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This note discusses on a specific class of quintic equations which are 

solvable thanks to the multiple-angle trigonometric transformation. Besides, 

the author finds an interesting fact, namely “Matryoshka paradox” where 

quintic equations are more convenient to solve than an order of generalized 
quartic, resolvent cubic, and factoring quadratic equations. 

Initiation 

This note focuses on the specific reduced form of quintic equations: 

𝑥5 + 𝑎𝑥3 + 𝑏𝑥 + 𝑐 = 0 

Except for the constant coefficient, the above equation contains odd-ordered 
parameters. Hence, the methodology is based on the expanding formula: 

cos 5𝜃 = 16 cos 𝜃5 − 20 cos 𝜃3 + 5cos𝜃 

Replacing 𝑥 = 𝑘 cos 𝜃 (of which 𝑘 ≠ 0), the equation becomes: 

(𝑘 cos 𝜃)5 + 𝑎(𝑘 cos 𝜃)3 + 𝑏(𝑘 cos 𝜃) + 𝑐 = 0 

Hence, we shall find 𝑘 such that: 

(𝑘5: 𝑎𝑘3: 𝑏𝑘) = (𝑘4: 𝑎𝑘2: 𝑏) = (16:−20: 5) 

Accordingly, we get: 

{
 

 
𝑘2

𝑎
= −

4

5
𝑎𝑘2

𝑏
= −4

⟺

{
 

 𝑎 = −
5𝑘2

4
= −5𝜆

𝑏 =
5𝑘4

16
= 5𝜆2

   (𝜆 =
𝑘2

4
) 

In other words, the above mentioned quintic equation is solvable thanks to 

this method if there exists 𝜆 such that 𝑎 = −5𝜆 and 𝑏 = 5𝜆2. Amazingly, 𝜆 may 

be negative and even complex numbers. Illustrated examples shall be discussed 
in the next section. 

Illustration 

Example 1. Solve the equation: 𝑥5 − 15𝑥3 + 45𝑥 − 27 = 0 

Following the finding in the previous section, we shall find 𝜆 such that 

−15 = −5𝜆 and 45 = 5𝜆2. This results in 𝜆 = 3 and therefore, 𝑘 = 2√𝜆 = 2√3. 

Replacing 𝑥 = 2√3 cos 𝜃, the equation becomes: 

18√3(16 cos𝜃5 − 20 cos 𝜃3 + 5cos 𝜃) = 27 ⇔ cos 5𝜃 =
√3

2
= cos

𝜋

6
 

Solving this elementary trigonometric equation, we get: 

5𝜃 = ±
𝜋

6
+ 𝜇2𝜋 ⇔ 𝜃 = ±

𝜋

30
+
𝜇2𝜋

5
   (𝜇 ∈ ℤ) 



Consequently, solutions for the given quintic equation are: 

𝑥 = 2√3 cos (
𝜋

30
+
𝜈2𝜋

5
)   (𝜈 ∈ {−2;−1; 0; 1; 2}) 

Particularly, the above solutions could be expressed as follows: 

𝑥1 = 2√3 cos (−
23𝜋

30
) = 2√3 cos(−138°) =

1

4
(3 − 3√5 − √30 + 6√5) 

𝑥2 = 2√3 cos (−
11𝜋

30
) = 2√3 cos(−66°) =

1

4
(3 + 3√5 − √30 − 6√5) 

𝑥3 = 2√3 cos (
𝜋

30
) = 2√3 cos(6°) =

1

4
(3 + 3√5 + √30 − 6√5) 

𝑥4 = 2√3 cos (
13𝜋

30
) = 2√3 cos(78°) =

1

4
(3 − 3√5 + √30 + 6√5) 

𝑥5 = 2√3 cos (
5𝜋

6
) = 2√3 cos(150°) = −3 

Example 2. Solve the equation: 𝑥5 + 5𝑥3 + 5𝑥 + 2𝜉 = 0 

Regarding this problem, 𝜆 = −1 < 0 gives us 𝑘 = 2𝑖, of which 𝑖2 = −1. 

Replacing 𝑥 = 2𝑖 cos 𝜃, the equation becomes: 

2𝑖 cos 5𝜃 = −2𝜉 ⇔ cos 5𝜃 = 𝜉𝑖 ⇔ 5𝜃 = ±cos−1 𝜉𝑖 +  𝜇2𝜋 ⇔ 𝜃 = ±
1

5
cos−1 𝜉𝑖 +

𝜇2𝜋

5
   (𝜇 ∈ ℤ) 

Finally, solutions for the given quintic equation are: 

𝑥𝜈 = 2𝑖 cos (
1

5
cos−1 𝜉𝑖 +

𝜈2𝜋

5
)   (𝜈 ∈ {−2;−1; 0; 1; 2}) 

The above expression contains an inversed trigonometric function of complex 

numbers. Interestingly, according to Bézout’s theorem for odd-ordered 

polynomials, there exists 𝜈 ∈ {−2;−1; 0; 1; 2} such that 𝑥𝜈 ∈ ℝ. 

Illusion 

In the equation as discussed in Example 1, it is observable that 𝑥 = −3 is 

a comfortable solution. This section re-solves Example 1 in a purely 
algebraic method and then compares the two methodologies. Interestingly, the 
trigonometricalizable quintic polynomial seems more convenient. 

Factoring the quintic polynomial as mentioned in Example 1, we get: 

𝑥5 − 15𝑥3 + 45𝑥 − 27 = (𝑥 + 3)(𝑥4 − 3𝑥3 − 6𝑥2 + 18𝑥 − 9) 

Considering the generalized quartic equation: 

𝑥4 + 4𝛼𝑥3 + 𝛽𝑥2 + 𝛾𝑥 + 𝛿 = 0 

By replacing 𝑥 = 𝑦 − 𝛼, we get the reduced form quartic equation: 

𝑦4 + 𝑝𝑦2 + 𝑞𝑦 + 𝑟 = 0 



Where 𝑝, 𝑞, and 𝑟 is respectively determined as follows: 

{

𝑝 = 𝛽 − 6𝛼2

𝑞 = 𝛾 − 2𝛽𝛼 + 8𝛼3

𝑟 = 𝛿 − 𝛾𝛼 + 𝛽𝛼2 − 3𝛼4
 

Next, we shall find two quadratic polynomials that their product is exactly 

the above reduced form. Accordingly, it is supposed to find the triplet 
(𝑢, 𝑣, 𝑤) such that: 

𝑦4 + 𝑝𝑦2 + 𝑞𝑦 + 𝑟 ≡ (𝑦2 + 𝑢𝑦 + 𝑣)(𝑦2 − 𝑢𝑦 + 𝑤) 

As coefficients from both sides are homogeneous, we get: 

{
−𝑢2 + 𝑣 +𝑤 = 𝑝

𝑢(𝑤 − 𝑣) = 𝑞
𝑣𝑤 = 𝑟

⇔

{
 
 

 
 𝑣 =

1

2
(𝑢2 + 𝑝 −

𝑞

𝑢
)

𝑤 =
1

2
(𝑢2 + 𝑝 +

𝑞

𝑢
)

𝑣𝑤 = 𝑟

 

The resolvent cubic equation is obtained through the following process: 

1

4
(𝑢2 + 𝑝 −

𝑞

𝑢
) (𝑢2 + 𝑝 +

𝑞

𝑢
) = 𝑟 ⇔ (𝑢2 + 𝑝)2 −

𝑞2

𝑢2
= 4𝑟 ⇔ 𝑢6 + 2𝑝𝑢4 + (𝑝2 − 4𝑟)𝑢2 − 𝑞2 = 0 

Based on the above resolvent cubic equation, solutions for the reduced 
quartic form are determined as follows: 

𝑦1;2 =
−𝑢 ± √𝑢2 − 4𝑣

2 =
1
2([−𝑢 ±

√𝑢2 − 2(𝑢2 + 𝑝 −
𝑞
𝑢)]) =

1
2(−𝑢 ±

√−𝑢2 − 2𝑝 +
2𝑞
𝑢 )

𝑦3;4 =
𝑢 ± √𝑢2 − 4𝑤

2
=
1
2(
[𝑢 ± √𝑢2 − 2(𝑢2 + 𝑝 +

𝑞
𝑢
)]) =

1
2(
𝑢 ± √−𝑢2 − 2𝑝 −

2𝑞
𝑢 )

 

And finally, 𝑥 = 𝑦 − 𝛼. This method deals with the quartic equation by solving 

resolvent cubic and quadratic polynomials, respectively. Therefore, this 
approach is somehow like a Russian doll, namely Matryoshka. 

Considering the quartic equation as obtained in Example 1: 

𝑥4 − 3𝑥3 − 6𝑥2 + 18𝑥 − 9 = 0 

The Matryoshka approach for  (𝛼; 𝛽; 𝛾; 𝛿) = (−3 4⁄ ;−6; 18;−9) gives us: 

{
 
 

 
 𝑝 = −

75

8

𝑞 =
45

8

𝑟 =
45

256

⇒

{
 
 

 
 2𝑝 = −

75

4

𝑝2 − 4𝑟 =
1395

16

−𝑞2 = −
2025

64

 

Solving the resolvent cubic equation: 

𝑢6 −
75

4
𝑢4 +

1395

16
𝑢2 −

2025

64
= 0 ⇔ 𝑢2 ∈ {

45

4
;
15

4
+
3√5

2
;
15

4
−
3√5

2
} 



Choosing 𝑢2 = 45 4⁄ , which implies that 𝑢 = 3√5 2
⁄ , solutions for the quartic 

equation are: 

𝑥4;1 = −𝛼 +
1
2(−𝑢 ±

√−𝑢2 − 2𝑝 +
2𝑞
𝑢 ) =

1
4 (3 − 3√5 ±

√30 + 6√5)

𝑥3;2 = −𝛼 +
1
2(
𝑢 ± √−𝑢2 − 2𝑝 −

2𝑞
𝑢 )

=
1
4
(3 + 3√5 ± √30 − 6√5)

 

In Example 1, solving a trigonometricalizable quintic equation is more 

convenient than solving an order of quartic, cubic, and quadratic equations. 

Accordingly, we may name this fact “Matryoshka paradox” and further discuss 
when this paradox happens. 

Particularly, we shall find 𝜏 (which is not a solution for the generalized 

quartic polynomial) such that: 

𝑥5 − 5𝜆𝑥3 + 5𝜆2𝑥 + 2𝜉 ≡ (𝑥 − 𝜏)(𝑥4 + 4𝛼𝑥3 + 𝛽𝑥2 + 𝛾𝑥 + 𝛿) 

As both sides are homogeneous quintic polynomials, we get: 

4𝛼 = 𝜏 𝛽 = 𝜏2 − 5𝜆

𝛾 = 𝜏𝛽 = 𝜏(𝜏2 − 5𝜆) 𝛿 = 𝜏𝛾 + 5𝜆2 = 𝜏2(𝜏2 − 5𝜆) + 5𝜆2
 

Thus, the Matryoshka paradox happens for a specific class of quartic 
equations as follow: 

𝑥4 + 𝜏𝑥3 + (𝜏2 − 5𝜆)𝑥2 + 𝜏(𝜏2 − 5𝜆)𝑥 + [𝜏2(𝜏2 − 5𝜆) + 5𝜆2] = 0 

Exempli gratia, for 𝜏 = 1 and 𝜆 = 0, we get: 

𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 = 0 ⇔ {
(𝑥 − 1)(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)

𝑥 ≠ 1
⇔ {𝑥

5 = 1
𝑥 ≠ 1

 

And the solutions are: 

𝑥 ∈ {𝑒𝑥𝑝 (
±2𝑖𝜋

5
) ; 𝑒𝑥𝑝 (

±4𝑖𝜋

5
)} 

Imagination 

Considering the following equation: 

𝑥5 − 5𝜆𝑥3 + 5𝜆2𝑥 + 2𝜉 = 0   (𝜆, 𝜉 ∈ ℂ) 

By choosing one value of √𝜆 and replacing 𝑥 = 2√𝜆 cos 𝜃, we get: 

cos5𝜃 = −
𝜉

√𝜆
⇔ 5𝜃 = ±cos−1 (−

𝜉

√𝜆
) +  𝜇2𝜋 ⇔ 𝜃 = ±

1

5
cos−1 (−

𝜉

√𝜆
) +

𝜇2𝜋

5
   (𝜇 ∈ ℤ) 

Finally, solutions for the given quintic equation are: 

𝑥𝜈 = 2√𝜆 cos [
1

5
cos−1 (−

𝜉

√𝜆
) +

𝜈2𝜋

5
]   (𝜈 ∈ {−2;−1; 0; 1; 2}) 

Furthermore, the so-called trigonometricalizing method as discussed in this 

note could be applied to a specific class of odd-ordered algebraic equations. 

 


