{A}{2}=\sqrt{\frac{r_{b} r_{c}}{b c}} \text { (and the analogs) } \\
s_{a} s_{b} s_{c}=\frac{8 a^{2} b^{2} c^{2}}{\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)\left(a^{2}+c^{2}\right)} m_{a} m_{b} m_{c} \Rightarrow \\
\Rightarrow \frac{m_{a} m_{b} m_{c}}{s_{a} s_{b} s_{c}}=\frac{\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)\left(a^{2}+c^{2}\right)}{8 a^{2} b^{2} c^{2}} \geq \frac{m_{a} m_{b} m_{c}}{w_{a} w_{b} w_{c}} \Leftrightarrow \prod \frac{a^{2}+b^{2}}{2 a b} \geq \prod \frac{m_{a}}{w_{a}} \tag{1}\\
w_{a} w_{b} w_{c}=\frac{8 a^{2} b^{2} c^{2}}{(a+b)(b+c)(a+c)} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \\
\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\frac{r_{a} r_{b} r_{c}}{a b c} \\
\Rightarrow w_{a} w_{b} w_{c}=\frac{8 a^{2} b^{2} c^{2}}{(a+b)(b+c)(a+c)} \cdot \frac{r_{a} r_{b} r_{c}}{a b c} \\
\frac{w_{a} w_{b} w_{c}}{r_{a} r_{b} r_{c}}=\frac{8 a b c}{(a+b)(b+c)(a+c)}
\end{array}\right\} \Rightarrow
$$

$$
\begin{align*}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \frac{m_{a} m_{b} m_{c}}{w_{a} w_{b} w_{c}}=\frac{m_{a} m_{b} m_{c}}{r_{a} r_{b} r_{c}} \cdot \frac{r_{a} r_{b} r_{c}}{w_{a} w_{b} w_{c}}=\frac{m_{a} m_{b} m_{c}}{r_{a} r_{b} r_{c}} \cdot \frac{(a+b)(b+c)(a+c)}{8 a b c} \\
& \frac{m_{a} m_{b} m_{c}}{w_{a} w_{b} w_{c}}=\Pi \frac{(a+b)}{2 a r_{a}} \leq \Pi \frac{a^{2}+b^{2}}{2 a b} \tag{2}
\end{align*}
$$

From (1) and (2) the inequality from enunciation is proved.
1367. If in $\triangle A B C, R<2(r+1)$ then:

$$
w_{a} w_{b} w_{c}<\left(2+h_{a}\right)\left(2+h_{b}\right)\left(2+h_{c}\right)
$$

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gather*}
w_{a}=\frac{2 \sqrt{b c}}{b+c} \cdot \sqrt{s(s-a)} \stackrel{A M-G M}{\leq} 1 \cdot \sqrt{s(s-a)}=\sqrt{s(s-a)} \\
\text { Similarly: } w_{b} \leq \sqrt{s(s-b)} ; w_{c} \leq \sqrt{s(s-c)} \\
\Rightarrow w_{a} w_{b} w_{c} \leq s \sqrt{s(s-a)(s-b)(s-c)}=s \cdot S=s \cdot s \cdot r=s^{2} r \\
R H S=\left(2+h_{a}\right)\left(2+h_{b}\right)\left(2+h_{c}\right) \quad \text { * }^{*} \tag{*}\\
>\left(1+h_{a}\right)\left(1+h_{b}\right)\left(1+h_{c}\right)=\left(h_{a}+h_{b}+h_{c}\right)+\left(h_{a} h_{b}+h_{b} h_{c}+h_{c} h_{a}\right)+h_{a} h_{b} h_{c} \\
>h_{a} h_{b} h_{c}+h_{a} h_{b}+h_{c} h_{a}+h_{b} h_{c} \\
=\frac{2 s^{2} r}{R}+\frac{2 s^{2} r^{2}}{R}=\frac{2 s^{2} r+2 s^{2} r^{2}}{R}
\end{gather*}
$$

We must show that: $s^{2} r<\frac{2 s^{2} r+2 s^{2} r}{R} \Leftrightarrow R s^{2} r<2 s^{2} r+2 s^{2} r^{2}$
Which is true because: $\because R s^{2} r<{ }^{R<2(r+1)} 2 s^{2} r(1+r)=2 s^{2} r+2 s^{2} r^{2}$. Proved.
Solution 2 by Avishek Mitra-West Bengal-India

$$
\begin{gathered}
\Leftrightarrow w_{a} w_{b} w_{c}=\prod \frac{2}{(b+c)} \sqrt{b c \cdot s(s-a)}= \\
=\frac{8 a b c}{(a+b)(b+c)(c+a)} \sqrt{s^{3}(s-a)(s-b)(s-c)} \stackrel{A M-G M}{\leq} \frac{8 a b c}{2 \cdot 2 \cdot 2 \sqrt{a b \cdot b c \cdot c a}} s \cdot \Delta \\
=s \cdot r s=s^{2} r \Leftrightarrow\left(2+h_{a}\right)\left(2+h_{b}\right)\left(2+h_{c}\right) \\
=8+4 \sum h_{a}+2 \sum h_{a} h_{b}+\prod h_{a} \\
=8+4 \cdot 2 \Delta \sum \frac{1}{a}+2 \cdot 4 \Delta^{2} \sum \frac{1}{a b}+\frac{(2 \Delta)^{3}}{\prod a}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=8+8 \Delta \cdot \frac{\sum a b}{4 R \Delta}+8 \Delta^{2} \cdot \frac{\sum a}{4 R \Delta}+\frac{8\left(\frac{a b c}{4 R}\right)^{3}}{a b c} \\
=8+\frac{2 \sum a b}{R}+\frac{2 r s \cdot 2 s}{R}+\frac{a^{2} b^{2} c^{2}}{8 R^{3}} \\
=8+\frac{2\left(s^{2}+r^{2}+4 R r\right)}{R}+\frac{4 s^{2} r}{R}+\frac{16 R^{2} s^{2} r^{2}}{8 R^{3}} \\
=8+\frac{2 s^{2}+2 r^{2}+8 R r}{R}+\frac{4 s^{2} r}{R}+\frac{2 s^{2} r^{2}}{R} \Leftrightarrow N e e d \text { to } s h o w \\
\Rightarrow \prod w_{a}<\prod\left(2+h_{a}\right) \\
\Rightarrow \prod w_{a} \leq s^{2} r<8+\frac{2 s^{2}+2 r^{2}+8 R r+4 s^{2} r+2 s^{2} r^{2}}{R} \\
\Rightarrow s^{2} r R<s^{2} r \cdot 2(r+1)=2 s^{2} r^{2}+2 s^{2} r<8 R+2 s^{2}+2 r^{2}+8 R r+4 s^{2} r+2 s^{2} r^{2} \\
\left.\Leftrightarrow 8 R+2 s^{2}+2 r^{2}+8 R r+2 s^{2} r>0 \quad \text { * }^{*} \text { true }\right)(p r o v e d)
\end{gathered}
$$

1368. In $\triangle A B C$ the following relationship holds:

$$
2(\sqrt{a}+\sqrt{b}+\sqrt{c}) \leq 3 \sqrt{\frac{3 a b c}{4 R r+r^{2}}}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Șerban George Florin-Romania

$$
\begin{gathered}
\left(\sum_{c y c} \sqrt{a}\right)^{2} \stackrel{C B S}{\leq} 3 \sum_{c y c} \sqrt{a}^{2}=3 \sum a=3 \cdot 2 s=6 s \\
2 \sum \sqrt{a} \leq 3 \sqrt{\frac{3 a b c}{4 R r+r^{2}}} \\
\left(2 \sum \sqrt{a}\right)^{2}=4\left(\sum \sqrt{a}\right)^{2} \leq 4 \cdot 6 s \leq 9 \cdot \frac{3 a b c}{4 R r+r^{2}} \\
24 s \leq \frac{27 \cdot 4 R r s}{4 R r+r^{2}}=\frac{108 R r s}{4 R r+r^{2}} \\
24 s\left(4 R r+r^{2}\right) \leq 108 R r s \mid: 12 s \\
2\left(4 R r+r^{2}\right) \leq 9 R r, 8 R r+2 r^{2} \leq 9 R r
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $R r \geq 2 r^{2} \mid: 2 r \Rightarrow R \geq 2 r$ (Euler), True

Solution 2 by Adrian Popa-Romania

$$
\begin{gathered}
2(\sqrt{a}+\sqrt{b}+\sqrt{c}) \leq 3 \sqrt{\frac{3 a b c}{4 R r+r^{2}}} \\
\underbrace{\frac{a}{1}+\frac{b}{1}+\frac{c}{1}}_{2 s} \stackrel{\text { Bergstrom }}{\geq} \frac{(\sqrt{a}+\sqrt{b}+\sqrt{c})^{2}}{3} \Rightarrow(\sqrt{a}+\sqrt{b}+\sqrt{c})^{2} \leq 6 s \Rightarrow \\
\Rightarrow \sqrt{a}+\sqrt{b}+\sqrt{c} \leq \sqrt{6 s} \mid \cdot 2 \Rightarrow 2(\sqrt{a}+\sqrt{b}+\sqrt{c}) \leq 2 \sqrt{6} s \\
\text { We must show that } 2 \sqrt{6} s \leq\left. 3 \sqrt{\frac{3 \cdot 4 R r s}{4 R r+r^{2}}}\right|^{2} \Leftrightarrow \\
\Rightarrow 24 s \leq \frac{108 R r s}{4 R r+r^{2}} \Leftrightarrow 9 s R r+24 s r^{2} \leq 108 R r s \Leftrightarrow \\
\Leftrightarrow 24 s r^{2} \leq 12 R r s \mid: 12 s r \Leftrightarrow 2 r \leq R \text { (True) } \Rightarrow \text { Euler }
\end{gathered}
$$

Solution 3 by proposer

$$
\begin{gathered}
(\sqrt{a}+\sqrt{b})^{2}=a+b+2 \sqrt{a b}>a+b>c=(\sqrt{c})^{2} \Rightarrow \\
\sqrt{a}+\sqrt{b}>\sqrt{c} \text {-and analogs. }
\end{gathered}
$$

By Mitrinovic's inequality in the triangle with sides $\sqrt{a}, \sqrt{b}, \sqrt{c}$:

$$
\begin{aligned}
& s_{1} \leq \frac{3 \sqrt{3}}{2} R_{1} \Leftrightarrow \frac{1}{2}(\sqrt{a}+\sqrt{b}+\sqrt{c}) \leq \frac{3 \sqrt{3}}{2} \cdot \frac{\sqrt{a} \cdot \sqrt{b} \cdot \sqrt{c}}{4 S_{1}} \Leftrightarrow \\
& \Leftrightarrow \frac{1}{2}(\sqrt{a}+\sqrt{b}+\sqrt{c}) \leq \frac{3 \sqrt{3 a b c}}{8 \cdot \frac{1}{2} \sqrt{4 R r+r^{2}}} \Leftrightarrow \\
& \Leftrightarrow 2(\sqrt{a}+\sqrt{b}+\sqrt{c}) \leq 3 \sqrt{\frac{3 a b c}{4 R r+r^{2}}}
\end{aligned}
$$

1369. In $\triangle A B C, g_{a}$-Gergonne's cevian the following relationship holds:

$$
\sqrt{2} m_{a} \geq g_{a}+\frac{|b-c|}{2} \cdot \sqrt{\frac{2 h_{a}-3 r}{r}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India

$$
\text { Stewart's theorem } \Rightarrow \mathbf{b}^{2}(\mathbf{s}-\mathbf{c})+\mathbf{c}^{2}(\mathbf{s}-\mathbf{b})=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c})
$$

$$
a n d b^{2}(s-b)+\mathbf{c}^{2}(s-c)=\mathbf{a g}_{a}^{2}+\mathbf{a}(s-\mathbf{b})(s-\mathbf{c})
$$

Adding the above two, we get:

$$
\begin{gathered}
\left(b^{2}+c^{2}\right)(2 s-b-c)=\mathbf{a n}_{a}^{2}+\mathbf{a g}_{a}^{2}+2 a(s-b)(s-c) \\
\Rightarrow 2 a\left(b^{2}+c^{2}\right)=2 a\left(n_{a}^{2}+g_{a}^{2}\right)+a(a+b-c)(c+a-b) \Rightarrow 2\left(b^{2}+c^{2}\right)= \\
=2\left(n_{a}^{2}+g_{a}^{2}\right)+a^{2}-(b-c)^{2} \\
\Rightarrow 2\left(b^{2}+c^{2}\right)-a^{2}+(b-c)^{2}=2\left(n_{a}^{2}+g_{a}^{2}\right) \\
\Rightarrow 4 m_{a}^{2}+(b-c)^{2}=2\left(n_{a}^{2}+g_{a}^{2}\right) \Rightarrow 4 m_{a}^{2}+(b-c)^{2}+4 r_{b} r_{c}= \\
=2\left(n_{a}^{2}+g_{a}^{2}\right)+4 r_{b} r_{c} \\
\Rightarrow 4 \mathbf{m}_{a}^{2}+(b-c)^{2}+4 s(s-a)=2\left(n_{a}^{2}+g_{a}^{2}\right)+4 s(s-a)
\end{gathered}
$$

$$
\Rightarrow 4 \mathrm{~m}_{\mathrm{a}}^{2}+4 \mathrm{~m}_{\mathrm{a}}^{2}=2\left(\mathrm{n}_{\mathrm{a}}^{2}+\mathrm{ga}^{2}\right)+4 \mathrm{~s}(\mathrm{~s}-\mathrm{a}) \Rightarrow \mathrm{n}_{\mathrm{a}}^{2}+\mathrm{ga}^{2} \stackrel{(1)}{\cong} 4 \mathrm{~m}_{\mathrm{a}}^{2}-2 \mathrm{~s}(\mathrm{~s}-\mathrm{a})
$$

$$
\text { Now, } \mathbf{b}^{2}(s-\mathbf{c})+\mathbf{c}^{2}(\mathbf{s}-\mathbf{b})=\mathbf{a n}_{\mathrm{a}}^{2}+\mathbf{a}(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c}) \Rightarrow \mathbf{s}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)-\mathbf{b c}(2 \mathbf{s}-\mathbf{a})=
$$

$$
=\mathbf{a n}_{\mathrm{a}}^{2}+\mathbf{a}\left(\mathbf{s}^{2}-\mathbf{s}(2 s-\mathbf{a})+\mathbf{b c}\right)
$$

$$
\Rightarrow \mathbf{s}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)-2 \mathbf{s b c}=\mathbf{a n _ { a } ^ { 2 }}+\mathbf{a}\left(\mathbf{a s}-\mathbf{s}^{2}\right) \Rightarrow \mathbf{s}\left(\mathbf{b}^{2}+\mathbf{c}^{2}-\mathbf{a}^{2}-\mathbf{2 b c}\right)=\mathbf{a n}_{\mathrm{a}}^{2}-\mathbf{a s}^{2}
$$

$$
\Rightarrow \mathbf{a n}_{\mathrm{a}}^{2}=\mathbf{a s ^ { 2 }}+\mathbf{s}(2 \mathbf{b c} \cos A-2 b c)
$$

$$
=\mathbf{a s}^{2}-4 \operatorname{sbcsin}^{2} \frac{A}{2}=\mathbf{a s}^{2}-\frac{4 \mathbf{s b c}(s-b)(s-c)(s-a)}{b c(s-a)}=\mathbf{a s}^{2}-\frac{4 \Delta^{2}}{s-a}
$$

$$
=\mathbf{a s}^{2}-2 \mathrm{a}\left(\frac{2 \Delta}{\mathrm{a}}\right)\left(\frac{\Delta}{\mathrm{s}-\mathrm{a}}\right)=\mathrm{as}^{2}-2 \mathrm{ah}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}} \therefore \mathrm{n}_{\mathrm{a}}{ }^{2} \stackrel{(2)}{=} \mathbf{s}^{2}-2 \mathrm{~h}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}}
$$

$$
\text { Now, } g_{a}+\frac{|b-c|}{2} \sqrt{\frac{2 h_{a}-3 r}{r}} \stackrel{\text { CBS }}{\tilde{m}} \sqrt{2} \sqrt{g_{a}{ }^{2}+\frac{(b-c)^{2}}{4}\left(\frac{2 h_{a}-3 r}{r}\right)}
$$

$$
\stackrel{\text { by (1)and }(2)}{\cong} \sqrt{2} \sqrt{4 m_{a}^{2}-2 s(s-a)-s^{2}+2 h_{a} r_{a}+\frac{(b-c)^{2}}{4}\left(\frac{4 s}{a}-3\right)}
$$

$$
=\sqrt{2} \sqrt{4 m_{a}^{2}-2 s(s-a)-s^{2}+\frac{4 s(s-a)(s-b)(s-c)}{a(s-a)}+\frac{(b-c)^{2}}{4}\left(\frac{4 s}{a}-3\right)}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
=\sqrt{2} \sqrt{4 m_{a}^{2}-2 s(s-a)-s^{2}+\frac{s(c+a-b)(a+b-c)}{a}+\frac{(b-c)^{2}}{4}\left(\frac{4 s}{a}-3\right)} \\
\begin{array}{c}
=\sqrt{2} \sqrt{4 m_{a}^{2}-2 s(s-a)-s^{2}+\frac{s\left(a^{2}-(b-c)^{2}\right)}{a}+\frac{s(b-c)^{2}}{a}-\frac{3(b-c)^{2}}{4}} \\
=\sqrt{2} \sqrt{4 m_{a}^{2}-2 s(s-a)-s^{2}+s a-\frac{3(b-c)^{2}}{4}} \\
=\sqrt{2} \sqrt{4 s(s-a)+(b-c)^{2}-2 s(s-a)-s(s-a)-\frac{3(b-c)^{2}}{4}} \\
=\sqrt{2} \sqrt{s(s-a)+\frac{(b-c)^{2}}{4}}=\sqrt{2} \sqrt{\frac{4 s(s-a)+(b-c)^{2}}{4}} \\
=\sqrt{2} \sqrt{\frac{4 m_{a}^{2}}{4}}=m_{a} \sqrt{2} \Rightarrow m_{a} \sqrt{2} \geq g_{a}+\frac{|b-c|}{2} \sqrt{\frac{2 h_{a}-3 r}{r}}(\text { Proved })
\end{array}
\end{gathered}
$$

1370. In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{\sqrt{2}} \sum_{c y c} \frac{n_{a}}{r_{a}}+\sum_{c y c} \sqrt{\frac{h_{a}}{r_{a}}} \leq \frac{s}{r}
$$

Proposed by Bogdan Fuștei-Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { Firstly,Stewart's theorem } \Rightarrow \mathbf{b}^{2}(\mathbf{s}-\mathbf{c})+\mathbf{c}^{2}(\mathbf{s}-\mathbf{b})= \\
& =\mathbf{a n}_{\mathbf{a}}{ }^{2}+\mathbf{a}(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c}) \\
& \Rightarrow s\left(b^{2}+c^{2}\right)-b c(2 s-a)=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}\left(\mathbf{s}^{2}-\mathbf{s}(2 s-a)+b c\right) \\
& \Rightarrow s\left(b^{2}+c^{2}\right)-2 s b c=a n_{a}^{2}+a\left(a s-s^{2}\right) \\
& \Rightarrow \mathbf{s}\left(\mathbf{b}^{2}+\mathbf{c}^{2}-\mathbf{a}^{2}-2 b c\right)=\mathbf{a n}_{\mathrm{a}}{ }^{2}-\mathbf{a s}^{2} \Rightarrow \mathrm{an}_{\mathrm{a}}{ }^{2}=\mathrm{as}^{2}+\mathbf{s}(2 \mathrm{bccos} A-2 b c) \\
& =\mathbf{a s}^{2}-4 \operatorname{sbcsin}^{2} \frac{A}{2}=\mathbf{a s}^{2}-\frac{4 \operatorname{sbc}(s-b)(s-c)(s-a)}{b c(s-a)}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\text { Similarly, } \frac{\mathbf{n}_{\mathrm{b}}}{\sqrt{2} r_{\mathrm{b}}}+\sqrt{\frac{\mathbf{h}_{\mathrm{b}}}{\mathrm{r}_{\mathrm{b}}}} \stackrel{(\mathrm{~b})}{\leftrightarrows} \frac{s}{r_{\mathrm{b}}} \text { and } \frac{\mathbf{n}_{\mathrm{c}}}{\sqrt{2} r_{\mathrm{c}}}+\sqrt{\frac{\mathbf{h}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{c}}} \stackrel{(c)}{\leftrightarrows} \frac{s}{r_{\mathrm{c}}}}
$$

$\left(\right.$ a) $+(b)+(c) \Rightarrow \sum\left(\frac{\mathbf{n}_{\mathrm{a}}}{\sqrt{2} \mathbf{r}_{\mathrm{a}}}+\sqrt{\frac{\mathbf{h}_{\mathrm{a}}}{\mathbf{r}_{\mathrm{a}}}}\right) \leq \mathrm{s} \sum \frac{1}{\mathbf{r}_{\mathrm{a}}}=\frac{\mathrm{s}}{\mathrm{rs}} \sum(\mathrm{s}-\mathbf{a})=\frac{3 \mathrm{~s}-2 \mathrm{~s}}{\mathbf{r}}=\frac{\mathrm{s}}{\mathbf{r}}$

$$
\Rightarrow \frac{\mathbf{1}}{\sqrt{2}} \sum \frac{\mathbf{n}_{\mathrm{a}}}{\mathbf{r}_{\mathrm{a}}}+\sum \sqrt{\frac{\mathbf{h}_{\mathrm{a}}}{\mathbf{r}_{\mathrm{a}}}} \leq \frac{\mathbf{s}}{\mathbf{r}} \text { (Proved) }
$$

1371. In $\triangle A B C, n_{a}$-Nagel's cevian, g_{a}-Gergonne's cevian the following relationship holds:

$$
\frac{2 m_{a}+n_{a}+g_{a}}{h_{a}}+\sqrt{\frac{r_{b}+r_{c}}{h_{a}}} \leq \frac{(1+\sqrt{3}) R}{r}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
r_{b}+r_{c}=s\left(\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}+\frac{\sin \frac{C}{2}}{\cos \frac{C}{2}}\right)=\frac{s \cdot \sin \left(\frac{B+C}{2}\right) \cos \frac{A}{2}}{\Pi \cos \frac{A}{2}}=\frac{\operatorname{sc^{2}} \cos ^{2} \frac{A}{2}}{\left(\frac{s}{4 R}\right)}=4 R \cos ^{2} \frac{A}{2} \\
\Rightarrow r_{b}+r_{c} \stackrel{(1)}{=} 4 R \cos ^{2} \frac{A}{2}
\end{gathered}
$$

$$
\begin{aligned}
& =a s^{2}-\frac{4 \Delta^{2}}{s-a}=a s^{2}-2 a\left(\frac{2 \Delta}{a}\right)\left(\frac{\Delta}{s-a}\right)=a s^{2}-2 a_{a} r_{a} \therefore{\underset{a}{2}}^{2} \stackrel{(1)}{=} s^{2}-2 h_{a} r_{a} \\
& \text { Now, } \frac{\mathbf{n}_{\mathrm{a}}}{\sqrt{2} \mathrm{r}_{\mathrm{a}}}+\sqrt{\sqrt{\mathbf{h}_{\mathrm{a}}} \frac{\text { CBS }}{\mathrm{r}_{\mathrm{a}}}} \stackrel{\text { ch }}{\leq} \sqrt{\frac{\mathbf{n}_{\mathrm{a}}{ }^{2}}{2 \mathrm{r}_{\mathrm{a}}{ }^{2}+\frac{\mathbf{h}_{\mathrm{a}}}{\mathbf{r a}_{\mathrm{a}}}}}=
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Adding the above two, we get : $\left(\mathrm{b}^{2}+\mathrm{c}^{2}\right)(2 \mathrm{~s}-\mathrm{b}-\mathrm{c})=$

$$
=\mathbf{a n}_{\mathbf{a}}^{2}+\mathbf{a g}_{\mathbf{a}}^{2}+2 \mathbf{a}(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c})
$$

$$
\Rightarrow \mathbf{2 a}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)=\mathbf{2 a}\left(\mathbf{n}_{\mathrm{a}}^{2}+\mathbf{g}_{\mathrm{a}}^{2}\right)+\mathbf{a}(\mathbf{a}+\mathbf{b}-\mathbf{c})(\mathbf{c}+\mathbf{a}-\mathbf{b}) \Rightarrow 2\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)
$$

$$
=2\left(n_{a}^{2}+g_{a}^{2}\right)+a^{2}-(b-c)^{2} \Rightarrow 2\left(b^{2}+c^{2}\right)-a^{2}+(b-c)^{2}=2\left(n_{a}^{2}+g_{a}^{2}\right)
$$

$$
\Rightarrow 4 \mathrm{~m}_{\mathrm{a}}^{2}+(\mathbf{b}-\mathbf{c})^{2}=2\left(\mathbf{n}_{\mathrm{a}}^{2}+\mathbf{g a}_{\mathrm{a}}^{2}\right) \Rightarrow 4 \mathbf{m}_{\mathrm{a}}^{2}+(\mathbf{b}-\mathbf{c})^{2}+4 \mathbf{r}_{\mathrm{b}} \mathbf{r}_{\mathrm{c}}=
$$

$$
2\left(n_{a}^{2}+g_{a}^{2}\right)+4 r_{b} r_{c} \Rightarrow 4 m_{a}^{2}+(b-c)^{2}+4 s(s-a)=2\left(n_{a}^{2}+g_{a}^{2}\right)+4 s(s-a)
$$

$$
\Rightarrow 4 \mathrm{~m}_{\mathrm{a}}^{2}+4 \mathrm{~m}_{\mathrm{a}}^{2}=\mathbf{2}\left(\mathrm{n}_{\mathrm{a}}^{2}+\mathrm{ga}^{2}\right)+4 \mathrm{~s}(\mathrm{~s}-\mathrm{a}) \Rightarrow \mathrm{n}_{\mathrm{a}}^{2}+\mathrm{g}_{\mathrm{a}}{ }^{2} \stackrel{(2)}{\leftrightarrows} 4 \mathrm{~m}_{\mathrm{a}}^{2}-2 \mathrm{~s}(\mathrm{~s}-\mathrm{a})
$$

$$
\text { Now, } \frac{2 \mathrm{~m}_{\mathrm{a}}+\mathrm{n}_{\mathrm{a}}+\mathrm{g}_{\mathrm{a}}}{\mathrm{~h}_{\mathrm{a}}}+\sqrt{\frac{\mathrm{r}_{\mathrm{b}}+\mathbf{r}_{\mathrm{c}}}{\mathbf{h}_{\mathrm{a}}}}
$$

$$
=\frac{2 \mathbf{m}_{\mathbf{a}}}{\mathbf{h}_{\mathrm{a}}}+\frac{\mathbf{n}_{\mathrm{a}}+\mathbf{g}_{\mathrm{a}}}{\mathbf{h}_{\mathbf{a}}}+\sqrt{\frac{\mathbf{r}_{\mathbf{b}}+\mathbf{r}_{\mathbf{c}}}{\mathbf{h}_{\mathrm{a}}}} \stackrel{\mathbf{m}_{\mathrm{a}} \leq \frac{\mathbf{R h}_{\mathbf{a}}}{2 \mathbf{r}}}{\stackrel{R}{\leq}} \frac{\mathbf{R}}{\mathbf{r}}+\left(\frac{\mathbf{n}_{\mathrm{a}}}{\mathbf{h}_{\mathrm{a}}}+\frac{\mathbf{g}_{\mathrm{a}}}{\mathbf{h}_{\mathrm{a}}}+\sqrt{\frac{\mathbf{r}_{\mathbf{b}}+\mathbf{r}_{\mathbf{c}}}{\mathbf{h}_{\mathrm{a}}}}\right) \stackrel{\text { CBS }}{\stackrel{\text { Cum }}{\leq}}
$$

$$
\leq \frac{\mathbf{R}}{\mathbf{r}}+\sqrt{3} \sqrt{\frac{\mathbf{n}_{\mathrm{a}}{ }^{2}}{\mathbf{h a}^{2}{ }^{2}+\frac{\mathbf{g}_{\mathrm{a}}{ }^{2}}{\mathbf{h}_{\mathrm{a}}{ }^{2}}+\frac{\mathbf{r}_{\mathrm{b}}+\mathbf{r}_{\mathrm{c}}}{\mathbf{h}_{\mathrm{a}}}} \text {. }}
$$

$$
=\frac{R}{r}+\sqrt{3} \sqrt{\frac{4 m_{a}^{2}-2 s(s-a)+\frac{2 r s^{2}}{\operatorname{stan} \frac{A}{2}}}{h_{a}^{2}}}=\frac{R}{r}+\sqrt{3} \sqrt{\frac{4 m_{a}^{2}-2 s(s-a)+\frac{2 r_{a} r_{b} r_{c}}{r_{a}}}{h_{a}^{2}}}
$$

$$
=\frac{\mathbf{R}}{\mathbf{r}}+\sqrt{3} \sqrt{\frac{4 \mathbf{m}_{\mathrm{a}}{ }^{2}-2 s(\mathbf{s}-\mathbf{a})+2 s(s-a)}{\mathbf{h}_{\mathrm{a}}{ }^{2}}}=\frac{\mathbf{R}}{\mathbf{r}}+\sqrt{3}\left(\frac{2 \mathbf{m}_{\mathrm{a}}}{\mathbf{h}_{\mathrm{a}}}\right)^{\mathrm{m}_{\mathrm{a}} \leq \frac{R h_{a}}{2 r}} \stackrel{\sim}{\leq}
$$

$$
\leq \frac{\mathbf{R}}{\mathbf{r}}+\sqrt{3}\left(\frac{\mathbf{R}}{\mathbf{r}}\right)=\frac{(\mathbf{1}+\sqrt{3}) \mathbf{R}}{\mathbf{r}}(\text { Proved })
$$

1372. In $\triangle A B C$ the following relationship holds:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $\sum_{c y c} \frac{a(\cos B+\cos C)}{b+c} \geq \frac{3}{2}$

Proposed by Rahim Shahbazov-Baku-Azerbaijan

Solution 1 by Daniel Sitaru-Romania

$$
\begin{gathered}
\sum_{c y c} \frac{a(\cos B+\cos C)}{b+c}=\sum_{c y c} \frac{2 R \sin A(\cos B+\cos C)}{2 R(\sin B+\sin C)}= \\
=\sum_{c y c} \frac{\sin A \cdot 2 \cos \frac{B+C}{2} \cos \frac{B-C}{2}}{2 \sin \frac{B+C}{2} \cos \frac{B-C}{2}}=\sum_{c y c} \sin \left(2 \cdot \frac{A}{2}\right) \cot \frac{B+C}{2}= \\
=\sum_{c y c} 2 \sin \frac{A}{2} \cos \frac{A}{2} \cot \frac{\pi-A}{2}=\sum_{c y c} 2 \sin \frac{A}{2} \cos \frac{A}{2} \tan \frac{A}{2}= \\
=\sum_{c y c} 2 \sin \frac{A}{2} \cos \frac{A}{2} \cdot \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}=2 \sum_{c y c} \sin ^{2} \frac{A}{2}= \\
=2\left(1-\frac{r}{2 R}\right)=\frac{2 R-r}{R} \stackrel{r^{E U L E R}}{2} \frac{2 R-\frac{R}{2}}{R}=\frac{3 R}{2 R}=\frac{3}{2}
\end{gathered}
$$

Solution 2 by Myagmarsuren Yadamsuren-Darkhan-Mongolia

$$
\begin{aligned}
& \sum_{c y c} \frac{a(\cos B+\cos C)}{b+c}=\sum_{c y c} \frac{(a \cos B+b \cos A)+(a \cos C+c \cos A)-(b+c) \cos A}{b+c}= \\
& =\sum_{c y c} \frac{c+b-(b+c) \cos A}{b+c}=\sum_{c y c}(1-\cos A)=3-\sum_{c y c} \cos A=3-1-\frac{r}{R} \stackrel{r^{E U L E R}}{\geq} \frac{3}{2}
\end{aligned}
$$

1373. If in $\triangle A B C, a b c=1$ then:

$$
\sum_{c y c}\left(2 \sqrt{a}+\frac{1}{a}\right)+\sqrt{\sum_{c y c} \frac{\cos A}{a^{3}}} \geq 9+\frac{\sqrt{6}}{2}
$$

Proposed by Radu Diaconu-Romania

Solution by Marian Ursărescu-Romania

$$
2 \sqrt{a}+\frac{1}{a}=\sqrt{a}+\sqrt{a}+\frac{1}{a} \geq 3 \sqrt[3]{a \cdot \frac{1}{a}}=3 \Rightarrow \sum\left(2 \sqrt{a}+\frac{1}{a}\right) \geq 9 \Rightarrow \text { we must show: }
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{equation*}
\sqrt{\sum \frac{\cos A}{a^{3}}} \geq \frac{\sqrt{6}}{2} \Leftrightarrow \sum \frac{\cos A}{a^{3}} \geq \frac{3}{2} \tag{1}
\end{equation*}
$$

But $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
From (1)+(2) we must show:

$$
\begin{gathered}
\frac{1}{2} \sum \frac{b^{2}+c^{2}-a^{2}}{a^{3} b c} \geq \frac{3}{2} \Leftrightarrow \sum \frac{b^{2}+c^{2}-a^{2}}{a^{2}} \geq 3 \Leftrightarrow \\
\Leftrightarrow \frac{b^{2}}{a^{2}}+\frac{a^{2}}{b^{2}}+\frac{a^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{b^{2}}-3 \geq 3 \Leftrightarrow \\
\Leftrightarrow \frac{b^{2}}{a^{2}}+\frac{a^{2}}{b^{2}}+\frac{a^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}+\frac{b^{2}}{a^{2}}+\frac{c^{2}}{b^{2}} \geq 6, \text { true because } x+\frac{1}{x} \geq 2, \forall x>0
\end{gathered}
$$

1374. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{r_{a}}{r_{b}}\right)^{4}+\left(\frac{r_{b}}{r_{c}}\right)^{4}+\left(\frac{r_{c}}{r_{a}}\right)^{4}+\frac{2 n r}{R} \geq n+3, n \leq 8
$$

Proposed by Marin Chirciu-Romania

Solution 1 by Rahim Shahbazov-Baku-Azerbaijan

$$
\begin{gather*}
n=8 \\
r_{a}=x, r_{b}=y, r_{c}=z \text { inequality becomes: } \\
\left(\frac{x}{y}\right)^{4}+\left(\frac{y}{z}\right)^{4}+\left(\frac{z}{x}\right)^{4}+\frac{64 x y z}{(x+y)(y+z)(x+z)} \geq 11 \quad \text { (1) } \\
\text { (1) } \Rightarrow \frac{x^{4}+y^{4}}{y^{4}}+\frac{y^{4}+z^{4}}{z^{4}}+\frac{z^{4}+x^{4}}{x^{4}}+\frac{64 x y z}{(x+y)(y+z)(x+z)} \geq 14 \tag{2}
\end{gather*}
$$

Lemma.

$$
\begin{gathered}
x^{4}+y^{4} \geq \frac{1}{8}(x+y)^{4} \text { (3) } \\
(2) \Rightarrow W L O G M=\frac{16 x y z}{(x+y)(y+z)(x+z)} \\
\geq 7 \cdot \sqrt[7]{\frac{x^{4}+y^{4}}{y^{4}} \cdot \frac{y^{4}+z^{4}}{z^{4}} \cdot \frac{z^{4}+x^{4}}{x^{4}} \cdot \frac{x^{4}+y^{4}}{(x+y)^{4}(y+z)^{4}(z+x)^{4}}} \geq \\
\geq 7^{7} \sqrt{\frac{1}{8} \cdot \frac{1}{8} \cdot \frac{1}{8} \cdot 16^{4}}=72=14
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
We propose the general form:

$$
\left(\frac{x}{y}\right)^{n}+\left(\frac{y}{z}\right)^{n}+\left(\frac{z}{x}\right)^{n}+\frac{16 n x y z}{(x+y)(y+z)(x+z)} \geq 2 n+3
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { Let } s-a=x, s-b=y, s-c=z \\
& \therefore 3 s-2 s=s=\sum x \Rightarrow a=y+z, b=z+x, c=x+y \\
& \text { Now, } \sum \frac{r_{a}^{2}}{r_{b}^{2}}+\frac{8 r}{R} \geq 7 \Leftrightarrow \sum\left(\frac{s-b}{s-a}\right)^{2}+8\left(\frac{\Delta}{s}\right)\left(\frac{4 \Delta}{a b c}\right) \\
& \text { via above transformation } \\
& \stackrel{\text { ransformation }}{\Leftrightarrow} \sum \frac{y^{2}}{x^{2}}+\frac{32 s(s-a)(s-b)(s-c)}{s \prod(x+y)} \geq 7 \\
& \text { via above transformation } \\
& \stackrel{\text { ransformation }}{\Leftrightarrow} \sum \frac{y^{2}}{x^{2}}+\frac{32 x y z}{\prod(x+y)} \geq 7 \Leftrightarrow \\
& \sum \frac{y^{2}}{x^{2}}+3+\frac{32 x y z}{\prod(x+y)} \geq 10 \Leftrightarrow \\
& \sum \frac{y^{2}+x^{2}}{x^{2}}+\frac{32 x y z}{\prod(x+y)} \stackrel{(i)}{\sim} 10 \\
& \text { Now, } \sum \frac{y^{2}+x^{2}}{x^{2}}+\frac{32 x y z}{\prod(x+y)}= \\
& \sum \frac{y^{2}+x^{2}}{x^{2}}+\frac{16 x y z}{\prod(x+y)}+\frac{16 x y z}{\prod(x+y)} \stackrel{A-G}{\gtrless} \\
& 5^{5} \sqrt{\left(\frac{2^{8}(x y z)^{2}}{\Pi x^{2}}\right)\left(\frac{\Pi\left(x^{2}+y^{2}\right)}{\Pi(x+y)^{2}}\right)} \geq 5 \sqrt[5]{2^{8} \frac{\Pi\left(\frac{1}{2}(x+y)^{2}\right)}{\prod(x+y)^{2}}}=5 \sqrt[5]{2^{5}} \\
& =10 \Rightarrow(i) \text { is true } \therefore \sum \frac{r_{a}^{2}}{r_{b}^{2}}+\frac{8 r}{R} \geq 7 \Rightarrow \sum \frac{r_{a}^{2(1)}}{r_{b}^{2}} \geq 7-\frac{8 r}{R} \\
& \text { Now, } \sum \frac{r_{a}^{4}}{r_{b}^{4}}+\frac{16 r}{R}-11 \geq \frac{1}{3}\left(\sum \frac{r_{a}^{2}}{r_{b}^{2}}\right)^{2}+\frac{16 r}{R}-11 \stackrel{\text { by (1) }}{\geq} \\
& \frac{1}{3}\left(\frac{7 R-8 r}{R}\right)^{2}+\frac{16 r-11 R}{R}=\frac{(7 R-8 r)^{2}+48 R r-33 R^{2}}{3 R^{2}}=\frac{16(R-2 r)^{2}}{3 R^{2}} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \qquad \begin{array}{c}
\text { www.ssmrmh.ro } \\
\Rightarrow \frac{r_{a}^{4}}{r_{b}^{4}}+\frac{16 r}{R}-11+\frac{2 n r}{R}-\frac{2 n r}{R}-(n+3)+(n+3) \geq 0 \Rightarrow \\
\sum \frac{r_{a}^{4}}{r_{b}^{4}}+\frac{2 n r}{R}-(n+3) \geq \frac{2 n r}{R}-\frac{16 r}{R}+11-(n+3) \\
=\frac{2 r}{R}(n-8)-(n-8)=(n-8)\left(\frac{2 r}{R}-1\right) \geq 0 \\
\left(\because n-8 \leq \mathbf{0} \text { and } \frac{2 r}{R}-\mathbf{1} \stackrel{\text { Euler }}{\leq} \mathbf{0}\right) \Rightarrow \\
\sum \frac{r_{a}^{4}}{r_{b}^{4}}+\frac{2 n r}{R} \geq n+3 \forall n \leq 8(\text { Proved })
\end{array}
\end{aligned}
$$

1375. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c}\left(\cos \frac{B}{2}+\cos \frac{C}{2}-\cos \frac{A}{2}\right)^{3} \geq \frac{3 s}{4 R}
$$

Proposed by Daniel Sitaru - Romania

Solution by Tran Hong-Dong Thap-Vietnam

We have: $\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\frac{s}{4 R}$

$$
\begin{gathered}
\text { Let } x=\cos \frac{A}{2} ; y=\cos \frac{B}{2} ; z=\cos \frac{C}{2} \\
(x, y, z>0)
\end{gathered}
$$

We just check:

$$
\begin{gathered}
\sum_{c y c}(x+y-z)^{3} \geq 3 x y z \\
\sum_{c y c}(x+y-z)^{3}=(x+y-z)^{3}+(x+z-y)^{3}+(y+z-x)^{3} \\
=x^{3}+y^{3}+z^{3}+3 x y^{2}+3 y x^{2}+3 x z^{2}+3 z x^{2}+3 y z^{2}+3 z y^{2}-18 x y z
\end{gathered}
$$

So, we prove:

$$
\left.\begin{array}{c}
x^{3}+y^{3}+z^{3}+3 x y^{2}+3 y x^{2}+3 x z^{2}+3 z x^{2}+3 y z^{2}+3 z y^{2}-18 x y z \geq 3 x y z \\
\Leftrightarrow
\end{array}\right) \sum^{3}+3\left(\sum x y^{2}+\sum y x^{2}\right) \geq 21 x y z \quad \begin{aligned}
& \text { It is true because: } \sum x^{3} \stackrel{A M-G M}{\geq} 3 x y z
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
3\left(x y^{2}+y x^{2}+x z^{2}+z x^{2}+y z^{2}+z y^{2}\right) \geq 3 \cdot 6 \sqrt[6]{x^{6} y^{6} z^{6}}=18 x y z . \text { Proved. }
$$

1376. In $\triangle A B C, n_{a}-$ Nagel's cevian, the following relationship holds:

$$
\frac{n_{a}}{a}+\frac{n_{b}}{b}+\frac{n_{c}}{c} \leq \frac{s}{2 r}\left(\frac{R}{r}-1\right)
$$

Proposed by Bogdan Fuștei-Romania

Solution 1 by Marian Ursărescu-Romania

From Cauchy's inequality we have:

$$
\begin{gather*}
\left(\frac{n_{a}}{a}+\frac{n_{b}}{b}+\frac{n_{c}}{c}\right)^{2} \leq\left(n_{a}^{2}+n_{b}^{2}+n_{c}^{2}\right)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \Rightarrow \text { we must show: } \\
\left(n_{a}^{2}+n_{b}^{2}+n_{c}^{2}\right)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \leq \frac{s^{2}}{4 r^{2}}\left(\frac{R}{r}-1\right)^{2} \tag{1}
\end{gather*}
$$

But from Steining inequality: $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \leq \frac{1}{4 r^{2}}$ (2)
From (1)+(2) we must show: $n_{a}^{2}+n_{b}^{2}+n_{c}^{2} \leq \frac{s^{2}(R-r)^{2}}{r^{2}}$ (3)
From Stewart relation we have:

$$
\begin{align*}
n_{a}^{2}=s^{2} & -\frac{4 s(s-b)(s-c)}{a} \Rightarrow \sum n_{a}^{2}=3 s^{2}-4 s \sum \frac{(s-b)(s-c)}{a}= \\
& =3 s^{2}-4 s \cdot \frac{r\left[s^{2}+(4 R+r)^{2}\right]}{4 s R}=3 s^{2}-\frac{r\left[s^{2}+(4 R r+r)^{2}\right]}{R} \tag{4}
\end{align*}
$$

From (3)+(4) we must show: $3 s^{2}-\frac{r\left[s^{2}+(4 R+r)^{2}\right]}{R} \leq \frac{s^{2}(R-r)^{2}}{r^{2}}$
From Doucet inequality we have $(4 R+r)^{2} \geq 3 s^{2}$
From (5)+(6) we must show: $s^{2}\left(3-\frac{4 r}{R}\right) \leq \frac{s^{2}(R-r)^{2}}{r^{2}} \Leftrightarrow$
$r^{2}(3 R-4 r) \leq R(R-r)^{2}$. But $r \leq \frac{R}{2} \Rightarrow$ we must show: $r(3 R-4 r) \leq 2(R-r)^{2}$

$$
\Leftrightarrow 3 R r-4 r^{2} \leq 2 R^{2}-4 R r+2 r^{2} \Leftrightarrow 2 R^{2}-7 R r+6 r^{2} \Leftrightarrow
$$

$$
(2 R-3 r)(R-2 r) \geq 0, \text { true because } R \geq 2 r
$$

Solution 2 by Soumava Chakraborty-Kolkata-India
Stewart's theorem

$$
\begin{gathered}
\Rightarrow \mathbf{b}^{2}(\mathbf{s}-\mathbf{c})+\mathbf{c}^{2}(\mathbf{s}-\mathbf{b})=\mathbf{a n}_{\mathbf{a}}^{2}+\mathbf{a}(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c}) \\
\Rightarrow \mathbf{s}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)-\mathbf{b} \mathbf{c}(2 \mathbf{s}-\mathbf{a})=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\text { Now, } \frac{\mathbf{n}_{\mathbf{a}}}{\mathbf{h}_{\mathrm{a}}} \leq \frac{\mathbf{R}}{\mathbf{r}}-1 \Leftrightarrow \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}-\frac{2 \mathbf{R}}{\mathbf{r}}+1 \geq \frac{\mathbf{n}_{\mathbf{a}}^{2}}{\mathbf{h}_{\mathbf{a}}^{2}} \stackrel{\text { by (1) }}{\Leftrightarrow}
$$

$$
\frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}-\frac{2 \mathbf{R}}{\mathbf{r}}+1 \geq \frac{s^{2}-2 h_{a} \mathbf{r}_{a}}{\mathbf{h}_{a}^{2}}=\frac{s^{2} a^{2}}{4 \mathbf{r}^{2} s^{2}}-\frac{2 r_{a}}{h_{a}}=
$$

$$
=\frac{a^{2}}{4 r^{2}}-\left(\frac{2 r s}{s-a}\right)\left(\frac{a}{2 r s}\right)=\frac{a^{2}}{4 r^{2}}-\frac{(a-s)+s}{s-a}
$$

$$
=\frac{\mathbf{a}^{2}}{4 r^{2}}+1-\frac{s}{s-a}=1+\frac{a^{2}(s-a)-4\left(s r^{2}\right)}{4(s-a) r^{2}}=
$$

$$
=1+\frac{\mathbf{a}^{2}(s-\mathbf{a})-4(\mathbf{s}-\mathbf{a})(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c})}{4(\mathbf{s}-\mathbf{a}) \mathbf{r}^{2}}=
$$

$$
=1+\frac{a^{2}-\left(a^{2}-(b-c)^{2}\right)}{4 r^{2}}=1+\frac{(b-c)^{2}}{4 r^{2}}
$$

$$
\Leftrightarrow \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}-\frac{\mathbf{2 R}}{\mathbf{r}} \geq \frac{(\mathbf{b}-\mathbf{c})^{2}}{4 \mathbf{r}^{2}} \Leftrightarrow
$$

$$
\frac{\mathbf{R}(\mathbf{R}-2 r)}{\mathbf{r}^{2}} \geq \frac{\mathbf{b}^{2}+\mathbf{c}^{2}-2 \mathbf{b c}}{4 \mathbf{r}^{2}} \Leftrightarrow
$$

$$
R-2 r \geq \frac{b^{2}+c^{2}}{4 R}-\frac{b c}{2 R}
$$

$$
\Leftrightarrow R\left(1-\frac{2 r}{R}\right) \geq \frac{4 R^{2}\left(\sin ^{2} B+\sin ^{2} C\right)}{4 R}-\frac{4 R^{2} \sin B \sin C}{2 R} \Leftrightarrow
$$

$$
\Leftrightarrow 1-\frac{8 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{R} \geq \sin ^{2} B+\sin ^{2} C-2 \sin B \sin C=(\sin B-\sin C)^{2}
$$

$$
\begin{aligned}
& =\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}\left(\mathbf{s}^{2}-\mathbf{s}(2 \mathrm{~s}-\mathrm{a})+\mathrm{bc}\right) \Rightarrow \\
& \Rightarrow s\left(b^{2}+c^{2}\right)-2 s b c=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}\left(\mathrm{as}-\mathrm{s}^{2}\right) \\
& \Rightarrow \mathbf{s}\left(\mathbf{b}^{2}+\mathbf{c}^{2}-\mathbf{a}^{2}-2 b c\right)=\mathbf{a n}_{\mathrm{a}}{ }^{2}-\mathbf{a s}^{2} \Rightarrow \\
& \Rightarrow \mathbf{a n}_{\mathrm{a}}{ }^{2}=\mathrm{as}^{2}+\mathbf{s}(2 \mathrm{bccos} A-2 \mathrm{bc})=\mathbf{a s}^{2}-4 \operatorname{sbcsin}^{2} \frac{A}{2}= \\
& =\mathbf{a s}{ }^{2}-\frac{4 \mathbf{s b c}(s-b)(s-\mathbf{c})(s-a)}{\mathbf{b c}(s-\mathbf{a})} \\
& =\mathbf{a s}^{2}-\frac{4 \Delta^{2}}{s-a}=\mathbf{a s}^{2}-2 \mathbf{a}\left(\frac{2 \Delta}{\mathbf{a}}\right)\left(\frac{\Delta}{s-a}\right)= \\
& =\mathbf{a s}{ }^{2}-2 \mathbf{a h}_{a} r_{a} \therefore \mathbf{n}_{\mathrm{a}} \stackrel{(1)}{\cong} \mathbf{s}^{2}-2 h_{a} r_{a}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \Leftrightarrow 1-4 \sin \frac{A}{2}\left(2 \sin \frac{B}{2} \sin \frac{C}{2}\right) \geq\left(2 \cos \frac{B+C}{2} \sin \frac{B-C}{2}\right)^{2} \Leftrightarrow \\
& \Leftrightarrow 1-4 \sin \frac{A}{2}\left(\cos \frac{B-C}{2}-\cos \frac{B+C}{2}\right) \geq 4 \sin ^{2} \frac{A}{2}\left(1-\cos ^{2} \frac{B-C}{2}\right) \\
& \Leftrightarrow 1-4 \sin \frac{A}{2} \cos \frac{B-C}{2}+4 \sin ^{2} \frac{A}{2} \geq 4 \sin ^{2} \frac{A}{2}-4 \sin ^{2} \frac{A}{2} \cos ^{2} \frac{B-C}{2} \Leftrightarrow \\
& \Leftrightarrow 4 \sin ^{2} \frac{A}{2} \cos ^{2} \frac{B-C}{2}-4 \sin \frac{A}{2} \cos \frac{B-C}{2}+1 \geq 0 \\
& \Leftrightarrow\left(2 \sin \frac{A}{2} \cos \frac{B-C}{2}-1\right)^{2} \geq 0 \rightarrow \text { true } \Rightarrow \\
& \frac{\mathbf{n}_{\mathrm{a}}}{\mathbf{h}_{\mathrm{a}}} \leq \frac{\mathbf{R}}{\mathbf{r}}-1=\frac{\mathbf{R}-\mathbf{r}}{\mathbf{r}} \Rightarrow \frac{\mathbf{n}_{\mathrm{a}}}{\mathrm{a}} \leq\left(\frac{\mathbf{R}-\mathbf{r}}{\mathbf{r}}\right)\left(\frac{2 r s}{\mathbf{a}^{2}}\right) \text { and analogs } \\
& \therefore \sum \frac{\mathbf{n}_{\mathbf{a}}}{\mathbf{a}} \leq\left(\frac{\mathbf{R}-\mathbf{r}}{\mathbf{r}}\right)\left(\frac{2 \mathbf{r s}}{16 \mathbf{R}^{2} \mathbf{r}^{2} \mathbf{s}^{2}}\right)\left(\sum \mathbf{a}^{2} \mathbf{b}^{2}\right) \stackrel{\text { Goldstone }}{\underset{\leq}{s}} \\
& \left(\frac{R-r}{r}\right)\left(\frac{2 r s}{16 R^{2} r^{2} s^{2}}\right)\left(4 R^{2} s^{2}\right)=\frac{s}{2 r}\left(\frac{R}{r}-1\right)(\text { Proved })
\end{aligned}
$$

1377. In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{\sin A} \sqrt{\frac{2 \cdot \sum_{c y c} \sin A \cdot \prod_{c y c}(\sin A+\sin B-\sin C)}{3+\cos 2 A-2 \cos 2 B-2 \cos 2 C}} \leq 1
$$

Proposed by Seyran Ibrahimov-Maasilli-Azerbaijan
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
2 \cdot \sum_{c y c} \sin A \cdot \prod_{c y c}(\sin A+\sin B-\sin C)=\frac{2}{16 R^{4}} \sum_{c y c} 2 R \sin A \cdot \prod_{c y c}(2 R \sin A+2 R \sin B-2 R \sin C)= \\
=\frac{2 \cdot 2 s \cdot 2(s-a) \cdot 2(s-b) \cdot 2(s-c)}{16 R^{4}}=\frac{2 S^{2}}{R^{4}} \\
3+\cos 2 A-2 \cos 2 B-2 \cos 2 C=3+1-2 \sin ^{2} A-2+4 \sin ^{2} B- \\
-2+4 \sin ^{2} C=2\left(\frac{2 b^{2}+2 c^{2}-a^{2}}{4 R^{2}}\right)=\frac{2 m_{a}^{2}}{R^{2}} \\
L H S=\frac{1}{\sin A} \sqrt{\frac{2 S^{2}}{R^{4}} \cdot \frac{R^{2}}{2 m_{a}^{2}}}=\frac{S}{\sin A \cdot R m_{a}} \leq \frac{S}{\sin A \cdot R h_{a}}=\frac{a h_{a}}{\frac{a}{2 R} \cdot R h_{a}}=1
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
1378. If in $\triangle A B C, A A_{1}, B B_{1}, C C_{1}$-medians, $A A_{2}, B B_{2}, C C_{2}$-circumcevians of centroid, $F=[A B C]$ then the following relationship holds:

$$
\sum_{c y c} A_{1} A_{2} \cdot B_{1} B_{2} \cdot \sin ^{2} C \leq \frac{\sqrt{3}}{4} \cdot F
$$

Proposed by George Apostolopoulos-Messolonghi-Greece

Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\rho\left(A_{1}\right)=A A_{1} \cdot A_{1} A_{2}=A_{1} B \cdot A_{1} C \rightarrow m_{a} \cdot A_{1} A_{2}=\frac{a^{2}}{4} \\
A_{1} A_{2}=\frac{a^{2}}{4 m_{a}}, B_{1} B_{2}=\frac{b^{2}}{4 m_{b}}, C_{1} C_{2}=\frac{c^{2}}{4 m_{c}} \\
\sum_{c y c} A_{1} A_{2} \cdot B_{1} B_{2} \cdot \sin ^{2} C=\sum_{c y c} \frac{a^{2} b^{2} \sin ^{2} C}{16 m_{a} m_{b}}=\sum_{c y c} \frac{(2 F)^{2}}{16 m_{a} m_{b}}= \\
=\frac{F^{2}}{4} \sum_{c y c} \frac{1}{m_{a} m_{b}} \leq \frac{F^{2}}{4} \sum_{c y c} \frac{1}{\sqrt{s(s-a) \cdot s(s-b)}}=\frac{F^{2}}{4 \sqrt{s}} \sum_{c y c} \frac{\sqrt{s-c}}{F} \\
=\frac{F}{4 \sqrt{s}} \sum_{c y c}(1 \cdot \sqrt{s-c}) \stackrel{C B S}{\sim} \leq \frac{F}{4 \sqrt{s}} \sqrt{3(s-a+s-b+s-c)}=\frac{\sqrt{3}}{4} F
\end{gathered}
$$

1379. Prove that: $\left(\frac{A P}{D P}\right)\left(\frac{B Q}{E Q}\right)\left(\frac{C R}{F R}\right) \leq 2^{2}\left(\frac{2}{3}\right)^{2}\left(\frac{2 s}{3}\right)^{2}\left(\frac{2 s}{3 R r}\right)^{2}$

Proposed by Thanasis Gakopoulos-Larisa-Greece
Solution by Soumava Chakraborty-Kolkata-India

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$\because \angle P B C$ and $\angle P A C$ are $\angle s$ on same arc and on the same side of it,

$$
\begin{gathered}
\angle P B C=\angle P A C=\frac{A}{2} \\
\therefore \angle A B P=B+\frac{A}{2} \\
=\frac{2 B+A}{2}=\frac{B+\left(180^{\circ}-C\right)}{2} \stackrel{(1)}{=} 90^{\circ}+\frac{B-C}{2}
\end{gathered}
$$

Using sine rule on $\triangle A B P$

$$
\begin{gathered}
A P=2 R \sin (\angle A B P) \stackrel{b y(1)}{=} 2 R \sin \left(90^{\circ}+\frac{B-C}{2}\right)=2 R \cos \frac{B-C}{2} \\
=\frac{R\left(2 \sin \frac{B+C}{2} \cos \frac{B-C}{2}\right)}{\cos \frac{A}{2}}=\frac{R(\sin B+\sin C)}{\cos \frac{A}{2}} \\
=\frac{R(b+c)}{2 R \cos \frac{A}{2}}=\frac{b+c}{2 \cos \frac{A}{2}} \Rightarrow A P \stackrel{(a)}{=} \frac{b+c}{2 \cos \frac{A}{2}} \\
\operatorname{Similarly}, B Q \stackrel{(a)}{=} \frac{c+a}{2 \cos \frac{B}{2}} a n d C R \stackrel{(c)}{=} \frac{a+b}{2 \cos \frac{C}{2}} \\
(a) \Rightarrow A P=b c\left(\frac{b+c}{2 b c \cos \frac{A}{2}}\right) \stackrel{(i)}{=} \frac{b c}{w_{a}} \Rightarrow D P=A P-A D=\frac{b c}{w_{a}}-w_{a} \stackrel{(i i)}{=} \frac{b c-w_{a}^{2}}{w_{a}} \\
(i),(i i) \Rightarrow \frac{A P}{D P}=\frac{\left(\frac{b c}{w_{a}}\right)}{\left(\frac{b c w_{a}^{2}}{w_{a}}\right)}=\frac{b c}{b c-\frac{4 b c s(s-a)}{(b+c)^{2}}} \\
=\frac{(b+c)^{2}}{(b+c)^{2}-(b+c+a)(b+c-a)}=\frac{(b+c)^{2}-(b+c)^{2}+a^{2}}{(b+c}=\left(\frac{b+c}{a}\right)^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\therefore \frac{A P}{D P} \stackrel{(d)}{=}\left(\frac{b+c}{a}\right)^{2}
$$

$$
\begin{gathered}
\text { Similarly, }(b) \Rightarrow \frac{B Q}{E Q} \stackrel{(e)}{=}\left(\frac{c+a}{b}\right)^{2} \text { and }(c) \Rightarrow \frac{C R}{F R} \stackrel{(f)}{=}\left(\frac{a+b}{c}\right)^{2} \\
(d) .(e) \cdot(f) \Rightarrow \frac{A P}{D P} \cdot \frac{B Q}{E Q} \cdot \frac{C R}{F R}=\left(\Pi\left(\frac{b+c}{a}\right)\right)^{2} \leq 2^{2}\left(\frac{2}{3}\right)^{2}\left(\frac{2 s}{3}\right)^{2}\left(\frac{2 s}{3 R r}\right)^{2} \\
\Leftrightarrow \prod\left(\frac{b+c}{a}\right) \leq 2\left(\frac{2}{3}\right)\left(\frac{2 s}{3}\right)\left(\frac{2 s}{3 R r}\right) \\
\Leftrightarrow \frac{2 s\left(s^{2}+2 R r+r^{2}\right)}{4 R r s} \leq 2\left(\frac{2}{3}\right)\left(\frac{2 s}{3}\right)\left(\frac{2 s}{3 R r}\right) \Leftrightarrow 32 s^{2} \geq 27\left(s^{2}+2 R r+r^{2}\right) \\
\Leftrightarrow 5 s^{2} \stackrel{(2)}{\geq} 54 R r+27 r^{2}
\end{gathered}
$$

$$
\text { Now, } 5 s^{2} \stackrel{\text { Gerretsen }}{\geq} 80 R r-25 r^{2} \stackrel{?}{\geq} 54 R r+27 r^{2} \Leftrightarrow 26 R r \stackrel{?}{\geq} 52 r^{2} \Leftrightarrow R \stackrel{?}{\geq} 2 r
$$

$$
\rightarrow \text { true (Euler) } \Rightarrow(2) \text { is true (Proved) }
$$

1380. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{(\sqrt{a}-\sqrt{b}+\sqrt{c})(\sqrt{a}+\sqrt{b}-\sqrt{c})}{\sqrt[4]{b c}} \leq \sqrt{a}+\sqrt{b}+\sqrt{c}
$$

Proposed by Daniel Sitaru-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum \frac{(\sqrt{\mathbf{a}}-\sqrt{\mathbf{b}}+\sqrt{\mathbf{c}})(\sqrt{\mathbf{a}}+\sqrt{\mathbf{b}}-\sqrt{\mathbf{c}})}{\sqrt[4]{\mathbf{b}}} \stackrel{(1)}{\leq} \sqrt{\mathbf{a}}+\sqrt{\mathbf{b}}+\sqrt{\mathbf{c}} \\
(\sqrt{\mathbf{a}}+\sqrt{\mathbf{b}})^{2}=\mathbf{a}+\mathbf{b}+2 \sqrt{\mathbf{a b}}>c+2 \sqrt{\mathbf{a b}}>c \\
\Rightarrow \sqrt{\mathbf{a}}+\sqrt{\mathbf{b}}>\sqrt{\mathbf{c}} \text { and similarly }, \sqrt{\mathbf{b}}+\sqrt{\mathbf{c}}>\sqrt{\mathbf{a}} \text { and } \sqrt{\mathbf{c}}+\sqrt{\mathbf{a}}>\sqrt{\mathbf{b}}
\end{gathered}
$$

$\Rightarrow \sqrt{\mathbf{a}}, \sqrt{\mathbf{b}}, \sqrt{\mathbf{c}}$ are sides of a triangle with semiperimeter, circumradius and inradius

$$
=\mathrm{p}, \mathrm{x}, \mathrm{y} \text { respectively }(\text { say })
$$

and let $\alpha=\sqrt{\mathrm{a}}, \beta=\sqrt{\mathrm{b}}$ and $\gamma=\sqrt{\mathbf{c}}$ and $\therefore(1) \Leftrightarrow \sum \frac{4(\mathrm{p}-\beta)(\mathrm{p}-\gamma)}{\sqrt{\beta \gamma}} \leq 2 p \Leftrightarrow$

$$
\Leftrightarrow(p-\alpha)(p-\beta)(p-\gamma) \sum \frac{1}{\sqrt{\beta \gamma}(p-\alpha)} \leq \frac{p}{2}
$$

\mathbb{R}

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\Leftrightarrow y^{2} p \sum \frac{1}{\sqrt{\beta \gamma}(p-\alpha)} \leq \frac{p}{2} \Leftrightarrow \sum \frac{1}{\sqrt{\beta \gamma}(p-\alpha)} \stackrel{(2)}{\leftrightarrows} \frac{1}{2 y^{2}}
$$

$$
=\sqrt{\frac{\sum(p-\beta)(p-\gamma)}{\mathbf{y}^{2} p}} \sqrt{\frac{\sum \alpha(p-\beta)(p-\gamma)}{\alpha \beta \gamma(p-\alpha)(p-\beta)(p-\gamma)}}
$$

$$
=\sqrt{\frac{4 x y+y^{2}}{y^{2} p}} \sqrt{\frac{\sum \alpha\left(p^{2}-p(\beta+\gamma)+\beta \gamma\right)}{4 x y p \cdot y^{2} p}}=
$$

$$
=\sqrt{\frac{4 x+y}{y p}} \sqrt{\frac{2 p \cdot p^{2}-2 p\left(p^{2}+4 x y+y^{2}\right)+12 x y p}{4 x y p \cdot y^{2} p}}=\sqrt{\frac{4 x+y}{y p}} \sqrt{\frac{2 p y(2 x-y)}{4 x y p \cdot y^{2} p}}
$$

$$
=\frac{1}{y} \sqrt{\frac{4 x+y}{y p}} \sqrt{\frac{2 x-y}{2 x p}}=\frac{1}{p y} \sqrt{\frac{4 x+y}{y}} \sqrt{\frac{2 x-y}{2 x}} \therefore \sum \frac{1}{\sqrt{\beta \gamma}(p-\alpha)} \stackrel{(i)}{\leftrightarrows} \frac{1}{p y} \sqrt{\frac{4 x+y}{y}} \sqrt{\frac{2 x-y}{2 x}}
$$

(i) \Rightarrow in order to prove (2), it suffices to prove $: \frac{1}{p y} \sqrt{\frac{4 x+y}{y}} \sqrt{\frac{2 x-y}{2 x}} \leq \frac{1}{2 y^{2}}$
$\because \mathbf{x}-\mathbf{2 y} \stackrel{\text { Euler }}{\approx} 0, \therefore$ in order to prove (4), it suffices to prove :

$$
\begin{gathered}
2 x^{2}-2 x y-y^{2}>2 x \sqrt{x^{2}-2 x y} \\
\Leftrightarrow\left(2 x^{2}-2 x y-y^{2}\right)^{2}>4 x^{2}\left(x^{2}-2 x y\right) \Leftrightarrow 4 x y^{3}+y^{4}>0 \rightarrow \\
\rightarrow \text { true } \Rightarrow(4) \Rightarrow(3) \Rightarrow(2) \Rightarrow(1) \text { is true }(\text { Proved })
\end{gathered}
$$

$$
\begin{aligned}
& \Leftrightarrow \frac{\mathbf{p}^{2}}{4 \mathbf{y}^{2}} \geq\left(\frac{\mathbf{4 x}+\mathbf{y}}{\mathbf{y}}\right)\left(\frac{\mathbf{2 x}-\mathbf{y}}{2 \mathrm{x}}\right) \Leftrightarrow \mathrm{xp}^{2} \stackrel{(3)}{\geq} 2 \mathbf{y}(\mathbf{4 x}+\mathbf{y})(2 \mathrm{x}-\mathrm{y}) \\
& \text { Now, by Rouche, } \mathrm{xp}^{2} \geq \\
& \geq x\left(2 x^{2}+10 x y-y^{2}-2(x-2 y) \sqrt{x^{2}-2 x y}\right) \stackrel{?}{2} \mathbf{2 y}(4 x+y)(2 x-y) \\
& \Leftrightarrow 2 x^{3}-6 x^{2} y+3 x y^{2}+2 y^{3} \stackrel{?}{\stackrel{?}{2}} 2 x(x-2 y) \sqrt{x^{2}-2 x y} \\
& \Leftrightarrow(x-2 y)\left(2 x^{2}-2 x y-y^{2}\right) \sum_{(4)}^{?} 2 x(x-2 y) \sqrt{x^{2}-2 x y}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
1381. In any scalene $\triangle \mathrm{ABC}, \mathrm{n}_{\mathrm{a}}$-Nagel's cevian the following relationship holds:

$$
\left(\sum_{c y c} \frac{1}{n_{a}-h_{a}}\right)\left(\sum_{c y c} \frac{1}{m_{a}-n_{a}}\right)>\frac{2}{(R-2 r)^{2}}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { Stewart's theorem } \Rightarrow \mathbf{b}^{2}(\mathbf{s}-\mathbf{c})+\mathbf{c}^{2}(\mathbf{s}-\mathbf{b})=\mathbf{a n}_{\mathbf{a}}{ }^{2}+\mathbf{a}(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c}) \\
& \Rightarrow s\left(b^{2}+c^{2}\right)-b c(2 s-a)=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}\left(s^{2}-s(2 s-a)+b c\right) \\
& \Rightarrow s\left(b^{2}+c^{2}\right)-2 s b c=a n_{a}^{2}+a\left(a s-s^{2}\right) \\
& \Rightarrow s\left(b^{2}+c^{2}-\mathbf{a}^{2}-2 b c\right)=\mathbf{a n}_{\mathrm{a}}{ }^{2}-\mathbf{a s}^{2} \Rightarrow \mathrm{an}_{\mathrm{a}}{ }^{2}=\mathrm{as}^{2}+\mathbf{s}(2 \mathrm{bccos} A-2 b c) \\
& =\mathbf{a s}^{2}-4 \boldsymbol{s b c s i n}{ }^{2} \frac{\mathbf{A}}{2}=\mathbf{a s}^{2}-\frac{4 \mathbf{s b c}(s-\mathbf{b})(s-\mathbf{c})(s-a)}{\mathbf{b c}(s-\mathbf{a})} \\
& =a s^{2}-\frac{4 \Delta^{2}}{s-a}=a s^{2}-2 a\left(\frac{2 \Delta}{a}\right)\left(\frac{\Delta}{s-a}\right)=a s^{2}-2 a h_{a} r_{a} \therefore n_{a} \stackrel{(1)}{=} s^{2}-2 h_{a} r_{a}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{s^{2} a^{2}}{4 r^{2} s^{2}}-\frac{2 r_{a}}{h_{a}}=\frac{a^{2}}{4 r^{2}}-\left(\frac{2 r s}{s-a}\right)\left(\frac{a}{2 r s}\right)=\frac{a^{2}}{4 r^{2}}-\frac{(a-s)+s}{s-a} \\
& =\frac{a^{2}}{4 r^{2}}+1-\frac{s}{s-a}=1+\frac{a^{2}(s-a)-4\left(s^{2}\right)}{4(s-a) r^{2}} \\
& =1+\frac{\mathbf{a}^{2}(s-a)-4(s-a)(s-b)(s-c)}{4(s-a) r^{2}}=1+\frac{a^{2}-\left(\mathbf{a}^{2}-(b-c)^{2}\right)}{4 r^{2}}= \\
& =1+\frac{(b-c)^{2}}{4 r^{2}} \\
& \Leftrightarrow \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}-\frac{2 \mathbf{R}}{\mathbf{r}} \geq \frac{(\mathbf{b}-\mathbf{c})^{2}}{4 \mathbf{r}^{2}} \Leftrightarrow \frac{\mathbf{R}(\mathbf{R}-2 \mathbf{r})}{\mathbf{r}^{2}} \geq \frac{\mathbf{b}^{2}+\mathbf{c}^{2}-\mathbf{2 b c}}{4 \mathbf{r}^{2}} \Leftrightarrow \mathbf{R}-2 \mathbf{r} \geq \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{4 \mathbf{R}}-\frac{\mathbf{b c}}{2 \mathbf{R}} \\
& \Leftrightarrow R\left(1-\frac{2 r}{R}\right) \geq \frac{4 R^{2}\left(\sin ^{2} B+\sin ^{2} C\right)}{4 R}-\frac{4 R^{2} \sin B \sin C}{2 R} \Leftrightarrow 1-\frac{8 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{R} \geq
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\Leftrightarrow\left(2 \sin \frac{A}{2} \cos \frac{B-C}{2}-1\right)^{2} \geq 0 \rightarrow \operatorname{true} \Rightarrow \frac{n_{a}}{h_{a}} \leq \frac{R}{r}-1 \Rightarrow \frac{n_{a}-h_{a}}{h_{a}} \leq \frac{R-2 r}{r}
$$

$$
\Rightarrow \mathbf{n}_{\mathrm{a}}-\mathbf{h}_{\mathrm{a}} \leq\left(\frac{\mathbf{R}-\mathbf{2 r}}{\mathbf{r}}\right)\left(\frac{2 \mathbf{r s}}{\mathrm{a}}\right)
$$

$$
\Rightarrow \frac{1}{n_{a}-h_{a}} \geq \frac{a}{2 s(R-2 r)} \text { and analogs } \Rightarrow
$$

$$
\Rightarrow \sum \frac{1}{n_{a}-h_{a}} \geq \frac{2 s}{2 s(R-2 r)} \Rightarrow \sum \frac{1}{n_{a}-h_{a}} \stackrel{(i)}{\stackrel{(i)}{\gtrless}} \frac{1}{R-2 r}
$$

Again, $\frac{\mathbf{m}_{a}}{\mathbf{h}_{\mathrm{a}}} \stackrel{\text { Panaitopol }}{\leq} \frac{\mathbf{R}}{2 \mathbf{r}} \Rightarrow \frac{\mathbf{m}_{\mathrm{a}}-\mathbf{h}_{\mathrm{a}}}{\mathbf{h}_{\mathrm{a}}} \leq \frac{\mathbf{R}-\mathbf{2 r}}{2 \mathbf{r}} \Rightarrow \mathbf{m}_{\mathrm{a}}-\mathbf{h}_{\mathrm{a}} \leq\left(\frac{\mathbf{R}-\mathbf{2 r}}{2 \mathbf{r}}\right)\left(\frac{2 r s}{\mathbf{a}}\right)$

$$
\Rightarrow \frac{1}{m_{a}-h_{a}} \geq \frac{a}{s(R-2 r)} \text { and analogs }
$$

$$
\Rightarrow \sum \frac{1}{m_{a}-h_{a}} \geq \frac{2 s}{s(R-2 r)} \Rightarrow \sum \frac{1}{m_{a}-h_{a}} \stackrel{(i i)}{\gtrless} \frac{2}{R-2 r}
$$

(i). (ii) $\Rightarrow\left(\sum \frac{1}{\mathbf{n}_{\mathrm{a}}-\mathbf{h}_{\mathrm{a}}}\right)\left(\sum \frac{1}{\mathbf{m}_{\mathrm{a}}-\mathbf{h}_{\mathrm{a}}}\right) \geq \frac{2}{(\mathrm{R}-2 \mathrm{r})^{2}}$ (Proved)
1382. In $\triangle A B C, n_{a}$-Nagel's cevian, the following relationship holds:

$$
2 r \leq\left(\sum_{c y c} \frac{1}{n_{a}+h_{a}}\right)^{-1} \leq R
$$

$$
\begin{aligned}
& \text { www.ssmrmh.ro } \\
& \boldsymbol{\operatorname { s i n }}^{2} \mathrm{~B}+\boldsymbol{\operatorname { s i n }}^{2} \mathrm{C}-2 \boldsymbol{\operatorname { s i n } B \operatorname { s i n }} \mathrm{C}=(\boldsymbol{\operatorname { s i n } B}-\boldsymbol{\operatorname { s i n }} \mathrm{C})^{\mathbf{2}} \\
& \Leftrightarrow 1-4 \sin \frac{A}{2}\left(2 \sin \frac{B}{2} \sin \frac{C}{2}\right) \geq\left(2 \cos \frac{B+C}{2} \sin \frac{B-C}{2}\right)^{2} \\
& \Leftrightarrow 1-4 \sin \frac{A}{2}\left(\cos \frac{B-C}{2}-\cos \frac{B+C}{2}\right) \geq 4 \sin ^{2} \frac{A}{2}\left(1-\cos ^{2} \frac{B-C}{2}\right) \\
& \Leftrightarrow 1-4 \sin \frac{A}{2} \cos \frac{B-C}{2}+4 \sin ^{2} \frac{A}{2} \geq 4 \sin ^{2} \frac{A}{2}-4 \sin ^{2} \frac{A}{2} \cos ^{2} \frac{B-C}{2} \\
& \Leftrightarrow 4 \sin ^{2} \frac{A}{2} \cos ^{2} \frac{B-C}{2}-4 \sin \frac{A}{2} \cos \frac{B-C}{2}+1 \geq 0
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India

Perpendicular distance is least among all line segments from A to BC,

$$
\therefore h_{a} \leq n_{a} \Rightarrow n_{a}+h_{a} \geq \mathbf{2} h_{a} \Rightarrow \frac{1}{n_{a}+h_{a}} \stackrel{(i)}{\sim} \frac{\mathbf{1}}{2 h_{a}}
$$

Similarly, $\frac{1}{n_{b}+h_{b}} \stackrel{(\text { (ii) }}{\sim} \frac{1}{2 h_{b}}$ and $\frac{1}{n_{c}+h_{c}} \stackrel{(\text { iii) }}{\sim} \frac{1}{2 h_{c}} \therefore($ i $)+($ ii $)+($ iii $) \Rightarrow$

$$
\begin{aligned}
\sum \frac{1}{n_{a}+h_{a}} & \leq \frac{1}{2} \sum \frac{1}{h_{a}}=\frac{1}{2}\left(\sum \frac{a}{2 r s}\right)=\frac{2 s}{4 r s}=\frac{1}{2 r} \Rightarrow \\
& \Rightarrow\left(\sum \frac{1}{n_{a}+h_{a}}\right)^{-1} \stackrel{(m)}{\geq} 2 r
\end{aligned}
$$

Now, Stewart's theorem $\Rightarrow \mathbf{b}^{2}(\mathbf{s}-\mathbf{c})+\mathbf{c}^{2}(\mathbf{s}-\mathbf{b})=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c})$

$$
\begin{aligned}
& \Rightarrow s\left(b^{2}+c^{2}\right)-b c(2 s-a)=\mathbf{a n}^{2}+\mathbf{a}\left(\mathbf{s}^{2}-\mathbf{s}(2 s-a)+b c\right) \Rightarrow \\
& \Rightarrow s\left(b^{2}+c^{2}\right)-2 s b c=a n a_{a}^{2}+a\left(a s-s^{2}\right) \\
& \Rightarrow s\left(b^{2}+c^{2}-\mathbf{a}^{2}-2 b c\right)=\mathbf{a n}_{\mathrm{a}}{ }^{2}-\mathbf{a s}^{2} \Rightarrow \mathrm{an}_{\mathrm{a}}{ }^{2}=\mathrm{as}^{2}+\mathbf{s}(2 \mathrm{bccos} A-2 b c) \\
& =\mathbf{a s}^{2}-4 \operatorname{sbcsin}^{2} \frac{A}{2}=\mathbf{a s}^{2}-\frac{4 \operatorname{sbc}(s-b)(s-\mathbf{c})(s-a)}{\mathbf{b c}(s-a)} \\
& =a s^{2}-\frac{4 \Delta^{2}}{s-a}=\mathrm{as}^{2}-2 \mathrm{a}\left(\frac{2 \Delta}{\mathrm{a}}\right)\left(\frac{\Delta}{s-a}\right)=\mathrm{as}^{2}-2 \mathrm{ah}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}} \therefore \mathrm{n}_{\mathrm{a}} \stackrel{(1)}{\mathscr{(1)}} \mathrm{s}^{2}-2 \mathrm{~h}_{\mathrm{a}} \mathrm{r}_{\mathrm{a}} \\
& \text { Now, } \frac{\mathbf{n}_{\mathrm{a}}}{\mathbf{h}_{\mathrm{a}}} \leq \frac{\mathbf{R}}{\mathbf{r}}-1 \Leftrightarrow \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}-\frac{2 \mathbf{R}}{\mathbf{r}}+1 \geq \frac{\mathbf{n}_{\mathrm{a}}^{2}}{\mathbf{h}_{\mathrm{a}}^{2}} \stackrel{\text { by }}{\Leftrightarrow}(1) \mathbf{R}^{2} \mathbf{r}^{2}-\frac{2 R}{\mathbf{r}}+1 \geq \frac{\mathbf{s}^{2}-2 \mathbf{h}_{\mathrm{a}} \mathbf{r}_{\mathrm{a}}}{\mathbf{h}_{\mathrm{a}}^{2}}= \\
& =\frac{s^{2} a^{2}}{4 \mathbf{r}^{2} \mathbf{s}^{2}}-\frac{2 r_{a}}{\mathbf{h}_{\mathrm{a}}}=\frac{\mathbf{a}^{2}}{4 \mathbf{r}^{2}}-\left(\frac{2 r s}{s-a}\right)\left(\frac{\mathbf{a}}{2 \mathbf{r} s}\right)=\frac{\mathbf{a}^{2}}{4 \mathbf{r}^{2}}-\frac{(\mathbf{a}-\mathbf{s})+\mathbf{s}}{\mathbf{s}-\mathbf{a}} \\
& =\frac{a^{2}}{4 r^{2}}+1-\frac{s}{s-a}=1+\frac{a^{2}(s-a)-4\left(s^{2}\right)}{4(s-a) r^{2}}= \\
& =1+\frac{\mathbf{a}^{2}(s-a)-4(s-a)(s-b)(s-c)}{4(s-a) r^{2}}= \\
& =1+\frac{\mathbf{a}^{2}-\left(\mathrm{a}^{2}-(\mathrm{b}-\mathrm{c})^{2}\right)}{4 \mathbf{r}^{2}}=1+\frac{(\mathrm{b}-\mathrm{c})^{2}}{4 \mathrm{r}^{2}} \\
& \Leftrightarrow \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}-\frac{2 \mathbf{R}}{\mathbf{r}} \geq \frac{(\mathbf{b}-\mathbf{c})^{2}}{4 \mathbf{r}^{2}} \Leftrightarrow \frac{\mathbf{R}(\mathbf{R}-2 \mathbf{r})}{\mathbf{r}^{2}} \geq \frac{\mathbf{b}^{2}+\mathbf{c}^{2}-2 \mathbf{b c}}{4 \mathbf{r}^{2}} \Leftrightarrow \mathbf{R}-2 \mathbf{r} \geq \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{4 \mathbf{R}}-\frac{\mathbf{b c}}{2 \mathbf{R}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \Leftrightarrow R\left(1-\frac{2 r}{R}\right) \geq \frac{4 R^{2}\left(\sin ^{2} B+\sin ^{2} C\right)}{4 R}-\frac{4 R^{2} \sin B \sin C}{2 R} \Leftrightarrow \\
& \Leftrightarrow 1-\frac{8 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{R} \geq \sin ^{2} B+\sin ^{2} C-2 \sin B \sin C=(\sin B-\operatorname{sinC})^{2} \\
& \Leftrightarrow 1-4 \sin \frac{A}{2}\left(2 \sin \frac{B}{2} \sin \frac{C}{2}\right) \geq\left(2 \cos \frac{B+C}{2} \sin \frac{B-C}{2}\right)^{2} \\
& \Leftrightarrow 1-4 \sin \frac{A}{2}\left(\cos \frac{B-C}{2}-\cos \frac{B+C}{2}\right) \geq 4 \sin ^{2} \frac{A}{2}\left(1-\cos ^{2} \frac{B-C}{2}\right) \\
& \Leftrightarrow 1-4 \sin \frac{A}{2} \cos \frac{B-C}{2}+4 \sin ^{2} \frac{A}{2} \geq 4 \sin ^{2} \frac{A}{2}-4 \sin ^{2} \frac{A}{2} \cos ^{2} \frac{B-C}{2} \\
& \Leftrightarrow 4 \sin ^{2} \frac{A}{2} \cos 2 \frac{B-C}{2}-4 \sin \frac{A}{2} \cos \frac{B-C}{2}+1 \geq 0 \\
& \Leftrightarrow\left(2 \sin \frac{A}{2} \cos \frac{B-C}{2}-1\right)^{2} \geq 0 \rightarrow \operatorname{true} \Rightarrow \frac{n_{a}}{h_{a}} \leq \frac{R}{r}-1 \Rightarrow \frac{n_{a}+h_{a}}{h_{a}} \leq \frac{R}{r} \\
& \Rightarrow n_{a}+h_{a} \leq \frac{R}{r}\left(\frac{2 r s}{a}\right)=\frac{2 R s}{a} \Rightarrow \frac{1}{n_{a}+h_{a}} \stackrel{(a)}{a} \frac{a}{2 R s}
\end{aligned}
$$

$$
\text { Similarly, } \frac{1}{n_{b}+h_{b}} \stackrel{(b)}{\gtrless} \frac{b}{2 R s} \text { and } \frac{1}{n_{c}+h_{c}} \stackrel{(c)}{\gtrless} \frac{c}{2 R s}
$$

$$
\therefore(\mathbf{a})+(b)+(c) \Rightarrow \sum \frac{1}{n_{a}+h_{a}} \geq \frac{2 s}{2 R s}=\frac{1}{R} \Rightarrow\left(\sum \frac{1}{n_{a}+h_{a}}\right)^{-1} \stackrel{(n)}{\sim} \underset{\sim}{n}
$$

$$
(m),(n) \Rightarrow 2 r \leq\left(\sum \frac{1}{n_{a}+h_{a}}\right)^{-1} \leq R(\text { Proved })
$$

1383. In $\triangle A B C, n_{a}$-Nagel's cevian the following relationship holds:

$$
\frac{1}{n_{a}}+\frac{1}{n_{b}}+\frac{1}{n_{c}} \geq \frac{1}{R-r}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { Stewart's theorem } \Rightarrow \mathbf{b}^{2}(\mathbf{s}-\mathbf{c})+\mathbf{c}^{2}(\mathbf{s}-\mathbf{b})=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c}) \\
\Rightarrow \mathbf{s}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)-\mathbf{b c}(2 \mathbf{s}-\mathbf{a})=\mathbf{a n}_{\mathbf{a}}{ }^{2}+\mathbf{a}\left(\mathbf{s}^{2}-\mathbf{s}(2 \mathbf{s}-\mathbf{a})+\mathbf{b c}\right) \Rightarrow \mathbf{s}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)-2 \mathbf{s b c} \\
=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}\left(\mathbf{a s}-\mathbf{s}^{2}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\Rightarrow s\left(b^{2}+c^{2}-a^{2}-2 b c\right)=a n_{a}^{2}-a s^{2} \Rightarrow a n_{a}^{2}=a s^{2}+s(2 b c \cos A-2 b c)= \\
=a s^{2}-4 s b c \sin ^{2} \frac{A}{2}=a s^{2}-\frac{4 s b c(s-b)(s-c)(s-a)}{b c(s-a)} \\
=a s^{2}-\frac{4 \Delta^{2}}{s-a}=a s^{2}-2 a\left(\frac{2 \Delta}{a}\right)\left(\frac{\Delta}{s-a}\right)=a s^{2}-2 a h_{a} r_{a} \therefore n_{a}^{2} \stackrel{(1)}{=} s^{2}-2 h_{a} r_{a}
\end{gathered}
$$

$$
\text { Now, } \frac{n_{a}}{h_{a}} \leq \frac{R}{r}-1 \Leftrightarrow \frac{R^{2}}{r^{2}}-\frac{2 R}{r}+1 \geq \frac{n_{a}^{2}}{h_{a}^{2}} \stackrel{\text { by }}{(1)} \Leftrightarrow \frac{R^{2}}{r^{2}}-\frac{2 R}{r}+1 \geq \frac{s^{2}-2 h_{a} r_{a}}{h_{a}^{2}}=\frac{s^{2} a^{2}}{4 r^{2} s^{2}}-\frac{2 r_{a}}{h_{a}}
$$

$$
=
$$

$$
\frac{a^{2}}{4 r^{2}}-\left(\frac{2 r s}{s-a}\right)\left(\frac{a}{2 r s}\right)=\frac{a^{2}}{4 r^{2}}-\frac{(a-s)+s}{s-a}
$$

$$
=\frac{a^{2}}{4 r^{2}}+1-\frac{s}{s-a}=1+\frac{a^{2}(s-a)-4\left(s r^{2}\right)}{4(s-a) r^{2}}=
$$

$$
1+\frac{a^{2}(s-a)-4(s-a)(s-b)(s-c)}{4(s-a) r^{2}}=1+\frac{a^{2}-\left(a^{2}-(b-c)^{2}\right)}{4 r^{2}}=1+\frac{(b-c)^{2}}{4 r^{2}}
$$

$$
\Leftrightarrow \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}-\frac{2 R}{r} \geq \frac{(b-c)^{2}}{4 r^{2}} \Leftrightarrow \frac{R(R-2 r)}{r^{2}} \geq \frac{b^{2}+c^{2}-2 b c}{4 r^{2}} \Leftrightarrow R-2 r \geq \frac{b^{2}+c^{2}}{4 R}-\frac{b c}{2 R}
$$

$$
\Leftrightarrow R\left(1-\frac{2 r}{R}\right) \geq \frac{4 R^{2}\left(\sin ^{2} B+\sin ^{2} C\right)}{4 R}-\frac{4 R^{2} \sin B \sin C}{2 R} \Leftrightarrow 1-\frac{8 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{R} \geq
$$

$$
\geq \sin ^{2} B+\sin ^{2} C-2 \sin B \sin C=(\sin B-\sin C)^{2}
$$

$$
\Leftrightarrow 1-4 \sin \frac{A}{2}\left(2 \sin \frac{B}{2} \sin \frac{C}{2}\right) \geq\left(2 \cos \frac{B+C}{2} \sin \frac{B-C}{2}\right)^{2}
$$

$$
\Leftrightarrow 1-4 \sin \frac{A}{2}\left(\cos \frac{B-C}{2}-\cos \frac{B+C}{2}\right) \geq 4 \sin ^{2} \frac{A}{2}\left(1-\cos ^{2} \frac{B-C}{2}\right)
$$

$$
\Leftrightarrow 1-4 \sin \frac{A}{2} \cos \frac{B-C}{2}+4 \sin ^{2} \frac{A}{2} \geq 4 \sin ^{2} \frac{A}{2}-4 \sin ^{2} \frac{A}{2} \cos ^{2} \frac{B-C}{2}
$$

$$
\Leftrightarrow 4 \sin ^{2} \frac{A}{2} \cos ^{2} \frac{B-C}{2}-4 \sin \frac{A}{2} \cos \frac{B-C}{2}+1 \geq 0
$$

$$
\Leftrightarrow\left(2 \sin \frac{A}{2} \cos \frac{B-C}{2}-1\right)^{2} \geq 0 \rightarrow \text { true } \Rightarrow
$$

$$
\Rightarrow \frac{n_{a}}{h_{a}} \leq \frac{R}{r}-1=\frac{R-r}{r} \Rightarrow \frac{h_{a}}{n_{a}} \geq \frac{r}{R-r} \Rightarrow \frac{1}{n_{a}} \geq\left(\frac{r}{R-r}\right)\left(\frac{a}{2 r s}\right)=\left(\frac{1}{R-r}\right)\left(\frac{a}{2 s}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\Rightarrow \frac{1}{n_{a}} \stackrel{(a)}{\geq}\left(\frac{1}{R-r}\right)\left(\frac{a}{2 s}\right) \text { and } \therefore \frac{1}{n_{b}} \stackrel{(b)}{\geq}\left(\frac{1}{R-r}\right)\left(\frac{b}{2 s}\right) \text { and } \frac{1}{n_{c}} \stackrel{(c)}{\geq}\left(\frac{1}{R-r}\right)\left(\frac{c}{2 s}\right) \\
\therefore(a)+(b)+(c) \Rightarrow \frac{1}{n_{a}}+\frac{1}{n_{b}}+\frac{1}{n_{c}} \geq\left(\frac{1}{R-r}\right)\left(\frac{a+b+c}{2 s}\right) \\
\Rightarrow \frac{1}{n_{a}}+\frac{1}{n_{b}}+\frac{1}{n_{c}} \geq \frac{1}{R-r} \text { (Proved) }
\end{gathered}
$$

1384. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a}^{3}}{r_{b}^{3}}+\frac{r_{b}^{3}}{r_{c}^{3}}+\frac{r_{c}^{3}}{r_{a}^{3}}+\frac{54 r}{4 R+r} \geq 9
$$

Proposed by Rahim Shahbazov-Baku-Azerbaijan

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { Let } \mathbf{s}-\mathbf{a}=\mathbf{x}, \mathbf{s}-\mathbf{b}=\mathbf{y}, \mathbf{s}-\mathbf{c}=\mathbf{z} \\
\therefore \mathbf{3 s}-\mathbf{2 s}=\mathbf{s}=\sum \mathbf{x} \Rightarrow \mathbf{a}=\mathbf{y}+\mathbf{z}, \mathbf{b}=\mathbf{z}+\mathbf{x}, \mathbf{c}=\mathbf{x}+\mathbf{y} \\
N o w, \sum \frac{\mathbf{r}_{\mathbf{a}}^{2}}{\mathbf{r}_{\mathbf{b}}^{2}}+\frac{8 \mathbf{r}}{\mathrm{R}} \geq 7 \Leftrightarrow \\
\Leftrightarrow \sum\left(\frac{\mathbf{s}-\mathbf{b}}{\mathbf{s}-\mathbf{a}}\right)^{2}+\mathbf{8}\left(\frac{\Delta}{\mathbf{s}}\right)\left(\frac{4 \Delta}{\mathbf{a b c}}\right) \stackrel{\text { via above transformation }}{\Leftrightarrow} \stackrel{\mathrm{m}^{2}}{\Leftrightarrow} \\
\Leftrightarrow \sum \frac{32 \mathbf{x}(\mathbf{s}-\mathbf{a})(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c})}{\mathbf{s} \prod(\mathbf{x}+\mathbf{y})} \geq 7
\end{gathered}
$$

$$
\text { Now, } \sum \frac{y^{2}+x^{2}}{x^{2}}+\frac{32 x y z}{\prod(x+y)}=\sum \frac{y^{2}+x^{2}}{x^{2}}+\frac{16 x y z}{\prod(x+y)}+\frac{16 x y z}{\prod(x+y)} \stackrel{A-G}{\sim}
$$

$$
\geq 5 \sqrt[5]{\left(\frac{2^{8}(x y z)^{2}}{\Pi x^{2}}\right)\left(\frac{\Pi\left(x^{2}+y^{2}\right)}{\Pi(x+y)^{2}}\right)} \geq 5 \sqrt[5]{2^{8} \frac{\Pi\left(\frac{1}{2}(x+y)^{2}\right)}{\Pi(x+y)^{2}}}=5 \sqrt[5]{2^{5}}
$$

$$
\begin{aligned}
& \text { via above transformation } \\
& \stackrel{{ }^{\text {ransformation }}}{\Leftrightarrow} \sum \frac{\mathbf{y}^{2}}{\mathbf{x}^{2}}+\frac{32 \mathrm{xyz}}{\Pi(\mathbf{x}+\mathbf{y})} \geq 7 \Leftrightarrow \sum \frac{\mathbf{y}^{2}}{\mathbf{x}^{2}}+3+\frac{32 \mathrm{xyz}}{\prod(\mathbf{x}+\mathbf{y})} \geq 10 \Leftrightarrow \\
& \Leftrightarrow \sum \frac{y^{2}+x^{2}}{x^{2}}+\frac{32 x y z}{\prod(x+y)} \stackrel{(i)}{\geq} 10
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
via above transformation

$$
\begin{aligned}
& \sum \frac{\mathbf{y}}{\mathbf{x}}+\frac{16 x y z}{\prod(x+y)} \geq 5 \Leftrightarrow \sum \frac{\mathbf{y}}{\mathbf{x}}+3+\frac{16 x y z}{\Pi(x+y)} \geq 8 \Leftrightarrow \\
& \Leftrightarrow \sum \frac{\mathbf{y}+\mathbf{x}}{\mathbf{x}}+\frac{16 x y z}{\prod(x+y)} \stackrel{\text { (ii) }}{\prod} 8
\end{aligned}
$$

$$
\text { Now, } \sum \frac{\mathrm{y}+\mathrm{x}}{\mathrm{x}}+\frac{16 \mathrm{xyz}}{\prod(\mathrm{x}+\mathrm{y})} \stackrel{\mathrm{A}-\mathrm{G}}{\sim} 4^{4} \sqrt{\left(\frac{\Pi(\mathrm{x}+\mathrm{y})}{\mathrm{xyz}}\right)\left(\frac{16 \mathrm{xyz}}{\prod(\mathrm{x}+\mathrm{y})}\right)}=8 \Rightarrow \text { (ii) is true }
$$

$$
\therefore \sum \frac{\mathbf{r}_{\mathbf{a}}}{\mathbf{r}_{\mathbf{b}}}+\frac{\mathbf{4 r}}{\mathbf{R}} \geq \mathbf{5} \Rightarrow \sum \frac{\mathbf{r}_{\mathbf{a}}}{\mathbf{r}_{\mathbf{b}}} \stackrel{(2)}{\geq} \mathbf{5}-\frac{\mathbf{4 r}}{\mathbf{R}}
$$

$$
\text { Now, } \sum \frac{\mathbf{r}_{\mathrm{a}}^{3}}{\mathbf{r}_{\mathrm{b}}^{3}}+\frac{54 \mathrm{r}}{4 \mathrm{R}+\mathrm{r}} \stackrel{\text { Chebyshev }}{\geq} \frac{1}{3}\left(\sum \frac{\mathrm{r}_{\mathrm{a}}}{\mathbf{r}_{\mathrm{b}}}\right)\left(\sum \frac{\mathrm{r}_{\mathrm{a}}^{2}}{\mathbf{r}_{\mathrm{b}}^{2}}\right)+\frac{54 \mathrm{r}}{4 \mathrm{R}+\mathrm{r}} \stackrel{\text { by (1)and (2) }}{\geq}
$$

$$
\geq \frac{1}{3}\left(7-\frac{8 r}{R}\right)\left(5-\frac{4 r}{R}\right)+\frac{54 r}{4 R+r} \stackrel{?}{n} 9
$$

$$
\Leftrightarrow(7 R-8 r)(5 R-4 r)(4 R+r)+162 R^{2} r \geq 27(4 R+r) R^{2}
$$

$$
\Leftrightarrow 16 t^{3}-51 t^{2}+30 t+16 \stackrel{? \sim}{\geq} 0\left(\text { where } t=\frac{R}{r}\right) \Leftrightarrow(t-2)[(t-2)(16 t+13)+18] \stackrel{?}{\sim} 0
$$

$$
\rightarrow \text { true } \because \mathbf{t} \stackrel{\text { Euler }}{\geq} 2 \therefore \sum \frac{\mathbf{r}_{\mathbf{a}}^{3}}{\mathbf{r}_{\mathbf{b}}^{3}}+\frac{54 \mathbf{r}}{4 \mathrm{R}+\mathbf{r}} \geq 9 \text { (Proved) }
$$

1385. In $\triangle A B C$ the following relationship holds:

$$
m_{a} \sqrt{\frac{2}{3+\cos 2 A-2 \cos 2 B-2 \cos 2 C}}=R
$$

Proposed by Seyran Ibrahimov-Maasilli-Azerbajan

$$
\begin{aligned}
& =10 \Rightarrow(i) \text { is true } \therefore \sum \frac{\mathbf{r}_{\mathbf{a}}^{2}}{\mathbf{r}_{\mathbf{b}}^{2}}+\frac{8 \mathrm{r}}{\mathrm{R}} \geq 7 \Rightarrow \sum \frac{\mathbf{r}_{\mathbf{a}}^{2(1)}}{\mathbf{r}_{\mathbf{b}}^{2}} \xlongequal{n} 7-\frac{8 \mathrm{r}}{\mathrm{R}} \\
& \text { Again, } \sum \frac{\mathbf{r}_{\mathbf{a}}}{\mathbf{r}_{\mathbf{b}}}+\frac{\mathbf{4 r}}{\mathbf{R}} \geq \mathbf{5} \Leftrightarrow \sum\left(\frac{\mathbf{s}-\mathbf{b}}{\mathbf{s}-\mathbf{a}}\right)+\mathbf{4}\left(\frac{\Delta}{\mathrm{s}}\right)\left(\frac{\mathbf{4 \Delta}}{\mathrm{abc}}\right) \geq \mathbf{5} \\
& \text { via above transformation } \\
& \stackrel{\text { ※ }}{\Leftrightarrow} \\
& \sum \frac{y}{x}+\frac{16 s(s-a)(s-b)(s-c)}{s \prod(x+y)} \geq 5
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
m_{a} \sqrt{\frac{2}{3+\cos 2 A-2 \cos 2 B-2 \cos 2 C}}= \\
=m_{a} \sqrt{\frac{2}{3+1-2 \sin ^{2} A-2+4 \sin ^{2} B-2+4 \sin ^{2} C}}= \\
=m_{a} \sqrt{\frac{2}{-2 \sin ^{2} A+4 \sin ^{2} B+4 \sin ^{2} C}}= \\
=m_{a} \sqrt{\frac{4 R^{2}}{-4 R^{2} \sin ^{2} A+8 R^{2} \sin ^{2} B+8 R^{2} \sin ^{2} C}}= \\
=m_{a} \sqrt{\frac{4 R^{2}}{-a^{2}+2 b^{2}+2 c^{2}}}=m_{a} \sqrt{\frac{-a^{2}+2 b^{2}+2 c^{2}}{4}}=m_{a} \sqrt{\frac{R^{2}}{m_{a}^{2}}}=R
\end{gathered}
$$

1386. In $\triangle A B C$ the following relationship holds:

$$
m_{a} \geq \frac{1}{2}\left(\frac{h_{b}+h_{c}}{2}+|b-c| \sin ^{2} \frac{A}{2}\right) \sqrt{\frac{n_{a}+h_{a}}{r_{a}}}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
m_{a} \stackrel{(i)}{2} \frac{1}{2}\left(\frac{h_{b}+h_{c}}{2}+|b-c| \sin ^{2} \frac{A}{2}\right) \sqrt{\frac{n_{a}+h_{a}}{r_{a}}}
$$

Stewart's theorem $\Rightarrow \mathbf{b}^{2}(\mathbf{s}-\mathbf{c})+\mathbf{c}^{2}(\mathbf{s}-\mathbf{b})=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}(\mathbf{s}-\mathbf{b})(\mathrm{s}-\mathbf{c})$

$$
\begin{aligned}
& \Rightarrow s\left(b^{2}+c^{2}\right)-b c(2 s-a)=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}\left(\mathbf{s}^{2}-\mathbf{s}(2 s-a)+b c\right) \Rightarrow \\
& \Rightarrow \mathbf{s}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)-2 \mathbf{s b c}=\mathrm{an}_{\mathrm{a}}{ }^{2}+\mathrm{a}\left(\mathrm{as}-\mathrm{s}^{2}\right) \\
& \Rightarrow s\left(b^{2}+c^{2}-\mathbf{a}^{2}-2 b c\right)=\mathbf{a n}_{\mathrm{a}}{ }^{2}-\mathrm{as}^{2} \Rightarrow \mathrm{an}_{\mathrm{a}}{ }^{2}=\mathrm{as}^{2}+\mathrm{s}(2 \mathrm{bccos} A-2 b c) \\
& =\mathbf{a s}^{2}-4 \operatorname{sbcsin}^{2} \frac{A}{2}=\mathbf{a s}^{2}-\frac{4 \operatorname{sbc}(s-b)(s-c)(s-a)}{b c(s-a)}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
=\mathrm{as}^{2}-\frac{4 \Delta^{2}}{s-a}=\mathbf{a s}^{2}-2 \mathrm{a}\left(\frac{2 \Delta}{\mathrm{a}}\right)\left(\frac{\Delta}{s-a}\right)=\mathrm{as}^{2}-2 \mathrm{ah}_{\mathrm{a}} \mathbf{r}_{\mathrm{a}} \therefore \mathbf{n}_{\mathrm{a}}{ }^{2} \stackrel{(1)}{=} \mathbf{s}^{2}-2 \mathbf{h}_{\mathrm{a}} \mathbf{r}_{\mathrm{a}}
$$

Now we prove : $\mathrm{m}_{\mathrm{a}} \stackrel{(2)}{\sim} \frac{1}{2 \sqrt{2}}\left((b+c) \cos \frac{A}{2}+|b-c| \sin \frac{A}{2}\right)$

Upon squaring both sides, (1)

$$
\begin{aligned}
& \Leftrightarrow 8 m_{a}^{2} \geq(b+c)^{2}\left(\cos \frac{A}{2}\right)^{2}+(b-c)^{2}\left(\sin \frac{A}{2}\right)^{2}+2(b+c)|b-c| \cos \frac{A}{2} \sin \frac{A}{2} \\
& \Leftrightarrow 8 m_{a}^{2} \geq(b-c)^{2}\left(\left(\cos \frac{A}{2}\right)^{2}+\left(\sin \frac{A}{2}\right)^{2}\right)+4 b c\left(\cos \frac{A}{2}\right)^{2}+\left(\frac{a}{2 R}\right)(b+c)|b-c| \\
& \Leftrightarrow \mathbf{8 m}_{\mathbf{a}}^{2} \geq(\mathbf{b}-\mathbf{c})^{2}+\frac{\mathbf{4 b c s}(\mathbf{s}-\mathbf{a})}{\mathbf{b c}}+\left(\frac{\mathbf{a}}{2 \mathbf{R}}\right)(\mathbf{b}+\mathbf{c})|\mathbf{b}-\mathbf{c}| \\
& \Leftrightarrow 8 \mathrm{~m}_{\mathrm{a}}^{2} \geq(\mathbf{b}-\mathbf{c})^{2}+(\mathbf{b}+\mathbf{c}+\mathbf{a})(\mathbf{b}+\mathbf{c}-\mathbf{a})+\left(\frac{\mathbf{a}}{\mathbf{2 R}}\right)(\mathbf{b}+\mathbf{c})|\mathbf{b}-\mathbf{c}| \Leftrightarrow \\
& \Leftrightarrow \mathbf{8} \mathrm{m}_{\mathrm{a}}^{2} \geq(\mathbf{b}-\mathbf{c})^{2}+(\mathbf{b}+\mathbf{c})^{2}-\mathbf{a}^{2}+\left(\frac{\mathbf{a}}{\mathbf{2 R}}\right)(\mathbf{b}+\mathbf{c})|\mathbf{b}-\mathbf{c}| \\
& \Leftrightarrow 8 \mathrm{~m}_{\mathrm{a}}^{2} \geq \mathbf{4} \mathrm{m}_{\mathrm{a}}^{2}+\left(\frac{\mathrm{a}}{\mathbf{2 R}}\right)(\mathrm{b}+\mathbf{c})|\mathrm{b}-\mathbf{c}| \Leftrightarrow 8 \mathrm{Rm}_{\mathrm{a}}^{2} \geq \mathbf{a}(\mathrm{b}+\mathbf{c})|\mathrm{b}-\mathbf{c}| \Leftrightarrow \\
& \Leftrightarrow\left(\frac{\mathbf{2 a b c}}{\mathbf{4 \Delta}}\right) \mathbf{4} \mathbf{m}_{\mathbf{a}}^{2} \geq \mathbf{a}(\mathbf{b}+\mathbf{c})|\mathbf{b}-\mathbf{c}| \\
& \Leftrightarrow \mathbf{4 a} \mathbf{a}^{2} \mathbf{b}^{2}\left(\mathbf{2} b^{2}+\mathbf{2} \mathbf{c}^{2}-\mathbf{a}^{2}\right)^{2} \geq \\
& \geq(a+b+c)(b+c-a)(c+a-b)(a+b-c) \mathbf{a}^{2}\left(b^{2}-c^{2}\right)^{2} \\
& \Leftrightarrow 4 \mathbf{b}^{2} \mathbf{c}^{2}\left(2 b^{2}+\mathbf{2} \mathbf{c}^{2}-\mathbf{a}^{2}\right)^{2} \geq\left(2 \sum a^{2} b^{2}-\sum a^{4}\right)\left(\mathbf{b}^{2}-\mathbf{c}^{2}\right)^{2}
\end{aligned}
$$

(expanding and re-arranging)
$\stackrel{\oplus}{\Leftrightarrow} \quad \mathbf{a}^{4}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)^{2}-2 \mathbf{a}^{2}\left(\mathbf{b}^{6}+\mathbf{c}^{6}\right)-14 \mathbf{a}^{2} \mathbf{b}^{2} \mathbf{c}^{2}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)+$
$+\left(b^{2}+c^{2}\right)^{4}+8 b^{2} c^{2}\left(b^{2}+c^{2}\right)^{2}+16 b^{4} c^{4} \geq 0$
$\Leftrightarrow\left\{\mathbf{a}^{4}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)^{2}+\mathbf{1 6} \mathbf{b}^{4} \mathbf{c}^{4}-\mathbf{8} \mathbf{a}^{2} \mathbf{b}^{2} \mathbf{c}^{2}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)\right\}-$ $-6 a^{2} b^{2} \mathbf{c}^{2}\left(b^{2}+c^{2}\right)+\left(b^{2}+c^{2}\right)^{4}+8 b^{2} \mathbf{c}^{2}\left(b^{2}+c^{2}\right)^{2}$
$-2 a^{2}\left(b^{2}+c^{2}\right)\left(b^{4}+c^{4}-b^{2} c^{2}\right) \geq 0$
$\Leftrightarrow\left\{\mathbf{a}^{2}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)-4 \mathbf{b}^{2} \mathbf{c}^{2}\right\}^{2}-\mathbf{6 a} \mathbf{a}^{2} \mathbf{b}^{2} \mathbf{c}^{2}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)+\left(b^{2}+\mathbf{c}^{2}\right)^{4}+$ $+8 \mathbf{b}^{2} \mathbf{c}^{2}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)^{2}-2 \mathbf{a}^{2}\left(b^{2}+\mathbf{c}^{2}\right)\left\{\left(b^{2}+\mathbf{c}^{2}\right)^{2}-3 b^{2} \mathbf{c}^{2}\right\} \geq \mathbf{0}$
$\Leftrightarrow\left\{\mathbf{a}^{2}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)-4 b^{2} \mathbf{c}^{2}\right\}^{2}+\left(b^{2}+\mathbf{c}^{2}\right)^{4}+\mathbf{8} b^{2} \mathbf{c}^{2}\left(b^{2}+\mathbf{c}^{2}\right)^{2}-\mathbf{2 a} \mathbf{a}^{2}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)^{3} \geq 0$
$\Leftrightarrow\left\{\mathbf{a}^{2}\left(b^{2}+\mathbf{c}^{2}\right)-4 b^{2} \mathbf{c}^{2}\right\}^{2}+\left(b^{2}+\mathbf{c}^{2}\right)^{4}-2\left(b^{2}+\mathbf{c}^{2}\right)^{2}\left\{\mathbf{a}^{2}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)-4 b^{2} \mathbf{c}^{2}\right\} \geq 0$
\mathbb{R}

\therefore in order to prove (ii), it suffices to prove : $2 \sqrt{2} m_{a} \sin \frac{A}{2} \sqrt{\frac{n_{a}+h_{a}}{r_{a}}} \leq 2 m_{a}$

$$
\begin{gathered}
\Leftrightarrow \frac{1}{2 \sin ^{2} \frac{\mathbf{A}}{2}} \geq \frac{\mathbf{n}_{\mathrm{a}}+\mathbf{h}_{\mathrm{a}}}{\mathbf{r}_{\mathrm{a}}} \Leftrightarrow \frac{\mathbf{a b c}(s-a)}{2 a(s-a)(s-b)(s-c)} \geq \frac{\mathbf{n}_{a}}{r_{a}}+\left(\frac{2 r s}{a}\right)\left(\frac{s-a}{r s}\right) \Leftrightarrow \\
\Leftrightarrow \frac{4 \operatorname{Rrs}(s-a)}{2 \mathbf{a s r}^{2}} \geq \frac{\mathbf{n}_{a}}{\mathbf{r}_{a}}+\frac{2(s-a)}{a} \Leftrightarrow \frac{2(s-a)}{a}\left(\frac{R}{r}-1\right) \geq \frac{n_{a}}{r_{a}} \\
\Leftrightarrow \frac{2(s-a)}{a}\left(\frac{R}{r}-1\right)\left(\frac{r s}{s-a}\right) \geq n_{a} \Leftrightarrow \frac{2 r s}{a}\left(\frac{R}{r}-1\right) \geq n_{a} \Leftrightarrow h_{a}\left(\frac{R}{r}-1\right) \geq n_{a} \Leftrightarrow \\
\Leftrightarrow \frac{R}{r}-1 \geq \frac{n_{a}}{h_{a}} \Leftrightarrow \frac{R^{2}}{r^{2}}-\frac{2 R}{r}+1 \geq \frac{n_{a}^{2}}{h_{a}^{2}}
\end{gathered}
$$

$$
\stackrel{\text { by }(1)}{\Leftrightarrow} \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}-\frac{2 \mathbf{R}}{\mathbf{r}}+1 \geq \frac{\mathbf{s}^{2}-2 \mathbf{h}_{\mathrm{a}} \mathbf{r}_{\mathrm{a}}}{\mathbf{h}_{\mathrm{a}}^{2}}=\frac{\mathbf{s}^{2} \mathbf{a}^{2}}{4 \mathbf{r}^{2} \mathbf{s}^{2}}-\frac{2 \mathbf{r}_{\mathrm{a}}}{\mathbf{h}_{\mathrm{a}}}=\frac{\mathbf{a}^{2}}{4 \mathbf{r}^{2}}-\left(\frac{2 \mathbf{r s}}{s-\mathbf{a}}\right)\left(\frac{\mathbf{a}}{2 \mathbf{r s}}\right)=
$$

$$
=\frac{\mathbf{a}^{2}}{4 r^{2}}-\frac{(\mathbf{a}-\mathbf{s})+\mathbf{s}}{\mathbf{s}-\mathbf{a}}=\frac{\mathbf{a}^{2}}{4 \mathbf{r}^{2}}+1-\frac{\mathbf{s}}{\mathbf{s}-\mathbf{a}}
$$

$$
=1+\frac{\mathbf{a}^{2}(s-a)-4\left(s r^{2}\right)}{4(s-a) r^{2}}=1+\frac{a^{2}(s-a)-4(s-a)(s-b)(s-c)}{4(s-a) r^{2}}=
$$

$$
=1+\frac{\mathbf{a}^{2}-\left(\mathbf{a}^{2}-(b-c)^{2}\right)}{4 r^{2}}=1+\frac{(b-c)^{2}}{4 r^{2}}
$$

$$
\Leftrightarrow \frac{\mathbf{R}^{2}}{\mathbf{r}^{2}}-\frac{2 \mathbf{R}}{\mathbf{r}} \geq \frac{(\mathbf{b}-\mathbf{c})^{2}}{4 \mathbf{r}^{2}} \Leftrightarrow \frac{\mathbf{R}(\mathbf{R}-2 \mathbf{r})}{\mathbf{r}^{2}} \geq \frac{\mathbf{b}^{2}+\mathbf{c}^{2}-\mathbf{2 b c}}{4 \mathbf{r}^{2}} \Leftrightarrow \mathbf{R}-2 \mathbf{r} \geq \frac{\mathbf{b}^{2}+\mathbf{c}^{2}}{4 \mathbf{R}}-\frac{\mathbf{b c}}{2 \mathbf{R}}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \Leftrightarrow\left[\left\{\mathbf{a}^{2}\left(\mathbf{b}^{2}+\mathbf{c}^{2}\right)-4 \mathbf{b}^{2} \mathbf{c}^{2}\right\}-\left(b^{2}+\mathbf{c}^{2}\right)^{2}\right]^{2} \geq \mathbf{0} \rightarrow \text { true } \Rightarrow \text { (2) is true } \\
& \text { Now, }(i) \Leftrightarrow 2 \mathrm{~m}_{\mathrm{a}} \geq\left(\frac{\mathrm{a}(\mathrm{~b}+\mathrm{c})}{4 \mathrm{R}}+|\mathrm{b}-\mathbf{c}| \sin ^{2} \frac{A}{2}\right) \sqrt{\frac{\mathrm{n}_{\mathrm{a}}+\mathrm{h}_{\mathrm{a}}}{\mathrm{r}_{\mathrm{a}}}}= \\
& \left(\frac{4 R \cos \frac{A}{2} \sin \frac{A}{2}(b+c)}{4 R}+|b-c| \sin ^{2} \frac{A}{2}\right) \sqrt{\frac{n_{a}+h_{a}}{r_{a}}} \\
& \Leftrightarrow 2 m_{a} \stackrel{(\text { ii) }}{2} \sin \frac{A}{2}\left((b+c) \cos \frac{A}{2}+|b-c| \sin \frac{A}{2}\right) \sqrt{\frac{n_{a}+h_{a}}{r_{a}}} \\
& \text { Now, RHS of (ii) } \stackrel{\text { by (2) }}{\leftrightarrows} 2 \sqrt{2} \mathrm{~m}_{\mathrm{a}} \sin \frac{A}{2} \sqrt{\frac{\mathrm{n}_{\mathrm{a}}+\mathrm{h}_{\mathrm{a}}}{\mathrm{r}_{\mathrm{a}}}}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
\Leftrightarrow R\left(1-\frac{2 r}{R}\right) \geq & \frac{4 R^{2}\left(\sin ^{2} B+\sin ^{2} C\right)}{4 R}-\frac{4 R^{2} \sin B \sin C}{2 R} \Leftrightarrow 1-\frac{8 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{R} \geq \\
& \geq \sin ^{2} B+\sin ^{2} C-2 \sin B \sin C=(\sin B-\sin C)^{2} \\
\Leftrightarrow & 1-4 \sin \frac{A}{2}\left(2 \sin \frac{B}{2} \sin \frac{C}{2}\right) \geq\left(2 \cos \frac{B+C}{2} \sin \frac{B-C}{2}\right)^{2} \\
\Leftrightarrow & 1-4 \sin \frac{A}{2}\left(\cos \frac{B-C}{2}-\cos \frac{B+C}{2}\right) \geq 4 \sin ^{2} \frac{A}{2}\left(1-\cos ^{2} \frac{B-C}{2}\right) \\
\Leftrightarrow & 1-4 \sin \frac{A}{2} \cos \frac{B-C}{2}+4 \sin ^{2} \frac{A}{2} \geq 4 \sin ^{2} \frac{A}{2}-4 \sin ^{2} \frac{A}{2} \cos ^{2} \frac{B-C}{2} \\
& \Leftrightarrow 4 \sin ^{2} \frac{A}{2} \cos ^{2} \frac{B-C}{2}-4 \sin \frac{A}{2} \cos \frac{B-C}{2}+1 \geq 0 \\
\Leftrightarrow & \left(2 \sin \frac{A}{2} \cos \frac{B-C}{2}-1\right)^{2} \geq 0 \rightarrow \operatorname{true} \Rightarrow(\text { ii }) \Rightarrow(i) \text { is true (Proved) }
\end{aligned}
$$

1387. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{r_{a}}{r_{b}}\right)^{3}+\left(\frac{r_{b}}{r_{c}}\right)^{3}+\left(\frac{r_{c}}{r_{a}}\right)^{3}+\frac{2 n r}{R} \geq n+3, n \leq 6
$$

Proposed by Marin Chirciu-Romania
Solution 1 by Tran Hong-Dong Thap-Vietnam
First, we will prove: $\frac{r_{a}^{3}}{r_{b}^{3}}+\frac{r_{b}^{3}}{r_{c}^{3}}+\frac{r_{c}^{3}}{r_{a}^{3}}+\frac{12 r}{R} \geq 9$ (1)

$$
\Leftrightarrow \sum_{c y c}\left(\frac{s-b}{s-a}\right)^{3}+12\left(\frac{S}{s}\right) \cdot\left(\frac{4 S}{a b c}\right) \geq 9
$$

(Let $x=s-a ; y=s-b ; z=s-c \Rightarrow x+y+z=s ; a=y+z ; b=x+z ; c=x+y)$

$$
\begin{array}{r}
\Leftrightarrow \sum_{c y c} \frac{y^{3}}{x^{3}}+48 \cdot \frac{x y z}{\prod_{c y c}(x+y)} \geq 9 \\
\Leftrightarrow \sum_{c y c}\left(\frac{y^{3}+x^{3}}{x^{3}}\right)+48 \cdot \frac{x y z}{\Pi_{c y c}(x+y)} \geq 12 \tag{2}
\end{array}
$$

$$
\sum \frac{y^{3}+x^{3}}{x^{3}}+16 \cdot \frac{x y z}{\prod_{c y c}(x+y)}+16 \cdot \frac{x y z}{\prod_{c y c}(x+y)}+16 \cdot \frac{x y z}{\prod_{c y c}(x+y)} \geq
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\geq 6 \sqrt[6]{16^{3} \cdot \frac{\prod_{c y c}\left(x^{3}+y^{3}\right) \cdot(x y z)^{3}}{\prod_{x^{3}} \prod_{c y c}(x+y)^{3}}}=6^{6} \sqrt[6]{16^{3} \cdot \frac{\prod_{c y c}\left(x^{3}+y^{3}\right)}{\prod_{c y c}(x+y)^{3}}} \\
\begin{array}{c}
x^{3}+y^{3} \geq \frac{1}{4}(x+y)^{3}(e t c) \\
\geq \quad 6 \sqrt[6]{16^{3} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}}=6 \sqrt[6]{2^{6}}=12 \Rightarrow(2) t r u e . \\
\\
N o w, \sum \frac{r_{a}^{3}}{r_{b}^{3}}+\frac{2 n r}{R}=\sum \frac{r_{a}^{3}}{r_{b}^{3}}+\frac{(2 n+12-12) r}{R}= \\
\sum \frac{r_{a}^{3}}{r_{b}^{3}}+\frac{12 r}{R}+\frac{2(n-6) r}{R} \stackrel{(1)}{\geq} 9+\frac{2(n-6) r}{R}
\end{array}
\end{gathered}
$$

We must show that: $9+\frac{2(n-6) r}{R} \geq n+3 \Leftrightarrow \frac{2(n-6) r}{R} \geq n-6$ It is true because: $\left\{\begin{array}{c}n \leq 6 \Rightarrow n-6 \leq 0 \\ 2 r \leq R \Rightarrow \frac{2 r}{R} \leq 1\end{array} \Rightarrow \frac{2 r(n-6)}{R} \geq n-6\right.$

Solution 2 by Marian Ursărescu-Romania

First we prove this: $\left(\frac{r_{a}}{r_{b}}\right)^{3}+\left(\frac{r_{b}}{r_{c}}\right)^{3}+\left(\frac{r_{c}}{r_{a}}\right)^{3}+\frac{12 r}{R} \geq 9$
Because $\frac{\left(r_{a}+r_{b}\right)\left(r_{b}+r_{c}\right)\left(r_{c}+r_{a}\right)}{r_{a} r_{b} r_{c}}=\frac{4 R}{r} \Rightarrow$ we must show:

$$
\begin{gathered}
\left(\frac{r_{a}}{r_{b}}\right)^{3}+\left(\frac{r_{b}}{r_{c}}\right)^{3}+\left(\frac{r_{c}}{r_{a}}\right)^{3}+\frac{48 r_{a} r_{b} r_{c}}{\left(r_{a}+r_{b}\right)\left(r_{b}+r_{c}\right)\left(r_{c}+r_{a}\right)} \geq 9 \Leftrightarrow \\
\left(\frac{r_{a}}{r_{b}}\right)^{3}+\left(\frac{r_{b}}{r_{c}}\right)^{3}+\left(\frac{r_{c}}{r_{a}}\right)^{3}+\frac{48}{\left(\frac{r_{a}}{r_{b}}+1\right)\left(\frac{r_{b}}{r}+1\right)\left(\frac{r_{c}}{r_{a}}+1\right)} \geq 9
\end{gathered}
$$

$$
\text { Let } \frac{r_{a}}{r_{b}}=x, \frac{r_{b}}{r_{c}}=y, \frac{r_{c}}{r_{a}}=z ; x y z=1 \text { (3) }
$$

From (2)+(3) we must show: $x^{3}+y^{3}+z^{3}+\frac{48}{(x+1)(y+1)(z+1)} \geq 9 \Leftrightarrow$

$$
\begin{gather*}
x^{3}+1+y^{3}+1+z^{3}+1+\frac{48}{(x+1)(y+1)(z+1)} \geq 12 \tag{4}\\
\text { But } x^{3}+1 \geq \frac{(x+1)^{3}}{4} \text { and similarly (5) }
\end{gather*}
$$

From (4)+(5) we must show:

$$
\begin{gathered}
\frac{(x+1)^{3}}{4}+\frac{(y+1)^{3}}{4}+\frac{(z+1)^{3}}{4}+\frac{48}{(x+1)(y+1)(z+1)} \geq 12 \\
\frac{(x+1)^{3}}{4}+\frac{(y+1)^{3}}{4}+\frac{(z+1)^{3}}{4}+\frac{16}{(x+1)(y+1)(z+1)}+
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{aligned}
& \quad+\frac{16}{(x+1)(y+1)(z+1)}+\frac{16}{(x+1)(y+1)(z+1)} \geq \\
& \geq 6 \sqrt[6]{\frac{16 \cdot 16 \cdot 16}{4 \cdot 4 \cdot 4}}=6 \cdot 2=12 \Rightarrow 6 \text { it is true } \Rightarrow(1) \text { it is true. }
\end{aligned}
$$

From (1) \Rightarrow we must show:
$9-\frac{12}{R} \geq n+3-\frac{2 n r}{R} \Leftrightarrow 6-n+\frac{2 n r}{R}-\frac{12 r}{R} \geq 0$
$\Leftrightarrow 6-n-\frac{2 r}{R}(6-n) \geq 0 \Leftrightarrow(6-n)\left(1-\frac{2 r}{R}\right) \geq 0$
$\Leftrightarrow(6-n) \frac{(R-2 r)}{R} \geq 0$, true because $n \leq 6$ and $R \geq 2 r$ (Euler)

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\text { Let } s-a=x, s-b=y, s-c=z
$$

$$
\therefore 3 s-2 s=s=\sum x \Rightarrow a=y+z, b=z+x, c=x+y
$$

$$
N o w, \sum \frac{r_{a}^{2}}{r_{b}^{2}}+\frac{8 r}{R} \geq 7 \Leftrightarrow \sum\left(\frac{s-b}{s-a}\right)^{2}+8\left(\frac{\Delta}{s}\right)\left(\frac{4 \Delta}{a b c}\right) \Leftrightarrow
$$

via above transformation

$$
\stackrel{\text { transformation }}{\Leftrightarrow} \sum \frac{y^{2}}{x^{2}}+\frac{32 s(s-a)(s-b)(s-c)}{s \prod(x+y)} \geq 7 \Leftrightarrow
$$

$$
\begin{aligned}
& \text { via above transformation } \\
& \stackrel{\overbrace{\Leftrightarrow}}{\stackrel{\text { ransformation }}{ }} \sum \frac{y^{2}}{x^{2}}+\frac{32 x y z}{\prod(x+y)} \geq 7 \Leftrightarrow \\
& \Leftrightarrow \sum \frac{y^{2}}{x^{2}}+3+\frac{32 x y z}{\Pi(x+y)} \geq 10 \Leftrightarrow \sum \frac{y^{2}+x^{2}}{x^{2}}+\frac{32 x y z}{\Pi(x+y)} \stackrel{(i)}{\stackrel{(i)}{\geq}} 10 \\
& \text { Now, } \sum \frac{y^{2}+x^{2}}{x^{2}}+\frac{32 x y z}{\prod(x+y)}= \\
& =\Sigma \frac{y^{2}+x^{2}}{x^{2}}+\frac{16 x y z}{\Pi(x+y)}+\frac{16 x y z}{\Pi(x+y)} \stackrel{A-G}{\geq} 5 \sqrt[5]{\left(\frac{2^{8}(x y z)^{2}}{\prod x^{2}}\right)\left(\frac{\Pi\left(x^{2}+y^{2}\right)}{\prod(x+y)^{2}}\right)} \geq \\
& \geq 5 \sqrt[5]{2^{8} \frac{\Pi\left(\frac{1}{2}(x+y)^{2}\right)}{\Pi(x+y)^{2}}}=5 \sqrt[5]{2^{5}}=10 \Rightarrow \text { (i) is true } \\
& \therefore \sum \frac{r_{a}^{2}}{\boldsymbol{r}_{b}^{2}}+\frac{8 r}{R} \geq 7 \Rightarrow \sum \frac{\boldsymbol{r}_{a}^{2}}{\boldsymbol{r}_{b}^{2}} \stackrel{(1)}{\geq} 7-\frac{8 r}{R}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Again, $\sum \frac{r_{a}}{r_{b}}+\frac{4 r}{R} \geq 5 \Leftrightarrow \sum\left(\frac{s-b}{s-a}\right)+4\left(\frac{\Delta}{s}\right)\left(\frac{4 \Delta}{a b c}\right) \geq 5$
via above transformation

$$
\stackrel{\text { transformation }}{\Leftrightarrow} \sum \frac{y}{x}+\frac{16 s(s-a)(s-b)(s-c)}{s \prod(x+y)} \geq 5 \Leftrightarrow
$$

via above transformation

$$
\stackrel{\overbrace{}^{r a n s f o r m a t i o n ~}}{\Leftrightarrow} \Sigma \frac{y}{x}+\frac{16 x y z}{\Pi(x+y)} \geq 5 \Leftrightarrow
$$

$$
\Sigma \frac{y}{x}+3+\frac{16 x y z}{\Pi(x+y)} \geq 8 \Leftrightarrow \Sigma \frac{y+x}{x}+\frac{16 x y z}{\Pi(x+y)} \stackrel{(i i)}{\geqq} 8
$$

$$
N o w, \sum \frac{y+x}{x}+\frac{16 x y z}{\prod(x+y)} \stackrel{A-G}{\geq}_{\sum}^{\sum} \sqrt[4]{\left(\frac{\prod(x+y)}{x y z}\right)\left(\frac{16 x y z}{\prod(x+y)}\right)}=8 \Rightarrow
$$

(ii) is true $: \sum \frac{r_{a}}{r_{b}}+\frac{4 r}{R} \geq 5 \Rightarrow \sum \frac{r_{a}{ }^{(2)}}{r_{b}} \geq 5-\frac{4 r}{R}$

$$
\begin{aligned}
& \text { Now, } \sum \frac{r_{a}^{3}}{r_{b}^{3}}+\frac{12 r}{R}-9 \stackrel{\text { Chebyshev }}{\sim} \frac{1}{3}\left(\sum \frac{r_{a}^{2}}{r_{b}^{2}}\right)\left(\sum \frac{r_{a}}{r_{b}}\right)+\frac{12 r}{R}-9 \\
& \stackrel{\text { by (1) and }}{\sim}(2) \frac{1}{3}\left(\frac{7 R-8 r}{R}\right)\left(\frac{5 R-4 r}{R}\right)+\frac{12 r-9 R}{R} \\
& =\frac{(7 R-8 r)(5 R-4 r)+36 R r-27 R^{2}}{3 R^{2}}=\frac{8(R-2 r)^{2}}{3 R^{2}} \geq 0 \\
& \Rightarrow \sum \frac{r_{a}^{3}}{r_{b}^{3}}+\frac{12 r}{R}-9+\frac{2 n r}{R}-\frac{2 n r}{R}-(n+3)+(n+3) \geq 0 \Rightarrow \\
& \Rightarrow \sum \frac{r_{a}^{3}}{r_{b}^{3}}+\frac{2 n r}{R}-(n+3) \geq \frac{2 n r}{R}-\frac{12 r}{R}+9-(n+3)= \\
& =\frac{2 r}{R}(n-6)-(n-6)=(n-6)\left(\frac{2 r}{R}-1\right) \geq 0 \\
& \left(\because n-6 \leq 0 \text { and } \frac{2 r}{R}-1 \stackrel{\text { Euler }}{\sim} 0\right) \Rightarrow \sum \frac{r_{a}^{3}}{r_{b}^{3}}+\frac{2 n r}{R} \geq n+3 \forall n \leq 6 \text { (Proved) }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

1388. In $\triangle A B C$ the following relationship holds:

$$
\frac{\frac{1}{2 S}\left(\frac{a^{2}}{\frac{1}{b}+\frac{1}{c}}+\frac{b^{2}}{\frac{1}{c}+\frac{1}{a}}+\frac{c^{2}}{\frac{1}{a}+\frac{1}{b}}\right)}{m_{a}+m_{b}+m_{c}} \geq \frac{3 R}{2 s-6 \sqrt{3} r+9 r}
$$

Proposed by Daniel Sitaru-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \frac{a^{2}}{\frac{1}{b}+\frac{1}{c}}+\frac{b^{2}}{\frac{1}{c}+\frac{1}{a}}+\frac{c^{2}}{\frac{1}{a}+\frac{1}{b}}=\sum \frac{a^{2} b c}{b+c}=4 \operatorname{Rrs} \sum \frac{a}{b+c} \stackrel{\text { Nesbitt }}{\sim} 6 \operatorname{Rrs} \Rightarrow \\
& \Rightarrow \frac{\frac{1}{2 S}\left(\frac{a^{2}}{\frac{1}{b}+\frac{1}{c}}+\frac{b^{2}}{\frac{1}{c}+\frac{1}{a}}+\frac{c^{2}}{\frac{1}{a}+\frac{1}{b}}\right)}{m_{a}+m_{b}+m_{c}} \geq \frac{3 R}{\sum m_{a}} \stackrel{?}{2} \frac{3 R}{2 s-6 \sqrt{3} r+9 r} \\
& \Leftrightarrow \sum m_{a} \stackrel{?}{\tilde{m}} 2 s-6 \sqrt{3} r+9 r \Leftrightarrow\left(\sum m_{a}\right)^{2} \stackrel{?}{\tilde{m}} 4 s^{2}+(6 \sqrt{3}-9)^{2} r^{2}-4 s r(6 \sqrt{3}-9) \\
& \Leftrightarrow\left(\sum m_{a}\right)^{2}+4 \operatorname{sr}(6 \sqrt{3}-9) \underset{(1)}{\stackrel{?}{2}} 4 s^{2}+(6 \sqrt{3}-9)^{2} r^{2} \\
& \text { Chu and Yang, } \\
& \text { Blundon } \\
& \text { Now, }\left(\sum \mathrm{m}_{\mathrm{a}}\right)^{2}+4 \operatorname{sr}(6 \sqrt{3}-9) \quad \underset{\sim}{\text { ² }} \\
& \leq 4 s^{2}-16 R r+5 r^{2}+8 R r(6 \sqrt{3}-9)+4(3 \sqrt{3}-4)(6 \sqrt{3}-9) r^{2} \stackrel{?}{\underset{\leq}{\leq}} 4 s^{2}+(6 \sqrt{3}-9)^{2} r^{2} \\
& \Leftrightarrow 16 R-8 R(6 \sqrt{3}-9) \stackrel{\sim}{n}(6 \sqrt{3}-9)\{4(3 \sqrt{3}-4)-(6 \sqrt{3}-9)\} r+5 r \\
& \Leftrightarrow 8 R(11-6 \sqrt{3}) \stackrel{?}{\stackrel{\sim}{n}}\{(6 \sqrt{3}-9)(6 \sqrt{3}-7)+5\} r \\
& \Leftrightarrow 8 R(11-6 \sqrt{3}) \underset{\sim}{2}(176-96 \sqrt{3}) r \Leftrightarrow R(11-6 \sqrt{3}) \stackrel{?}{\geq} \mathbf{2}(11-6 \sqrt{3}) r \\
& \Leftrightarrow(11-6 \sqrt{3})(R-2 r) \stackrel{?}{\stackrel{\sim}{n}} 0 \\
& \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2 r \text { and }(11-6 \sqrt{3})>0 \Rightarrow
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\Rightarrow(1)$ is true $: \frac{\frac{1}{2 S}\left(\frac{a^{2}}{\frac{1}{b}+\frac{1}{c}}+\frac{b^{2}}{\frac{1}{c}+\frac{1}{a}}+\frac{c^{2}}{\frac{1}{a}+\frac{1}{b}}\right)}{m_{a}+m_{b}+m_{c}} \geq \frac{3 R}{2 s-6 \sqrt{3} r+9 r}$ (Proved)
1389. In acute $\triangle A B C, H$-orthocenter, I-incenter, G-centroid, the following relationship holds:

$$
a m_{a} \cos A+b m_{b} \cos B+c m_{c} \cos C \leq \frac{3 s}{2 R}\left(H I^{2}+G I^{2}+4 R r\right)
$$

Proposed by Daniel Sitaru-Romania

Solution by Tran Hong-Dong Thap-Vietnam

$$
\begin{aligned}
& \text { - } \Omega=a \cos ^{2} A+b \cos ^{2} B+\cos ^{2} C \\
& =a\left(1-\sin ^{2} A\right)+b\left(1-\sin ^{2} B\right)+c\left(1-\sin ^{2} C\right) \\
& =(a+b+c)-2 R\left(\sin ^{3} A+\sin ^{3} B+\sin ^{3} C\right) \\
& =2 s-2 R\left[\frac{s\left(s^{2}-6 R r+3 r^{2}-s^{2}\right)}{2 R^{2}}\right]=\frac{s\left(4 R^{2}+6 R r+3 r^{2}-s^{2}\right)}{2 R^{2}} \\
& =2 s-\frac{s\left(s^{2}-6 R r-3 r^{2}\right)}{2 R^{2}}=\frac{s\left(4 R^{2}+6 R r+3 r^{2}-s^{2}\right)}{2 R^{2}} \\
& \text { - } \Psi=\mathbf{a} m_{a}^{2}+b m_{b}^{2}+c m_{c}^{2}=\frac{s}{2}\left(s^{2}+2 R r+5 r^{2}\right)(*) \\
& \text { Now, } \\
& L H S=\sum_{c y c}\left(a m_{a} \cos A\right)=\frac{3}{1} \cdot \frac{1}{2 R} \sum_{c y c}\left(a \cdot 2 R \cos A \cdot \frac{2}{3} m_{a}\right) \\
& \underset{\substack{A M-G M \\
\leq A B C-a c u t e}}{ } \frac{3}{4 R}\left(a \cdot \frac{[2 R \cos A]^{2}+\frac{4}{9} m_{a}^{2}}{2}+b \cdot \frac{[2 R \cos B]^{2}+\frac{4}{9} m_{b}^{2}}{2}+c \cdot \frac{[2 R \cos C]^{2}+\frac{4}{9} m_{c}^{2}}{2}\right] \\
& =\frac{3}{8 R}\left(4 R^{2} \Omega+\frac{4}{9} \Psi\right)=\frac{3}{8 R}\left[2 s\left(4 R^{2}+6 R r+3 r^{2}-s^{2}\right)+\frac{4}{9} \cdot \frac{s}{2}\left(s^{2}+2 R r+5 r^{2}\right)\right] \\
& =\frac{3 s}{4 R}\left(4 R^{2}+6 R r+3 r^{2}-s^{2}+\frac{s^{2}}{9}+\frac{2 R}{9}+\frac{5}{9} r^{2}\right) \\
& =\frac{3 s}{4 R}\left(4 R^{2}+\frac{56}{9} R r-\frac{8 s^{2}}{9}+\frac{32 r^{2}}{9}\right)=\frac{3 s}{4 R} \cdot \frac{36 R^{2}+56 R r+32 r^{2}-8 s^{2}}{9}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \text { Now, } \\
& H I^{2}=2 r^{2}+4 R^{2}+4 R r-p^{2} ; \\
& G I^{2}=\frac{p^{2}-16 R r+5 r^{2}}{9} \\
& \Rightarrow H I^{2}+G I^{2}+4 R r=\frac{36 R^{2}+32 R^{2}+56 R r-8 s^{2}}{9} \\
& \Rightarrow R H S=\frac{3 s}{2 R} \cdot \frac{36 R^{2}+32 R^{2}+56 R r-8 s^{2}}{9} \\
& \Rightarrow \mathbf{2 L H S} \leq \text { RHS (Proved) }
\end{aligned}
$$

1390. In $\triangle A B C, n_{a}$-Nagel's cevian the following relationship holds:

$$
\frac{\mathbf{n}_{\mathrm{a}}+\mathbf{m}_{\mathrm{a}}+\mathbf{w}_{\mathrm{b}}+\mathbf{w}_{\mathrm{c}}+\sqrt{2 r_{a} h_{a}}}{h_{a}+h_{b}+h_{c}} \leq\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right) \sqrt{\frac{R}{r}}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { Firstly, Stewart's theorem } \Rightarrow \mathbf{b}^{2}(\mathbf{s}-\mathbf{c})+\mathbf{c}^{2}(\mathbf{s}-\mathbf{b})=\mathbf{a n}_{\mathbf{a}}{ }^{2}+\mathbf{a}(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c}) \\
& \Rightarrow s\left(b^{2}+c^{2}\right)-b c(2 s-a)=\mathbf{a n}_{a}^{2}+\mathbf{a}\left(s^{2}-s(2 s-a)+b c\right) \Rightarrow \\
& \Rightarrow s\left(b^{2}+c^{2}\right)-2 s b c=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}\left(\mathrm{as}-\mathrm{s}^{2}\right) \\
& \Rightarrow s\left(b^{2}+c^{2}-a^{2}-2 b c\right)=a n_{a}^{2}-a s^{2} \Rightarrow a n_{a}^{2}=a s^{2}+s(2 b c \cos A-2 b c)= \\
& =\operatorname{as}^{2}-4 \operatorname{sbcsin}^{2} \frac{A}{2}=\operatorname{as}^{2}-\frac{4 \operatorname{sbc}(s-b)(s-c)(s-a)}{b c(s-a)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now, } n_{a}+\sqrt{2 r_{a} h_{a}} \stackrel{\text { CBS }}{\sim} \sqrt{2} \sqrt{n_{a}^{2}+2 h_{a} r_{a}} \stackrel{\text { by (1) }}{\stackrel{\text { m }}{=}} \\
& \text { Now, } n_{a}+\sqrt{2 r_{a} h_{a}} \stackrel{\text { CBS }}{\leq} \sqrt{2} \sqrt{n_{a}^{2}+2 h_{a} r_{a}} \stackrel{\text { by (1) }}{\cong} \\
& =\sqrt{2} \sqrt{s^{2}-2 h_{a} r_{a}+2 h_{a} r_{a}} \Rightarrow n_{a}+\sqrt{2 r_{a} h_{a}} \stackrel{\text { (i) }}{\sim} \sqrt{2} s \\
& \text { Lessel-Pelling } \\
& \text { Also, } \mathbf{m}_{\mathrm{a}}+\mathbf{w}_{\mathrm{b}}+\mathbf{w}_{\mathrm{c}} \underbrace{\underset{\sim}{\mathrm{~m}}}_{\text {(ii) }} \sqrt{3} \mathrm{~s}:(\mathrm{i})+(\mathrm{ii}) \Rightarrow
\end{aligned}
$$

> ROMANIAN MATHEMATICAL MAGAZINE
> www.ssmrmh.ro
> $\Rightarrow \frac{n_{a}+m_{a}+w_{b}+w_{c}+\sqrt{2 r_{a} h_{a}}}{h_{a}+h_{b}+h_{c}} \leq \frac{(\sqrt{2}+\sqrt{3}) 2 R s}{\sum a b} \stackrel{?}{\leq} \leq\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right) \sqrt{\frac{R}{r}}$
> $=\frac{(\sqrt{2}+\sqrt{3})}{\sqrt{6}} \sqrt{\frac{R}{r}} \Leftrightarrow 24 R^{2} s^{2} \stackrel{?}{\dot{\sim}}\left(\frac{R}{r}\right)\left(\sum a b\right)^{2} \Leftrightarrow\left(s^{2}+4 R r+r^{2}\right)^{2} \stackrel{?}{\dot{\sim}} \mathbf{2 4 R r s} \mathbf{s}^{2}$
> $\Leftrightarrow s^{4}+r^{2}(4 R+r)^{2}+2 s^{2}\left(4 R r+r^{2}\right) \stackrel{?}{\dot{\tilde{n}}} \mathbf{2 4 R r s}{ }^{2}$ $\Leftrightarrow s^{4}+r^{2}(4 R+r)^{2} \underset{(a)}{\sum_{(a)}^{?}} s^{2}\left(16 R r-2 r^{2}\right)$

Now, LHS of $(a) \stackrel{\text { Gerretsen }}{\geqq} s^{2}\left(16 R r-5 r^{2}\right)+r^{2}(4 R+r)^{2} \xrightarrow[\overbrace{n}]{\geq} s^{2}\left(16 R r-2 r^{2}\right)$
$\Leftrightarrow \mathbf{r}^{2}(4 R+r)^{2} \stackrel{?}{乌} 3 r^{2} s^{2} \Leftrightarrow 4 R+r \stackrel{?}{2} \sqrt{3} s \rightarrow$ true (Trucht)
\Rightarrow (a) is true $\therefore \frac{\mathbf{n}_{a}+m_{a}+w_{b}+w_{c}+\sqrt{2 r_{a} h_{a}}}{h_{a}+h_{b}+h_{c}} \leq\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right) \sqrt{\frac{R}{r}}$ (Proved)
1391. In $\triangle A B C, n_{a}$-Nagel's cevian, g_{a}-Gergonne's cevian the following relationship holds:

$$
2 s^{2}+\sum a^{2} \geq 4 S \sqrt{4-\frac{2 r}{R}}+\sum\left(n_{a}^{2}+g_{a}^{2}\right)
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { Stewart's theorem } \Rightarrow \mathbf{b}^{2}(\mathbf{s}-\mathbf{c})+\mathbf{c}^{2}(\mathbf{s}-\mathbf{b})=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a}(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c}) \\
& \quad \text { and } \mathbf{b}^{2}(\mathbf{s}-\mathbf{b})+\mathbf{c}^{2}(\mathbf{s}-\mathbf{c})=\mathbf{a g}_{\mathbf{a}}{ }^{2}+\mathbf{a}(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c})
\end{aligned}
$$

Adding the above two, we get :

$$
\begin{aligned}
& \left(b^{2}+c^{2}\right)(2 s-b-c)=\mathbf{a n}_{\mathrm{a}}{ }^{2}+\mathbf{a g}_{\mathrm{a}}{ }^{2}+2 \mathrm{a}(\mathrm{~s}-\mathrm{b})(\mathrm{s}-\mathrm{c}) \\
& \Rightarrow \mathbf{2 a}\left(\mathbf{b}^{2}+\mathrm{c}^{2}\right)=\mathbf{2 a}\left(\mathrm{n}_{\mathrm{a}}^{2}+\mathrm{ga}_{\mathrm{a}}{ }^{2}\right)+\mathbf{a}(\mathrm{a}+\mathrm{b}-\mathbf{c})(\mathrm{c}+\mathrm{a}-\mathrm{b}) \Rightarrow \mathbf{2}\left(\mathrm{b}^{2}+\mathrm{c}^{2}\right)= \\
& =2\left(n_{a}^{2}+g_{a}^{2}\right)+a^{2}-(b-c)^{2} \\
& \Rightarrow 2\left(b^{2}+c^{2}\right)-a^{2}+(b-c)^{2}=2\left(n_{a}^{2}+g_{a}^{2}\right) \\
& \Rightarrow 4 \mathrm{~m}_{\mathrm{a}}^{2}+(\mathrm{b}-\mathrm{c})^{2}=\mathbf{2}\left(\mathrm{n}_{\mathrm{a}}{ }^{2}+\mathrm{g}_{\mathrm{a}}{ }^{2}\right) \Rightarrow 4 \mathrm{~m}_{\mathrm{a}}{ }^{2}+(\mathrm{b}-\mathrm{c})^{2}+4 \mathrm{r}_{\mathrm{b}} \mathrm{r}_{\mathrm{c}}=
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\therefore(1) \Rightarrow$ it suffices to prove $: 4 r(4 R+r) \geq 4 r s \sqrt{\frac{4 R-2 r}{R}}$

$$
\begin{gathered}
\Leftrightarrow R(4 R+r)^{2} \stackrel{(i)}{\underset{\sim}{n}}(4 R-2 r) s^{2} \\
\text { Now, RHS of }(i) \stackrel{\text { Rouche }}{\sim}(4 R \\
-2 r)\left(2 R^{2}+10 R r-r^{2}+2(R-2 r) \sqrt{R^{2}-2 R r}\right) \stackrel{?}{\dot{m}} R(4 R+r)^{2}
\end{gathered}
$$

$\Leftrightarrow R(4 R+r)^{2}-\left(2 R^{2}+10 R r-r^{2}\right)(4 R-2 r) \stackrel{?}{2} \underset{\sim}{2}(4 R-2 r)(R-2 r) \sqrt{R^{2}-2 R r}$
$\Leftrightarrow(R-2 r)\left(8 R^{2}-12 R r+r^{2}\right) \sum_{(i i)}^{?} 2(4 R-2 r)(R-2 r) \sqrt{R^{2}-2 R r}$
$\because \mathbf{R}-\mathbf{2 r} \stackrel{\text { Euler }}{\geqq} \therefore$ in order to prove (ii), it suffices to prove : $8 \mathbf{R}^{2}-12 R r+\mathbf{r}^{2}$

$$
>2(4 R-2 r) \sqrt{R^{2}-2 R r}
$$

$$
\Leftrightarrow\left(8 R^{2}-12 R r+r^{2}\right)^{2}-4\left(R^{2}-2 R r\right)(4 R-2 r)^{2}>0 \Leftrightarrow r^{2}(4 R+r)^{2}>0
$$

$$
\rightarrow \text { true } \Rightarrow(i i) \Rightarrow(i) \text { is true }
$$

$$
\therefore 2 s^{2}+\sum a^{2} \geq 4 S \sqrt{4-\frac{2 r}{R}}+\sum\left(n_{a}^{2}+g_{a}^{2}\right)(\text { Proved })
$$

1392. In $\triangle A B C$ the following relationship holds:

$$
\begin{align*}
& 2\left(n_{a}^{2}+g_{a}^{2}\right)+4 r_{b} r_{c} \\
& \Rightarrow 4 \mathrm{~m}_{\mathrm{a}}{ }^{2}+(\mathrm{b}-\mathrm{c})^{2}+4 \mathrm{~s}(\mathrm{~s}-\mathrm{a})=2\left(\mathrm{n}_{\mathrm{a}}{ }^{2}+\mathrm{g}_{\mathrm{a}}{ }^{2}\right)+4 \mathrm{~s}(\mathrm{~s}-\mathrm{a}) \\
& \Rightarrow 4 \mathrm{~m}_{\mathrm{a}}{ }^{2}+4 \mathrm{~m}_{\mathrm{a}}{ }^{2}=2\left(\mathrm{n}_{\mathrm{a}}{ }^{2}+\mathrm{ga}^{2}\right)+4 \mathrm{~s}(\mathrm{~s}-\mathrm{a}) \\
& \Rightarrow \mathrm{n}_{\mathrm{a}}{ }^{2}+\mathrm{ga}^{2}=4 \mathrm{~m}_{\mathrm{a}}{ }^{2}-2 \mathrm{~s}(\mathrm{~s}-\mathrm{a}) \text { and analogs } \\
& \therefore \sum\left(n_{a}{ }^{2}+\mathrm{ga}^{2}\right)=4 \sum \mathrm{~m}_{\mathrm{a}}{ }^{2}-2 \mathrm{~s}^{2}=3 \sum \mathrm{a}^{2}-2 \mathrm{~s}^{2} \Rightarrow 2 \mathrm{~s}^{2}+\sum \mathrm{a}^{2}-\sum\left(\mathrm{n}_{\mathrm{a}}{ }^{2}+\mathrm{ga}^{2}\right) \\
& =2 s^{2}+\sum \mathrm{a}^{2}-3 \sum \mathrm{a}^{2}+2 \mathrm{~s}^{2}=\left(\sum \mathrm{a}\right)^{2}-2 \sum \mathrm{a}^{2} \\
& =2 \sum a b-\sum a^{2}=2\left[\left(s^{2}+4 R r+r^{2}\right)-\left(s^{2}-4 R r-r^{2}\right)\right]=4 r(4 R+r) \\
& \therefore \mathbf{2 s}{ }^{2}+\sum \mathbf{a}^{2}-\sum\left(\mathbf{n}_{\mathbf{a}}{ }^{2}+\mathbf{g a}^{2}\right) \xlongequal{\cong} \mathbf{~} \mathbf{r}(\mathbf{4 R}+\mathbf{r}) \tag{1}
\end{align*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\sum_{c y c} \frac{h_{a}}{\sqrt{h_{a}-2 r}} \geq \frac{4 R+s+(10-3 \sqrt{3}) r}{\sqrt{2 R}}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \operatorname{ssec} \frac{A}{2} \geq w_{a}+r_{a} \Leftrightarrow s \geq \frac{2 b \cos ^{2} \frac{A}{2}}{b+c}+\operatorname{stan} \frac{A}{2} \cos \frac{A}{2} \Leftrightarrow \\
& \Leftrightarrow s \geq \frac{2 \mathbf{b c s}(\mathbf{s}-\mathbf{a})}{\mathbf{b c}(\mathbf{b}+\mathbf{c})}+\sin \frac{\mathbf{A}}{2}=\frac{(\mathbf{b}+\mathbf{c}-\mathbf{a})(\mathbf{s}-\mathbf{a})}{\mathbf{b}+\mathbf{c}}+\sin \frac{\mathbf{A}}{2} \\
& =s-a+\frac{a(s-a)}{b+c}+\sin \frac{A}{2} \Leftrightarrow a\left(1-\frac{s-a}{b+c}\right) \geq \sin \frac{A}{2} \Leftrightarrow \\
& \Leftrightarrow \mathbf{a}\left(\frac{\mathbf{s}+\mathbf{s}-\mathbf{a}-\mathbf{s}+\mathbf{a}}{\mathbf{b}+\mathbf{c}}\right) \geq \sin \frac{A}{2} \Leftrightarrow \frac{\mathbf{a}}{b+\mathbf{c}} \geq \sin \frac{A}{2} \\
& \Leftrightarrow 4 R \sin \frac{A}{2} \cos \frac{A}{2} \geq 4 R \cos \frac{A}{2} \cos \frac{B-C}{2} \sin \frac{A}{2} \Leftrightarrow \cos \frac{B-C}{2} \leq 1 \rightarrow \text { true } \\
& \therefore \operatorname{ssec} \frac{\mathrm{A}_{2}^{(1)}}{2} \mathrm{n}_{\mathrm{a}}^{\left(\mathrm{w}_{\mathrm{a}}+\mathrm{r}_{\mathrm{a}}\right.} \text { and analogs } \\
& \text { Now, } b+c-a=4 R \cos \frac{A}{2} \cos \frac{B-C}{2}-4 R \cos \frac{A}{2} \sin \frac{A}{2} \\
& =4 R \cos \frac{A}{2}\left(\cos \frac{B-C}{2}-\cos \frac{B+C}{2}\right)=8 R \cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \\
& \Rightarrow s-a \stackrel{(2)}{=} 4 R \cos \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \\
& \text { Again, } A I=\frac{\mathrm{r}}{\sin \frac{A}{2}}=\frac{4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}{\sin \frac{A}{2}}=4 R \sin \frac{B}{2} \sin \frac{C^{\text {by (2) }}}{2} \stackrel{s-a}{=} \frac{\cos \frac{A}{2}}{\cos \frac{A}{2}} \underset{=}{(3)} \frac{s-a}{A I} \\
& \text { We have, } \tan \frac{\mathrm{A}}{4}=\frac{1-\cos \frac{\mathrm{A}}{2} \mathrm{by}(3)}{\sin \frac{\mathrm{A}}{2}} \stackrel{1-\frac{\mathrm{s}-\mathrm{a}}{\mathrm{AI}}}{\frac{\mathrm{r}}{\overline{\mathrm{AI}}}}=\frac{\mathrm{AI}-(\mathrm{s}-\mathrm{a})}{\mathrm{r}} \\
& \Rightarrow \mathrm{AI} \stackrel{(\mathrm{a})}{=} \mathrm{s}-\mathrm{a}+\mathrm{rtan} \frac{\mathrm{~A}}{4}
\end{aligned}
$$

$$
\text { Similarly }, \text { BI } \stackrel{(\mathrm{b})}{\stackrel{m}{m}} \mathrm{~s}-\mathrm{b}+\mathrm{r} \tan \frac{\mathrm{~B}}{4} \text { and } \mathrm{CI} \stackrel{(\mathrm{c})}{=} \mathrm{s}-\mathrm{c}+\mathrm{r} \tan \frac{\mathrm{C}}{4} \therefore(\mathrm{a})+(\mathrm{b})+(\mathrm{c})
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\begin{aligned}
& \text { www.ssmrmh.ro } \\
\Rightarrow & \sum \mathrm{AI} \stackrel{(4)}{=} \mathrm{s}+\mathrm{r} \sum \tan \frac{\mathrm{~A}}{4}
\end{aligned}
$$

Let $f(x)=\tan \left(\frac{x}{4}\right) \forall x \in(0, \pi) \therefore f "(x)=\frac{\tan \left(\frac{x}{4}\right) \sec ^{2}\left(\frac{x}{4}\right)}{8}>0 \Rightarrow f(x)$ is convex

$$
\begin{gathered}
\text { Let } \tan \frac{\pi}{12}=m \therefore \tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}=\frac{2 m}{1-m^{2}} \Rightarrow \\
\Rightarrow m^{2}+2 \sqrt{3} m-1=0 \Rightarrow m=\frac{-2 \sqrt{3} \pm \sqrt{12+4}}{2}=2-\sqrt{3} \Rightarrow \tan \frac{\pi}{12} \stackrel{(4)}{\stackrel{m}{m}} 2-\sqrt{3} \\
\text { Now, by (4), } \mathrm{m} A I=\mathrm{s}+\mathrm{r} \sum \tan \frac{A^{\mathrm{Jensen}}}{4} \stackrel{\text { m }}{\geq}
\end{gathered}
$$

$$
s+3 \operatorname{rtan} \frac{\pi}{12}\left(\text { as } f(x)=\tan \left(\frac{x}{4}\right) \text { is convex which has been proved earlier }\right)
$$

$$
\begin{aligned}
& =s+3 r(2-\sqrt{3})=s-3 \sqrt{3} r+6 r \Rightarrow \sum A I \stackrel{(5)}{\geq} s-3 \sqrt{3} r+6 r \\
& N o w, \frac{\sqrt{2 R} h_{a}}{\sqrt{h_{\mathrm{a}}-2 r}}=\sqrt{2 R}\left(\frac{2 r s}{\mathrm{a}}\right) \frac{1}{\sqrt{\frac{2 r s}{\mathrm{a}}-2 r}}=\sqrt{2 \mathrm{R}}\left(\frac{2 r s}{\mathrm{a}}\right) \sqrt{\frac{\mathrm{a}}{2 r(s-a)}}= \\
& =\sqrt{\frac{R}{r}}\left(\frac{2 r s}{a}\right) \sqrt{\left(\frac{s a}{b c}\right) \frac{b c}{s(s-a)}}=\sqrt{\frac{\text { Rsa }^{2}}{\mathrm{abcr}}}\left(\frac{2 r s}{a}\right) \sec \frac{A}{2} \\
& =\left(2 \operatorname{rssec} \frac{A}{2}\right) \sqrt{\frac{R s}{4 R r^{2} s}}=\operatorname{ssec} \frac{A}{2}=\frac{s-a+a}{\cos \frac{A}{2}} \\
& =\frac{s-a}{\cos \frac{A}{2}}+\left(\frac{a}{s}\right) \operatorname{ssec} \frac{A}{2} \stackrel{\text { by (2) }}{=} \frac{4 R \cos \frac{A}{2}\left(\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right)}{\sin \frac{A}{2} \cos \frac{A}{2}}+\left(\frac{a}{s}\right) \operatorname{ssec} \frac{A}{2} \\
& =\frac{4 R\left(\frac{r}{4 R}\right)}{\sin \frac{A}{2}}+\left(\frac{a}{s}\right) \operatorname{ssec} \frac{A}{2}=A I+\left(\frac{a}{s}\right) \operatorname{ssec} \frac{A}{2} \therefore \underset{\frac{\sqrt{2 R} h_{a}}{\sqrt{h_{a}-2 r}} \stackrel{(d)}{m}}{=} A I+\left(\frac{a}{s}\right) \operatorname{ssec} \frac{A}{2} \\
& \text { Similarly, } \frac{\sqrt{2 R} h_{b}}{\sqrt{\mathbf{h}_{b}-2 r}} \stackrel{(e)}{\stackrel{m}{=}} \mathrm{BI}+\left(\frac{b}{s}\right) \operatorname{ssec} \frac{B}{2} \text { and } \frac{\sqrt{2 R} h_{c}}{\sqrt{\mathbf{h}_{\mathrm{c}}-2 r}} \stackrel{(f)}{=} \mathrm{CI}+\left(\frac{\mathbf{c}}{\mathrm{s}}\right) \operatorname{ssec} \frac{\mathrm{C}}{2}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$(\mathbf{d})+(\mathbf{e})+(\mathbf{f}) \Rightarrow \sum \frac{\sqrt{2 R} \mathbf{h}_{\mathbf{a}}}{\sqrt{\mathbf{h}_{\mathbf{a}}-2 \mathbf{r}}} \stackrel{\text { using (1) and its analogs }}{\geq}$

$$
\begin{gathered}
\sum A I+\sum\left(\frac{\mathbf{a}}{\mathbf{s}}\right)\left(\mathbf{w}_{\mathbf{a}}+\mathbf{r}_{\mathbf{a}}\right) \quad \stackrel{\text { using } \mathbf{w}_{\mathbf{a}} \geq \mathbf{h}_{\mathbf{a}} \text { and its analogs }}{\geq} \quad \sum \mathrm{AI}+\sum\left(\frac{\mathbf{a}}{\mathbf{s}}\right)\left(\frac{2 \mathbf{r s}}{\mathbf{a}}+\frac{\mathbf{r s}}{\mathbf{s}-\mathbf{a}}\right) \\
=\sum \mathbf{A I}+\mathbf{r} \sum\left(\mathbf{a}\left(\frac{\mathbf{2}}{\mathbf{a}}+\frac{\mathbf{1}}{\mathbf{s}-\mathbf{a}}\right)\right)=\sum \mathbf{A I}+\mathbf{r} \sum\left(\frac{\mathbf{b}+\mathbf{c}-\mathbf{a}+\mathbf{a}}{\mathbf{s}-\mathbf{a}}\right)=\sum A I+\mathbf{r} \sum\left(\frac{\mathbf{s}+\mathbf{s}-\mathbf{a}}{\mathbf{s}-\mathbf{a}}\right) \\
=\sum \mathbf{A I}+\frac{\mathbf{r s}}{\mathbf{r}^{2} \mathbf{s}} \sum(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c})+3 \mathbf{r}
\end{gathered}
$$

$$
\stackrel{\operatorname{by}(5)}{\geq} s-3 \sqrt{3} r+9 r+\frac{\mathbf{r s}\left(4 R r+r^{2}\right)}{\mathbf{r}^{2} s}=s-3 \sqrt{3} r+9 r+4 R+r=
$$

$$
=4 R+s+(10-3 \sqrt{3}) r
$$

$$
\Rightarrow \sum \frac{h_{a}}{\sqrt{\mathbf{h}_{\mathrm{a}}-2 r}} \geq \frac{4 R+s+(10-3 \sqrt{3}) \mathbf{r}}{\sqrt{2 R}}(\text { Proved })
$$

1393. In $\triangle A B C$ the following relationship holds:

$$
\frac{\mathbf{m}_{a} \mathbf{m}_{b} \mathbf{m}_{c}}{\mathbf{r}_{\mathbf{a}} \mathbf{r}_{\mathbf{b}} \mathbf{r}_{\mathbf{c}}} \leq \frac{\mathbf{R}}{2 \mathbf{r}}
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gather*}
m_{a}^{2} m_{b}^{2} m_{c}^{2}=\frac{1}{64}\left(2 b^{2}+2 c^{2}-2 a^{2}\right)\left(2 c^{2}+2 a^{2}-2 b^{2}\right)\left(2 a^{2}+2 b^{2}-2 c^{2}\right) \stackrel{(1)}{=} \\
\frac{1}{64}\left\{-4 \sum a^{6}+6\left(\sum a^{4} b^{2}+\sum a^{2} b^{4}\right)+3 a^{2} b^{2} c^{2}\right\} \\
N o w, \sum a^{6}=\left(\sum a^{2}\right)^{3}-3\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)\left(c^{2}+a^{2}\right)= \\
=\left(\sum a^{2}\right)^{3}-3\left(2 a^{2} b^{2} c^{2}+\sum a^{2} b^{2}\left(\sum a^{2}-c^{2}\right)\right) \\
=\left(\sum a^{2}\right)^{3}+3 a^{2} b^{2} c^{2}-3\left(\sum a^{2} b^{2}\right) \sum a^{2} \therefore \sum a^{6} \stackrel{(2)}{=}\left(\sum a^{2}\right)^{3}+3 a^{2} b^{2} c^{2}-3\left(\sum a^{2} b^{2}\right) \sum a^{2} \tag{2}\\
\text { Again }, \sum a^{4} b^{2}+\sum a^{2} b^{4}=\sum a^{2} b^{2}\left(\sum a^{2}-c^{2}\right) \stackrel{(3)}{=}\left(\sum a^{2} b^{2}\right) \sum a^{2}-3 a^{2} b^{2} c^{2} \\
\therefore(1),(2),(3) \Rightarrow m_{a}^{2} m_{b}^{2} m_{c}^{2}= \\
\frac{1}{64}\left\{-4\left(\sum a^{2}\right)^{3}-12 a^{2} b^{2} c^{2}+12\left(\sum a^{2} b^{2}\right) \sum a^{2}+6\left(\sum a^{2} b^{2}\right) \sum a^{2}-18 a^{2} b^{2} c^{2}+3 a^{2} b^{2} c^{2}\right\}
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{aligned}
& =\frac{1}{64}\left\{-4\left(\sum a^{2}\right)^{3}+18\left(\sum a^{2} b^{2}\right) \sum a^{2}-27 a^{2} b^{2} c^{2}\right\} \\
& =\frac{1}{64}\left\{-4\left(\sum a^{2}\right)^{3}+18\left(\left(\sum a b\right)^{2}-2 a b c(2 s)\right)\left(\sum a^{2}\right)-27 a^{2} b^{2} c^{2}\right\} \\
& =\frac{1}{64}\left\{-32\left(s^{2}-4 R r-r^{2}\right)^{3}+36\left(s^{2}-4 R r-r^{2}\right)\left(s^{2}+4 R r+r^{2}\right)^{2}-576 R r s^{2}\left(s^{2}-4 R r-r^{2}\right)-432 R^{2} r^{2} s^{2}\right\} \\
& =\frac{1}{16}\left\{s^{6}-s^{4}\left(12 R r-33 r^{2}\right)-s^{2}\left(60 R^{2} r^{2}+120 R r^{3}+33 r^{4}\right)-r^{3}(4 R+r)^{3}\right\} \leq \frac{R^{2} s^{4}}{4} \\
& \Leftrightarrow s^{6}-s^{4}\left(4 R^{2}+12 R r-33 r^{2}\right)-s^{2}\left(60 R^{2} r^{2}+120 R r^{3}+33 r^{4}\right)-r^{3}(4 R+r)^{3} \stackrel{(i)}{\sim} 0 \\
& \text { Now, LHS of }(i) \stackrel{\text { Gerretsen }}{\sum_{\leq}^{2}}-s^{4}\left(8 R r-36 r^{2}\right)-s^{2}\left(60 R^{2} r^{2}+120 R r^{3}+33 r^{4}\right)-r^{3}(4 R+r)^{3} \stackrel{? n}{\leq} 0 \\
& \Leftrightarrow s^{4}(8 R-16 r)+s^{2}\left(60 R^{2} r+120 R r^{2}+33 r^{3}\right)+r^{2}(4 R+r)^{3}{\underset{\sim}{i n}}_{?}^{2} 20 r s^{4}
\end{aligned}
$$

Now, LHS of $(i i) \underbrace{\underset{\sim}{\text { Gerretsen }}}_{(a)} s^{2}\left(16 R r-5 r^{2}\right)(8 R-16 r)+s^{2}\left(60 R^{2} r+120 R r^{2}+33 r^{3}\right)+r^{2}(4 R+r)^{3}$
and RHS of $(i i) \underbrace{\stackrel{m}{\leq}}_{(b)} 20 r s^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)$
$(a),(b) \Rightarrow$ in order to prove (ii), it suffices to prove :
$s^{2}\left(16 R r-5 r^{2}\right)(8 R-16 r)+s^{2}\left(60 R^{2} r+120 R r^{2}+33 r^{3}\right)+r^{2}(4 R+r)^{3}$ $\geq 20 r s^{2}\left(4 R^{2}+4 R r+3 r^{2}\right) \Leftrightarrow s^{2}\left(108 R^{2}-256 R r+53 r^{2}\right)+r(4 R+r)^{3} \geq 0$

$$
\Leftrightarrow s^{2}\left(108 R^{2}-256 R r+80 r^{2}\right)+r(4 R+r)^{3} \stackrel{(i i i)}{\geq} 27 r^{2} s^{2}
$$

Now, LHS of $(i i i) \underbrace{\substack{\text { Gerretsen }}}_{(c)}\left(108 R^{2}-256 R r+80 r^{2}\right)\left(16 R r-5 r^{2}\right)$
Geretsen
$+r(4 R+r)^{3}$ and RHS of $(i i i i) \underbrace{\stackrel{M}{s}}_{(d)} 27 r^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)$
$(c),(d) \Rightarrow$ in order to prove (iii), it suffices to prove :

$$
\begin{gathered}
\left(108 R^{2}-256 R r+80 r^{2}\right)\left(16 R r-5 r^{2}\right)+r(4 R+r)^{3} \geq 27 r^{2}\left(4 R^{2}+4 R r+3 r^{2}\right) \\
\Leftrightarrow 224 t^{3}-587 t^{2}+308 t-60 \geq 0\left(\text { where } t=\frac{R}{r}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \Leftrightarrow(t-2)\{(t-2)(224 t+309)+648\} \geq 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(i i i) \Rightarrow(i i) \\
& \Rightarrow(i) \text { is true } \Rightarrow m_{a}^{2} m_{b}^{2} m_{c}^{2} \leq \frac{R^{2} s^{4}}{4} \Rightarrow \frac{m_{a} m_{b} m_{c}}{r_{a} r_{b} r_{c}} \leq \frac{R s^{2}}{2 r s^{2}} \\
& \Rightarrow \frac{m_{a} m_{b} m_{c}}{r_{a} r_{b} r_{c}} \leq \frac{R}{2 r} \text { (Proved) }
\end{aligned}
$$

1394. In $\triangle A B C, O$-circumcenter, I-incenter the following relationship holds:

$$
\left(\mathbf{h}_{\mathrm{a}}-\mathbf{h}_{\mathrm{b}}\right)^{2}+\left(\mathbf{h}_{\mathrm{b}}-\mathbf{h}_{\mathrm{c}}\right)^{2}+\left(\mathbf{h}_{\mathrm{c}}-\mathbf{h}_{\mathrm{a}}\right)^{2} \leq \mathbf{n} \cdot \mathbf{O I}^{2}, \quad \forall \mathrm{n} \geq \frac{33}{4}
$$

Proposed by Marin Chirciu-Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{align*}
& \text { LHS }=2 \sum h_{a}^{2}-2 \sum h_{a} h_{b}=2 \sum \frac{\mathbf{b}^{2} c^{2}}{4 R^{2}}-2 \sum \frac{\mathbf{b c . c a}}{4 R^{2}}=\frac{2\left\{\sum \mathbf{a}^{2} b^{2}+2 \mathbf{a b c}(2 s)\right\}-6 a b c(2 s)}{4 R^{2}}= \\
& =\frac{2\left(\sum \mathrm{ab}\right)^{2}-48 \mathrm{Rrs}^{2}}{4 \mathrm{R}^{2}} \leq \frac{33}{4} 0 \mathrm{I}^{2} \\
& \Leftrightarrow 33 R(R-2 r) \geq 2\left(s^{2}+4 R r+r^{2}\right)^{2}-48 R r s^{2} \Leftrightarrow \\
& \Leftrightarrow 2 s^{4}-s^{2}\left(32 R r-4 r^{2}\right)+2 r^{2}(4 R+r)^{2}-33 R(R-2 r) \stackrel{(1)}{\leftrightarrows} 0 \\
& \text { Now, Rouche } \Rightarrow \mathbf{s}^{2}-(\mathrm{m}-\mathrm{n}) \geq 0 \text { and } \mathrm{s}^{2}-(\mathrm{m}+\mathrm{n}) \leq 0 \text {, } \\
& \text { where } m=2 R^{2}+10 R r-r^{2} \text { and } n=2(R-2 r) \sqrt{R^{2}-2 R r} \\
& \therefore\left(\mathbf{s}^{2}-(\mathbf{m}+\mathbf{n})\right)\left(\mathbf{s}^{2}-(\mathbf{m}-\mathbf{n})\right) \leq \mathbf{0} \Rightarrow \mathbf{s}^{4}-\mathbf{s}^{\mathbf{2}}(2 \mathbf{m})+\mathbf{m}^{2}-\mathbf{n}^{2} \leq \mathbf{0} \\
& \Rightarrow 2 \mathrm{~s}^{4}-\mathrm{s}^{2}\left(8 \mathrm{R}^{2}+40 \mathrm{Rr}-4 \mathrm{r}^{2}\right)+\mathbf{2 r}(4 \mathrm{R}+\mathrm{r})^{3} \stackrel{\mathrm{~m}}{\leq} 0 \\
& \text { (i) } \Rightarrow \text { in order to prove (1), it suffices to prove : } \\
& 2 s^{4}-s^{2}\left(32 R r-4 r^{2}\right)+2 r^{2}(4 R+r)^{2}-33 R(R-2 r) \\
& \leq 2 s^{4}-s^{2}\left(8 R^{2}+40 R r-4 r^{2}\right)+2 r(4 R+r)^{3} \\
& \Leftrightarrow s^{2}\left(8 R^{2}+8 R r\right)+2 r^{2}(4 R+r)^{2}-2 r(4 R+r)^{3} \leq 33 R(R-2 r) \tag{2}\\
& \text { Now, } \text { LHS of }(2) \stackrel{\text { Gerretsen }}{\leftrightarrows}\left(4 \mathrm{R}^{2}+4 \mathrm{Rr}+3 \mathrm{r}^{2}\right)\left(8 \mathrm{R}^{2}+8 \mathrm{Rr}\right)+
\end{align*}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& +2 r^{2}(4 R+r)^{2}-2 r(4 R+r)^{3 \stackrel{\text { 弚 }}{\leq}} 33 R(R-2 r) \\
& \Leftrightarrow R^{4}-2 R^{3} r+8 R^{2} r^{2}-16 R r^{3} \stackrel{?}{\geq} 0 \Leftrightarrow \\
& \Leftrightarrow \mathbf{R}(\mathbf{R}-2 r)\left(\mathbf{R}^{2}+8 r^{2}\right) \stackrel{\text { ? }}{\geq} 0 \rightarrow \text { true } \because \mathbf{R} \underset{\text { Euler }}{\geq} 2 r \Rightarrow(2) \Rightarrow(1) \text { is true }
\end{aligned}
$$

1395. In $\triangle A B C$ the following relationship holds:

$$
\frac{27 R^{2}}{4 s^{2}}+\frac{3 \mathrm{~ns}^{2}}{(4 R+r)^{2}} \geq \mathrm{n}+1, \quad \forall \mathrm{n} \leq \frac{11}{16}
$$

Proposed by Marin Chirciu-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \frac{27 R^{2}}{4 \mathbf{s}^{2}}+\frac{3 n^{2}}{(4 R+r)^{2}} \stackrel{(1)}{\sim} n+1, \quad \forall n \leq \frac{11}{16} \\
& \text { (1) } \Leftrightarrow \frac{27 R^{2}}{4 s^{2}}-1 \geq n-\frac{3 n s^{2}}{(4 R+r)^{2}} \Leftrightarrow \frac{27 R^{2}-4 s^{2}}{4 s^{2}} \stackrel{2}{\geq} n\left[\frac{(4 R+r)^{2}-3 s^{2}}{(4 R+r)^{2}}\right] \\
& \frac{27 R^{2}-4 s^{2}}{4 s^{2}} \geq \frac{11}{16}\left[\frac{(4 R+r)^{2}-3 s^{2}}{(4 R+r)^{2}}\right] \\
& \Leftrightarrow 4\left(27 R^{2}-4 s^{2}\right)(4 R+r)^{2} \geq \\
& \geq 11 s^{2}\left\{(\mathbf{4 R}+\mathbf{r})^{2}-3 s^{2}\right\}\left(\because 27 \mathbf{R}^{2}-4 s^{2} \stackrel{\text { Mitrinovic }}{\geq} 0 \text { and }(4 R+r)^{2}-3 s^{2} \stackrel{\text { Trucht }}{\geq} \mathbf{0}\right) \\
& \text { (i) } \\
& \Leftrightarrow 11 s^{4}+36 R^{2}(4 R+r)^{2} \geq 9 s^{2}(4 R+r)^{2}
\end{aligned}
$$

Now, LHS of (i) $\stackrel{\text { Gerretsen }}{\geq} 11\left(16 R r-5 r^{2}\right) s^{2}+36 R^{2}(4 R+r)^{2} \xrightarrow{\text { in }} 9 s^{2}(4 R+r)^{2} \Leftrightarrow$

$$
\begin{gathered}
\Leftrightarrow 36 R^{2}(4 R+r)^{2} \stackrel{?}{\sim} \underset{\sim}{s} \mathbf{s}^{2}\left\{9(4 R+r)^{2}-11\left(16 R r-5 r^{2}\right)\right\} \\
\Leftrightarrow 9 R^{2}(4 R+r)^{2} \sum_{(i i)}^{\overbrace{i n}} \mathbf{s}^{2}\left(36 R^{2}-26 R r+16 r^{2}\right)
\end{gathered}
$$

Now, RHS of (ii) $\stackrel{\text { Gerretsen }}{\underset{\leq}{s}}\left(36 R^{2}-26 R r+16 r^{2}\right)\left(4 R^{2}+4 R r+3 r^{2}\right) \stackrel{?}{\leq} 9 R^{2}(4 R+r)^{2}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 $$
\Leftrightarrow 32 t^{3}-59 t^{2}+14 t-48 \stackrel{\text { ? }}{\geq} 0
$$

$$
\begin{aligned}
& \geq \frac{11}{16}\left[\frac{(4 R+r)^{2}-3 s^{2}}{(4 R+r)^{2}}\right]^{\frac{11}{16} \geq n} \stackrel{(1}{\geq} n\left[\frac{(4 R+r)^{2}-3 s^{2}}{(4 R+r)^{2}}\right] \\
& \Rightarrow(2) \Rightarrow(1) \text { is true (Proved) }
\end{aligned}
$$

1396. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{\cos ^{2} A+\cos ^{2} B}{\cos A+\cos B} \geq \frac{3}{2}
$$

Proposed by Rahim Shahbazov-Baku-Azerbaijan
Solution by Soumava Chakraborty-Kolkata-India

$$
\sum \mathbf{a}^{3}=3 \mathbf{a b c}+2 \mathbf{s}\left(\sum \mathbf{a}^{2}-\sum \mathbf{a b}\right)=
$$

$$
\text { 12Rrs }+2 s\left(2\left(s^{2}-4 R r-r^{2}\right)-\left(s^{2}+4 R r+r^{2}\right)\right) \stackrel{(1)}{=} 2 s\left(s^{2}-6 R r-3 r^{2}\right)
$$

Also, $\frac{b+c}{a} \sin \frac{A}{2}=\frac{4 R \sin \frac{A}{2} \sin \frac{B+C}{2} \cos \frac{B-C}{2}}{4 R \sin \frac{A}{2} \cos \frac{A}{2}}=\frac{4 R \sin \frac{A}{2} \cos \frac{A}{2} \cos \frac{B-C}{2}}{4 R \sin \frac{A}{2} \cos \frac{A}{2}}=\cos \frac{B-C}{2}$

$$
\begin{gathered}
\Rightarrow \cos \frac{B-C}{2} \stackrel{(i i)}{=} \frac{b+c}{a} \sin \frac{A}{2} \\
\sum \frac{\cos ^{2} A+\cos ^{2} B}{\cos A+\cos B}=\sum \frac{(\cos A+\cos B)^{2}-2 \cos A \cos B}{\cos A+\cos B}=
\end{gathered}
$$

$$
=\sum(\cos A+\cos B)-\sum \frac{2 \cos B \cos C}{\cos B+\cos C} \Rightarrow \text { LHS } \stackrel{(1)}{\stackrel{m}{=}} 2 \sum \cos A-\sum \frac{2 \cos B \cos C}{\cos B+\cos C}
$$

$$
\text { Now, } \frac{2 \cos B \cos C}{\cos B+\cos C}=\frac{\cos (B+C)+\cos (B-C)}{2 \cos \frac{B+C}{2} \cos \frac{B-C}{2}}=\frac{-\cos A+2 \cos ^{2}\left(\frac{B-C}{2}\right)-1}{2 \sin \frac{A}{2} \cos \frac{B-C}{2}}=
$$

$$
=\frac{2 \sin ^{2} \frac{A}{2}-1}{2 \sin \frac{A}{2} \cos \frac{B-C}{2}}+\frac{\cos \frac{B-C}{2}}{\sin \frac{A}{2}}-\frac{1}{2 \sin \frac{A}{2} \cos \frac{B-C}{2}}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\text { Also, } \sum \frac{b+c}{a}=\frac{\sum b c(2 s-a)}{4 \operatorname{Rrs}}=\frac{2 s\left(s^{2}+4 \operatorname{Rr}+r^{2}\right)-12 \operatorname{Rrs}}{4 \operatorname{Rrs}} \Rightarrow
$$

$$
\Rightarrow \Sigma \frac{\mathbf{b}+\mathbf{c}^{(\mathrm{iv})}}{\mathbf{a}} \stackrel{\mathbf{s}^{2}-2 \mathbf{R r}+\mathbf{r}^{2}}{=} \frac{\mathbf{R r}}{}
$$

$$
\text { (1), (2), (iii), (iv) } \Rightarrow \text { LHS }-\frac{3}{2}=
$$

$$
=2\left(1+\frac{r}{R}\right)-\frac{3}{2}-\left(\frac{2 R+r}{r}\right)\left[\frac{2\left(s^{2}-2 R r-r^{2}\right)}{s^{2}+2 R r+r^{2}}\right]-\frac{s^{2}-2 R r+r^{2}}{2 R r}+\frac{6 R}{r}
$$

$$
=\frac{1}{2}+\frac{2 r}{R}+\frac{6 R}{r}-\frac{s^{2}-2 \mathbf{R r}+\mathbf{r}^{2}}{2 \mathbf{R r}}-\left(\frac{2 \mathbf{R}+\mathbf{r}}{\mathbf{r}}\right)\left[\frac{2\left(s^{2}-2 \mathbf{R r}-\mathbf{r}^{2}\right)}{s^{2}+2 \mathbf{R r}+\mathbf{r}^{2}}\right]=
$$

$$
=\frac{12 \mathbf{R}^{2}+3 \mathbf{R r}+3 \mathbf{r}^{2}-s^{2}}{2 \mathbf{R r}}-\left(\frac{2 \mathbf{R}+\mathbf{r}}{\mathbf{r}}\right)\left[\frac{2\left(s^{2}-2 \mathbf{R r}-\mathbf{r}^{2}\right)}{\mathbf{s}^{2}+2 \mathbf{R r}+\mathbf{r}^{2}}\right]
$$

$$
\begin{aligned}
& =\frac{\sin \frac{A}{2}}{\cos \frac{B-C}{2}}+\frac{\cos \frac{B-C}{2}}{\sin \frac{A}{2}}-\frac{1}{\sin \frac{A}{2} \cos \frac{B-C}{2}} \stackrel{\text { by (ii) }}{\cong} \frac{a}{b+c}+\frac{b+c}{a}-\frac{a}{(b+c) \sin ^{2} \frac{A}{2}}= \\
& =\frac{\mathbf{a}}{\mathbf{b}+\mathbf{c}}+\frac{\mathbf{b}+\mathbf{c}}{\mathbf{a}}-\frac{\mathbf{a b c}(\mathbf{s}-\mathbf{a})}{(\mathbf{b}+\mathbf{c})(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c})(\mathbf{s}-\mathbf{a})} \\
& =\frac{\mathbf{a}}{\mathbf{b}+\mathbf{c}}+\frac{\mathbf{b}+\mathbf{c}}{\mathbf{a}}-\left(\frac{4 \operatorname{Rrs}}{\mathbf{s r}^{2}}\right)\left(\frac{\mathbf{s}-\mathbf{a}}{\mathbf{b}+\mathbf{c}}\right)=\frac{\mathbf{a}}{\mathbf{b}+\mathbf{c}}+\frac{\mathbf{b}+\mathbf{c}}{\mathbf{a}}-\frac{2 \mathbf{R}}{\mathbf{r}}\left(\frac{\mathbf{b}+\mathbf{c}-\mathbf{a}}{\mathbf{b}+\mathbf{c}}\right)= \\
& =\frac{\mathbf{a}}{\mathbf{b}+\mathbf{c}}\left(\frac{2 \mathbf{R}+\mathbf{r}}{\mathbf{r}}\right)+\frac{\mathbf{b}+\mathbf{c}}{\mathbf{a}}-\frac{2 \mathbf{R}}{\mathbf{r}} \\
& \therefore \frac{2 \cos B \cos \mathrm{C}}{\cos \mathrm{~B}+\cos \mathrm{C}}=\frac{\mathrm{a}}{\mathrm{~b}+\mathrm{c}}\left(\frac{2 \mathrm{R}+\mathrm{r}}{\mathrm{r}}\right)+\frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}-\frac{2 \mathrm{R}}{\mathrm{r}} \text { and analogs } \Rightarrow \\
& \sum \frac{2 \cos B \cos C}{\cos B+\cos C} \stackrel{(2)}{\cong}\left(\frac{2 R+r}{r}\right) \sum \frac{a}{b+c}+\sum \frac{b+c}{a}-\frac{6 R}{r} \\
& \text { Now, } \sum \frac{\mathbf{a}}{\mathbf{b}+\mathbf{c}}=\frac{\sum \mathrm{a}(\mathbf{c}+\mathbf{a})(\mathbf{a}+\mathbf{b})}{2 \mathbf{a b c}+\sum \mathbf{a b}(2 \mathrm{~s}-\mathbf{c})}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \sum \frac{\mathbf{a}}{\mathbf{b}+\mathbf{c}} \stackrel{(\text { (iii) }}{\leftrightarrows} \frac{2\left(\mathbf{s}^{2}-2 \mathbf{R r}-\mathbf{r}^{2}\right)}{\mathbf{s}^{2}+2 \mathbf{R r}+\mathbf{r}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
= & \frac{\left(\mathbf{1 2 R} \mathbf{R}^{2}+3 \mathbf{R r}+3 \mathbf{r}^{2}-\mathbf{s}^{2}\right)\left(\mathbf{s}^{2}+2 \mathbf{R r} \mathbf{~}+\mathbf{r}^{2}\right)-4 \mathbf{R}(\mathbf{2 R}+\mathbf{r})\left(\mathbf{s}^{2}-\mathbf{2 R r}-\mathbf{r}^{2}\right)}{2 \mathbf{R r}\left(\mathbf{s}^{2}+2 \mathbf{R r}+\mathbf{r}^{2}\right)} \\
= & \frac{\mathbf{s}^{2}\left(4 \mathbf{R}^{2}-3 \mathbf{R r}+2 \mathbf{r}^{2}\right)+\mathbf{r}\left(32 \mathbf{R}^{3}+30 \mathbf{R}^{2} \mathbf{r}+\mathbf{1 3 R r ^ { 2 } + 3 \mathbf { r } ^ { 3 }) - \mathbf { s } ^ { 4 }}\right.}{2 \operatorname{Rr}\left(\mathbf{s}^{2}+2 \mathbf{R r}+\mathbf{r}^{2}\right)} \geq \mathbf{0}
\end{aligned}
$$

(a)

$$
\begin{gathered}
\Leftrightarrow s^{4} \stackrel{m}{\leq} s^{2}\left(4 R^{2}-3 R r+2 r^{2}\right)+r\left(32 R^{3}+30 R^{2} r+13 R r^{2}+3 r^{3}\right) \\
\text { Now, } s^{4} \underset{\sim}{\text { Gerretsen }} s^{2}\left(4 R^{2}+4 R r+3 r^{2}\right) \stackrel{\text { ? }}{\leq}
\end{gathered}
$$

$$
\leq \mathbf{s}^{2}\left(4 R^{2}-3 R r+2 r^{2}\right)+r\left(32 R^{3}+30 R^{2} r+13 R r^{2}+3 r^{3}\right)
$$

$$
\Leftrightarrow s^{2}(7 R+r) \underset{(b)}{\stackrel{?}{<}} 32 R^{3}+30 R^{2} r+13 R r^{2}+3 r^{3}
$$

$$
\text { Again, LHS of }(b) \stackrel{\text { Gerretsen }}{\stackrel{c}{\leq}}\left(4 R^{2}+4 R r+3 r^{2}\right)(7 R+r) \stackrel{\text { ¿ }}{\leq}
$$

$$
\leq 32 R^{3}+30 R^{2} r+13 R r^{2}+3 r^{3} \Leftrightarrow 2 R^{2}-R r-6 r^{2} \stackrel{?}{\underset{\sim}{n}} \geq 0
$$

$$
\Leftrightarrow(2 R+3 r)(R-2 r) \stackrel{?}{\stackrel{n}{2}} 0 \rightarrow \text { true } \Rightarrow(b) \Rightarrow(a) \text { is true }
$$

$$
\Rightarrow \sum \frac{\cos ^{2} A+\cos ^{2} B}{\cos A+\cos B} \geq \frac{3}{2}(\text { Proved })
$$

1397. If in $\triangle A B C, m(A)<152^{\circ}$ then the following relationship holds:

$$
h_{a}<\frac{7}{50}(b+c)
$$

Proposed by Rovsen Pirguliyev-Sumgait-Azerbaijan

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
h_{a}<\frac{7}{50}(b+c) \Leftrightarrow & \frac{b c}{2 R}<\frac{7}{50}(b+c) \Leftrightarrow \frac{4 R^{2} \sin B \sin C}{2 R}<\left(\frac{7}{50}\right) 2 R(\sin B+\sin C) \Leftrightarrow \\
& \Leftrightarrow \frac{2 \sin B \sin C}{\sin B+\sin C} \stackrel{(1)}{<} \frac{7}{25}
\end{aligned} \quad \begin{aligned}
& \because H M \leq G M \therefore \frac{2 \sin B \sin C}{\sin B+\sin C} \leq \sqrt{\sin B \sin C} \stackrel{?}{\sim}<\frac{7}{25} \Leftrightarrow 2 \sin B \sin C \stackrel{?}{<} 2\left(\frac{7}{25}\right)^{2} \\
&
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
\because \cos (B-C) & \leq 1 \therefore \cos (B-C)-\cos (B+C) \leq 1+\cos A=2 \cos ^{2} \frac{A}{2} \\
& \leq 2 \cos ^{2} 76^{\circ}\left(\because 76^{\circ} \leq \frac{A}{2}<90^{\circ}\right)<2 \cos ^{2} 75^{\circ}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \text { LHS of }(2) \underset{\sim}{z} 2 \cos ^{2} 75^{\circ} \tag{3}
\end{equation*}
$$

Now, $\because \tan 30^{\circ}=\frac{1}{\sqrt{3}} \therefore \frac{2 x}{1-x^{2}}=\frac{1}{\sqrt{3}}\left(\right.$ where $\left.x=\tan 15^{\circ}\right) \Rightarrow 1-x^{2}=2 \sqrt{3} x$

$$
\Rightarrow x^{2}+2 \sqrt{3} x-1=0
$$

$$
\Rightarrow x=\frac{-2 \sqrt{3} \pm \sqrt{12+4}}{2}=2-\sqrt{3} \Rightarrow \cot ^{2} 15^{\circ}=\left(\frac{1}{2-\sqrt{3}}\right)^{2}=(2+\sqrt{3})^{2}=7+4 \sqrt{3}
$$

$$
\Rightarrow \operatorname{cosec}^{2} 15^{\circ}=8+4 \sqrt{3}
$$

$$
\Rightarrow \sin ^{2} 15^{\circ}=\frac{(2+\sqrt{3})(2-\sqrt{3})}{4(2+\sqrt{3})} \stackrel{(4)}{\cong} \frac{2-\sqrt{3}}{4}
$$

$$
(3) \Rightarrow \text { LHS of }(2)<2 \sin ^{2} 15^{\circ} \stackrel{\text { by }(4)}{=} \frac{2-\sqrt{3}}{2}<2\left(\frac{7}{25}\right)^{2} \Rightarrow(2) \Rightarrow(1)
$$

$$
\Rightarrow \text { proposed inequality is true (Proved) }
$$

1398. In $\triangle A B C$ the following relationship holds:

$$
\frac{w_{a}^{2}}{b c}+\frac{w_{b}^{2}}{c a}+\frac{w_{c}^{2}}{a b}+\frac{3\left(a^{2}+b^{2}+c^{2}\right)}{4(a b+b c+c a)} \leq 3
$$

Proposed by Rahim Shahbazov-Baku-Azerbaijan
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { In any } \triangle A B C, \sum \frac{w_{a}^{2}}{b c}+\frac{3 \sum a^{2}}{4 \sum a b} \stackrel{(a)}{s} 3 \\
& : w_{a}^{2}=\frac{4 b^{2} \mathbf{c}^{2}}{(b+\mathbf{c})^{2}}\left\{\frac{\mathbf{s}(\mathbf{s}-\mathbf{a})}{\mathbf{b c}}\right\}=\frac{\mathbf{b c}(\mathbf{b}+\mathbf{c}+\mathbf{a})(\mathbf{b}+\mathbf{c}-\mathbf{a})}{(\mathbf{b}+\mathbf{c})^{2}}=\frac{\mathbf{b c}\left\{(\mathbf{b}+\mathbf{c})^{2}-\mathbf{a}^{2}\right\}}{(\mathbf{b}+\mathbf{c})^{2}}= \\
& =b c-\frac{a^{2} b c}{(b+c)^{2}} \Rightarrow \frac{\mathbf{w}_{\mathrm{a}}^{2}}{b c}=1-\frac{\mathbf{a}^{2}}{(b+c)^{2}} \text { \& analogs } \\
& \Rightarrow \text { LHS }=3-\sum \frac{\mathbf{a}^{2}}{(\mathbf{b}+\mathbf{c})^{2}}+\frac{3 \sum \mathbf{a}^{2}}{4 \sum \mathbf{a b}} \leq 3 \Leftrightarrow \frac{3 \sum{\mathbf{a}^{2}}^{(1)}}{4 \sum \mathbf{a b}} \sum \frac{\mathbf{a}^{2}}{(\mathbf{b}+\mathbf{c})^{2}}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\text { Now, } \begin{aligned}
\sum \frac{\mathbf{a}^{2}}{(\mathbf{b}+\mathbf{c})^{2}} & =\sum \frac{\mathbf{a}^{4} \stackrel{\text { www.ssmrmh.ro }}{\text { Bergstrom }}}{(\mathbf{a b}+\mathbf{a c})^{2}} \stackrel{\left(\sum \mathbf{a}^{2}\right)^{2}}{\sum} \frac{\left(\mathbf{a}^{2} \mathbf{b}^{2}+\mathbf{a}^{2} \mathbf{c}^{2}+2 \mathbf{a}^{2} \mathbf{b c}\right)}{\sum} \\
& =\frac{\left(\sum \mathbf{a}^{2}\right)^{2}}{2 \sum \mathbf{a}^{2} \mathbf{b}^{2}+2 \mathbf{a b c}\left(\sum \mathbf{a}\right)} \stackrel{\sum}{\geq} \frac{3 \sum \mathbf{a}^{2}}{4 \sum \mathbf{a b}}
\end{aligned}
$$

$$
\text { Now, } \frac{1}{2}\left(\sum \mathbf{a}^{3} \mathbf{b}+\sum \mathbf{a} b^{3}\right) \stackrel{\text { A-G }}{\sim} \sum \mathbf{a}^{2} \mathbf{b}^{2} \stackrel{(i)}{\geq} \mathbf{a b c}\left(\sum \mathbf{a}\right) \mathbf{a n d}, \frac{3}{2}\left(\sum \mathbf{a}^{3} \mathbf{b}+\sum \mathbf{a b}^{3}\right){\underset{(i i)}{\mathrm{A}-\mathbf{G}}}_{\sum_{(2)}} 3 \mathbf{a}^{2} \mathbf{b}^{2}
$$

$$
\therefore(\mathrm{i})+(\mathrm{ii}) \Rightarrow(2) \Rightarrow(1) \Rightarrow(\mathrm{a}) \text { is true (Proved) }
$$

1399. In $\triangle A B C$ the following relationship holds:

$$
\left(\sqrt{\frac{r_{a}}{w_{a}}}+\sqrt{\frac{r_{b}}{w_{b}}}+\sqrt{\frac{r_{c}}{w_{c}}}\right)^{2} \geq 4+5^{5} \sqrt{\left(\frac{r_{a}+r_{b}+r_{c}}{m_{a}+m_{b}+m_{c}}\right)^{6}}
$$

Proposed by Bogdan Fuștei-Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{a}} \leq \sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})}=\sqrt{\mathrm{r}_{\mathrm{b}} \mathrm{r}_{\mathrm{c}}} \text { and analogs }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now, } \sum \mathbf{r}_{\mathbf{a}} \mathbf{w}_{\mathrm{a}}=\sum\left[\left(\operatorname{stan} \frac{\mathbf{A}}{\mathbf{2}}\right)\left(\frac{2 \mathrm{bccos} \frac{\mathbf{A}}{\mathbf{2}}}{\mathrm{~b}+\mathbf{c}}\right)\right] \\
& =\Sigma\left[\left(\sin \frac{\mathbf{A}}{\mathbf{2}}\right)\left(\frac{\mathbf{2 b c}}{\mathbf{b}+\mathbf{c}}\right)\right] \stackrel{\mathrm{HM} \leq \mathbf{G M}}{\stackrel{y}{s}} \sum\left[\left(\sin \frac{\mathbf{A}}{\mathbf{2}}\right) \sqrt{\mathbf{b c}}\right]=\sum \mathbf{s} \sqrt{(\mathbf{s}-\mathbf{b})(\mathbf{s}-\mathbf{c})} \\
& =\sum(\sqrt{\mathbf{s}(\mathbf{s}-\mathbf{b})} \sqrt{\mathbf{s}(\mathbf{s}-\mathbf{c})}) \\
& \leq \sum \mathbf{m}_{\mathrm{b}} \mathbf{m}_{\mathrm{c}} \leq \frac{\left(\sum \mathrm{m}_{\mathrm{a}}\right)^{2}}{3} \therefore \frac{1}{\sum \mathbf{r}_{\mathrm{a}} \mathbf{w}_{\mathrm{a}}} \stackrel{(2)}{\sim} \frac{3}{\left(\sum \mathbf{m}_{\mathrm{a}}\right)^{2}}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\stackrel{\text { Bergstrom }}{\sum} \frac{\left(\sum r_{a}\right)^{2}}{\sum r_{a} w_{a}}+6 \stackrel{\text { by }(2)}{\stackrel{(2)}{\geq} \frac{3\left(\sum r_{a}\right)^{2}}{\left(\sum m_{a}\right)^{2}}+6 \Rightarrow\left(\sum \sqrt{\frac{r_{a}}{w_{a}}}\right)^{2} \stackrel{(3)}{\sum} \frac{3\left(\sum r_{a}\right)^{2}}{\left(\sum m_{a}\right)^{2}}+6}
$$

$$
(3) \Rightarrow \text { it suffices to prove: } 3\left(\frac{\sum r_{a}}{\sum m_{a}}\right)^{2}+6 \stackrel{(i)}{\geq} 4+5\left(\frac{\sum r_{a}}{\sum m_{a}}\right)^{\frac{6}{5}}
$$

$$
\begin{gathered}
\text { Let }\left(\frac{\sum r_{a}}{\sum m_{a}}\right)^{\frac{1}{5}}=\mathbf{t} \therefore(\mathbf{i}) \Leftrightarrow 3 \mathbf{t}^{10}-5 \mathbf{t}^{6}+\mathbf{2} \geq \mathbf{0} \Leftrightarrow \\
(\mathbf{t}-1)^{2}(\mathbf{t}+1)^{2}\left(3 \mathbf{t}^{6}+6 \mathbf{t}^{4}+4 \mathbf{t}^{2}+2\right) \geq \mathbf{0} \rightarrow \text { true } \because \mathbf{t} \geq 1 \text { as } \sum \mathrm{r}_{\mathrm{a}} \geq \sum \mathrm{m}_{\mathrm{a}} \\
\\
\Rightarrow(\text { i }) \text { is true } \\
\therefore\left(\sum \sqrt{\frac{r_{a}}{\mathbf{w}_{\mathrm{a}}}}\right)^{2} \geq 4+5^{5} \sqrt{\left(\frac{r_{a}+r_{b}+r_{c}}{m_{a}+\mathbf{m}_{b}+m_{c}}\right)^{6}} \text { (Proved) }
\end{gathered}
$$

1400. In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\frac{h_{a}}{h_{b}}+\frac{h_{b}}{h_{c}}+\frac{h_{c}}{h_{a}} \leq \frac{1}{27}\left(1+\frac{4 R}{r}\right)^{2}
$$

Proposed by Marin Chirciu-Romania

Solution by Marian Ursărescu-Romania

$$
\begin{gather*}
h_{a}=\frac{2 S}{a} \Rightarrow \text { we must show : } \\
\frac{b}{a}+\frac{c}{b}+\frac{a}{c} \leq \frac{1}{27}\left(1+\frac{4 R}{r}\right)^{2} \Leftrightarrow \frac{a^{2} b+b^{2} c+c^{2} a}{a b c} \leq \frac{1}{27}\left(1+\frac{4 R}{r}\right)^{2} \tag{1}
\end{gather*}
$$

From rearanjament inequality we have:

$$
\begin{equation*}
\mathbf{a}^{2} \mathbf{b}+\mathbf{b}^{2} \mathbf{c}+\mathbf{c}^{2} \mathbf{a} \leq \mathbf{a}^{3}+\mathbf{b}^{3}+\mathbf{c}^{3} . \tag{2}
\end{equation*}
$$

From (1)+(2) we must show:

$$
\begin{equation*}
\frac{a^{3}+b^{3}+c^{3}}{a b c} \leq \frac{1}{27}\left(1+\frac{4 R}{r}\right)^{2} \tag{3}
\end{equation*}
$$

But $\frac{a^{3}+b^{3}+c^{3}}{a b c}+1 \leq \frac{2 R}{r} \ldots$ (4)because $\sum a^{3}=2 s\left(s^{2}-3 r^{2}-6 R r\right)$
and abc $=4 R r s$ then (4) $\Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (true from Gerretsen)
From (3)+(4) we must show:

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\frac{\mathbf{2 R}}{\mathbf{r}}-\mathbf{1} \leq \frac{\mathbf{1}}{\mathbf{2 7}}\left(\mathbf{1}+\frac{\mathbf{4 R}}{\mathbf{r}}\right)^{2} \ldots$ (5)
Let: $\frac{\mathbf{2 R}}{\mathbf{r}}=\mathbf{x}, \mathbf{x} \geq \mathbf{4}$
$(\mathbf{5}) \Leftrightarrow \mathbf{x}-\mathbf{1} \leq \frac{\mathbf{1}}{\mathbf{2 7}}(\mathbf{1}+\mathbf{2 x})^{2} \Leftrightarrow \mathbf{2 7 x}-\mathbf{2 7} \leq \mathbf{1}+\mathbf{4} \mathbf{x}+\mathbf{4} \mathbf{x}^{2} \Leftrightarrow$
$\mathbf{4 \mathbf { x } ^ { 2 } - \mathbf { 2 3 x } + \mathbf { 2 8 } \geq \mathbf { 0 } \Leftrightarrow (\mathbf { 4 } \mathbf { x } - \mathbf { 7 }) (\mathbf { x } - \mathbf { 4 }) \geq \mathbf { 0 } , \text { true because } \mathbf { x } \geq \mathbf { 4 }}$

It's nice to be important but more important it's to be nice. At this paper works a TEAM.

This is RMM TEAM.
To be continued!
Daniel Sitaru

