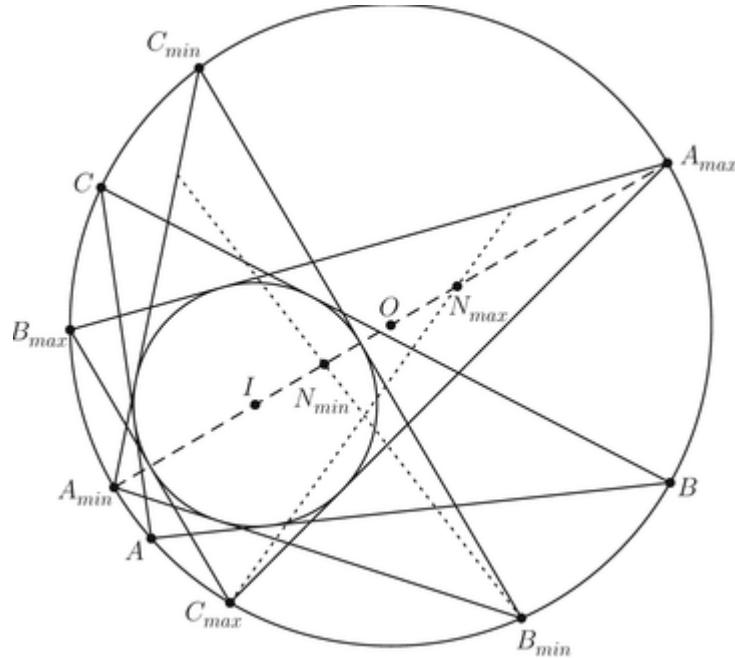


ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

A NEW DEMONSTRATION OF RAMUS-E.ROUCHE-BLUNDON DOUBLE
INEQUALITY AND IT'S CONSEQUENCES

By Marian Dincă – Romania



THEOREM:

Let ABC be a triangle that has its circumcircle $C(O, R)$ and the incircle $C(I, r)$

Then, it exists two isosceles triangles inscribed to the circle $C(O, R)$ and circumscribed to the circle $C(I, r)$

Proof:

Without using Poncelet theorem we use Carnot identity:

$$\cos A + \cos B + \cos C = \frac{R + r}{R}$$

We will prove that there exists two angles α respectively β such that:

$$\cos A + \cos B + \cos C = \cos \alpha + 2 \cos \left(\frac{\pi - \alpha}{2} \right) = \cos \beta + 2 \cos \left(\frac{\pi - \beta}{2} \right)$$

Such that: $\beta \geq A \geq B \geq C \geq \alpha$

Elementary proof:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$\cos A + \cos B + \cos C = \cos x + 2 \cos\left(\frac{\pi - x}{2}\right) = 1 - 2 \sin^2\left(\frac{x}{2}\right) + 2 \sin\left(\frac{x}{2}\right)$$

$$\text{or: } 2 \sin^2\left(\frac{x}{2}\right) - 2 \sin\left(\frac{x}{2}\right) + \cos A + \cos B + \cos C - 1 = 0$$

$$\sin\left(\frac{x}{2}\right) = \frac{1 \pm \sqrt{1 - 2(\cos A + \cos B + \cos C - 1)}}{2} =$$

$$= \frac{1 \pm \sqrt{3 - 2(\cos A + \cos B + \cos C)}}{2} = \frac{1 \pm \sqrt{3 - 2\left(\frac{R+r}{R}\right)}}{2}$$

$$= \frac{1 \pm \sqrt{\frac{R-2r}{R}}}{2}$$

So: $\sin \frac{x_1}{2} \leq \frac{1}{2}$, it follows: $\frac{x_1}{2} \leq \frac{\pi}{6}$, let be $x_1 = \alpha \leq \frac{\pi}{3}$

respectively: $\sin \frac{x_2}{2} \geq \frac{1}{2}$, let be $x_2 = \beta \geq \frac{\pi}{3}$

Let be: $A \geq B \geq C$,

$$\cos A + \cos B + \cos C = \cos \alpha + 2 \cos\left(\frac{\pi - \alpha}{2}\right)$$

but: $\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \leq 2 \cos\left(\frac{A+B}{2}\right)$

It follows: $\cos A + \cos B + \cos C \leq 2 \cos\left(\frac{A+B}{2}\right) + \cos C = \cos C + 2 \cos\left(\frac{\pi-C}{2}\right)$

So: $\cos \alpha + 2 \cos\left(\frac{\pi-\alpha}{2}\right) \leq \cos C + 2 \cos\left(\frac{\pi-C}{2}\right)$. The function:

$f(x) = \cos x + 2 \cos\left(\frac{\pi-x}{2}\right)$, $x \in \left[0, \frac{\pi}{3}\right]$, $f'(x) = -\sin x + \sin\left(\frac{\pi-x}{2}\right) \geq 0$, so, increasing

$f(\alpha) \leq f(C)$, implies: $\alpha \leq C$. Also: $\cos B + \cos C \leq 2 \cos\left(\frac{B+C}{2}\right) = 2 \cos\left(\frac{\pi-A}{2}\right)$

$$\cos A + \cos B + \cos C \leq \cos A + 2 \cos\left(\frac{\pi-A}{2}\right)$$

But: $\cos \beta + 2 \cos\left(\frac{\pi-B}{2}\right) = \cos A + \cos B + \cos C \leq \cos A + 2 \cos\left(\frac{\pi-A}{2}\right)$

So: $\cos \beta + 2 \cos\left(\frac{\pi-B}{2}\right) \leq \cos A + 2 \cos\left(\frac{\pi-A}{2}\right)$

The function: $f(x) = \cos x + 2 \cos\left(\frac{\pi-x}{2}\right)$, $x \in \left[\frac{\pi}{3}, \pi\right]$

$f'(x) = -\sin x + \sin\left(\frac{\pi-x}{2}\right) \leq 0$, decreasing, so: $A \leq \beta$

In the end there are two isoscel triangles that satisfy Carnot relationship:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$\cos A + \cos B + \cos C = \cos \alpha + 2 \cos \left(\frac{\pi - \alpha}{2} \right) = \cos \beta + 2 \cos \left(\frac{\pi - \beta}{2} \right) = \frac{R + r}{R}$$

And: $\beta \geq A \geq B \geq C \geq \alpha$

Let $A_1B_1C_1$ be an isoscelles triangle with:

$$\begin{aligned} B_1C_1 &= 2R \sin \alpha = 2r \cdot \cot \left(\frac{\pi - \alpha}{4} \right), A_1B_1 = A_1C_1 = 2R \sin \left(\frac{\pi - \alpha}{2} \right) \\ &= r \cdot \cot \frac{\alpha}{2} + r \cdot \cot \left(\frac{\pi - \alpha}{4} \right) \end{aligned}$$

we prove that: $AB + BC + CA \leq A_1B_1 + B_1C_1 + C_1A_1$ (i)

$$AB + BC + CA = 2R \cdot (\sin A + \sin B + \sin C) = 2r \left(\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} \right)$$

Or: $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} \leq \cot \frac{\alpha}{2} + 2 \cot \left(\frac{\pi - \alpha}{4} \right)$ (ii)

$A + B - 2 \left(\frac{\pi - \alpha}{2} \right) = \alpha - C \leq 0$, it follows: $A + B - 2 \left(\frac{\pi - \alpha}{2} \right) = \alpha - C \leq 0$, it follows:

$A + B - 2 \left(\frac{\pi - \alpha}{2} \right) \leq 0, A + B \leq 2 \left(\frac{\pi - \alpha}{2} \right)$. So: $B \leq \frac{A+B}{2} \leq \frac{\pi - \alpha}{2}$, it follows:

$\alpha \leq C \leq B \leq \frac{\pi - \alpha}{2}$, then it exists α and $\mu \in [0,1]$ such that:

$$C = \lambda \cdot \left(\frac{\pi - \alpha}{2} \right) + (1 - \lambda) \cdot \alpha \quad (1)$$

$$B = \mu \cdot \left(\frac{\pi - \alpha}{2} \right) + (1 - \mu) \cdot \alpha \quad (1')$$

$B \geq C$, implies: $\mu \cdot \left(\frac{\pi - \alpha}{2} \right) + (1 - \mu) \cdot \alpha \geq \lambda \cdot \left(\frac{\pi - \alpha}{2} \right) + (1 - \lambda) \cdot \alpha$

Or: $(\mu - \lambda) \cdot \left(\frac{\pi - \alpha}{2} \right) - (\mu - \lambda) \cdot \alpha \geq 0$, or $(\mu - \lambda) \left(\frac{\pi - \alpha}{2} - \alpha \right) \geq 0$

It follows: $\mu \geq \lambda$

$$B + C \leq \frac{2\pi}{3}, (\alpha + \mu) \cdot \left(\frac{\pi - \alpha}{2} \right) + (2 - \lambda - \mu) \cdot \alpha \leq \frac{2}{3} \cdot \pi = \frac{2}{3} \left[2 \cdot \left(\frac{\pi - \alpha}{2} \right) + \alpha \right]$$

Or: $\left(\lambda + \mu - \frac{4}{3} \right) \left(\frac{\pi - \alpha}{2} \right) + \left(2 - \lambda - \mu - \frac{2}{3} \right) \cdot \alpha \leq 0$

Or: $\left(\alpha + \mu - \frac{4}{3} \right) \left(\frac{\pi - \alpha}{2} - \alpha \right) \leq 0$, it follows: $\alpha + \mu - \frac{4}{3} \leq 0$

Inequality (ii) is equivalent with:

$$\cot \left(\frac{\lambda \left(\frac{\pi - \alpha}{2} \right) + (1 - \lambda) \cdot \alpha}{2} \right) + \cot \left(\frac{\mu \left(\frac{\pi - \alpha}{2} \right) + (1 - \mu) \cdot \alpha}{2} \right) +$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$\begin{aligned}
 & + \tan \left(\frac{\lambda \left(\frac{\pi - \alpha}{2} \right) + (1 - \lambda) \cdot \alpha}{2} + \frac{\mu \left(\frac{\pi - \alpha}{2} \right) + (1 - \mu) \cdot \alpha}{2} \right) = \\
 & = \cot \left(\left(\frac{\pi - \alpha}{4} \right) \cdot \alpha + \frac{\alpha}{2} \cdot (1 - \lambda) \right) + \cot \left(\left(\frac{\pi - \alpha}{4} \right) \cdot \mu + \frac{\alpha}{2} \cdot (1 - \mu) \right) + \\
 & \quad + \tan \left(\left(\frac{\pi - \alpha}{2} \right) \cdot \left(\frac{\lambda + \mu}{2} \right) + \alpha \left(1 - \frac{\lambda + \mu}{2} \right) \right) = \\
 & = \cot \left(\left(\frac{\pi - \alpha}{4} \right) \cdot \lambda + \frac{\alpha}{2} \cdot (1 - \lambda) \right) + \cot \left(\left(\frac{\pi - \alpha}{4} \right) \cdot \mu + \frac{\alpha}{2} \cdot (1 - \mu) \right) + \\
 & \quad + \tan \left(\left(\frac{\pi - \alpha}{2} \right) \cdot \left(\frac{\lambda + \mu}{2} \right) + \alpha \cdot \left(1 - \frac{\alpha + \mu}{2} \right) \right) = \\
 & = \cot \left[\lambda \cdot \left(\frac{\pi - 3\alpha}{4} \right) + \frac{\alpha}{2} \right] + \cot \left[\mu \cdot \left(\frac{\pi - 3\alpha}{4} \right) + \frac{\alpha}{2} \right] + \tan \left[\left(\frac{\alpha + \mu}{2} \right) \cdot \left(\frac{\pi - 3\alpha}{2} \right) + \alpha \right]
 \end{aligned}$$

Let be $f: [0,1] \times [0,1] \rightarrow \mathbb{R}$

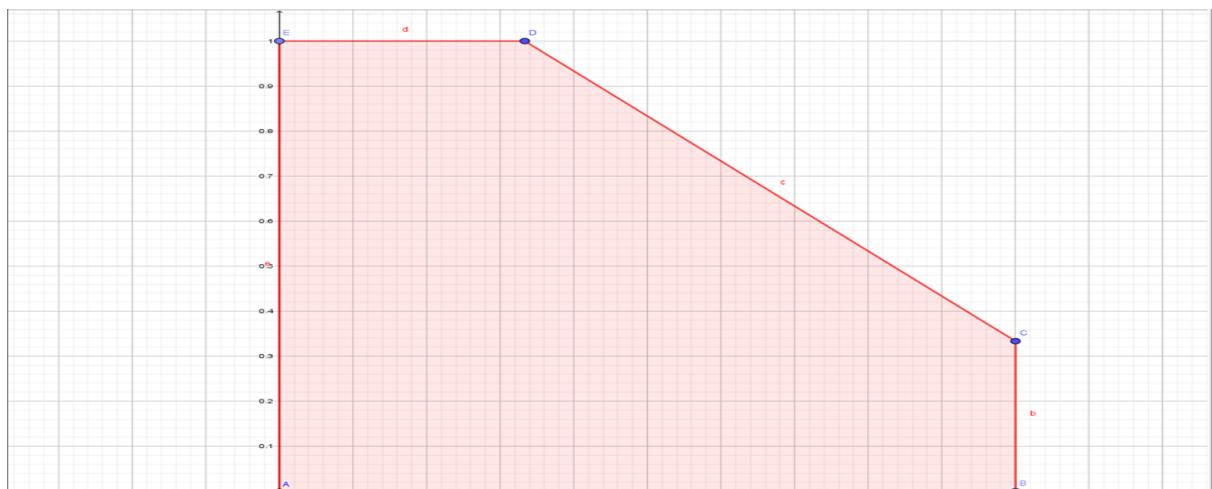
$$f(\lambda, \mu) = \cot \left[\lambda \cdot \left(\frac{\pi - 3\alpha}{4} \right) + \frac{\alpha}{2} \right] + \cot \left[\mu \cdot \left(\frac{\pi - 3\alpha}{4} \right) + \frac{\alpha}{2} \right] + \tan \left[\left(\frac{\lambda + \mu}{2} \right) \cdot \left(\frac{\pi - 3\alpha}{2} \right) + \alpha \right]$$

is a convex function defined on a convex set: $[0,1] \times [0,1] \cap \{(\lambda, \mu) | \lambda + \mu \leq \frac{4}{3}\}$

So the pentagon $ABCDE$, where: $A(0,0), B(1,0), C\left(1, \frac{1}{3}\right), D\left(\frac{1}{3}, 1\right), E(0,1)$

Will attain its maximum in one of these peaks.

Any convex function defined on a convex set will attain its maximum in its extreme points.



ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$f(1,0) = \cot\left(\frac{\pi - \alpha}{4}\right) + \cot\frac{\alpha}{2} + \tan\left(\frac{\pi + \alpha}{4}\right) = \cot\left(\frac{\pi - \alpha}{4}\right) + \cot\frac{\alpha}{2} + \cot\left(\frac{\pi}{2} - \frac{\pi + \alpha}{4}\right) = \cot\frac{\alpha}{2} + 2 \cot\left(\frac{\pi - \alpha}{4}\right)$$

$$f\left(1, \frac{1}{3}\right) = \cot\left(\frac{\pi - \alpha}{4}\right) + \cot\left(\frac{1}{3} \cdot \left(\frac{\pi - 3\alpha}{4}\right) + \frac{\alpha}{2}\right) + \tan\left(\frac{\pi - 3\alpha}{3} + \alpha\right) = \cot\left(\frac{\pi - \alpha}{4}\right) + \cot\left(\frac{\pi + 3\alpha}{12}\right) + \tan\frac{\pi}{3} \leq \cot\frac{\alpha}{2} + 2 \cot\left(\frac{\pi - \alpha}{4}\right), \text{ or:}$$

$$\cot\frac{\alpha}{2} - \cot\left(\frac{\pi + 3\alpha}{12}\right) + \cot\left(\frac{\pi - \alpha}{4}\right) \geq \tan\frac{\pi}{3} = \cot\frac{\pi}{6}$$

$$\frac{\alpha}{2} \leq \frac{\pi + 3\alpha}{12} \leq \frac{\pi - 3\alpha}{4}, \text{ it follows: } \frac{\pi + 3\alpha}{12} = \gamma \cdot \frac{\pi - \alpha}{4} + (1 - \gamma) \cdot \frac{\alpha}{2} = \gamma \cdot \left(\frac{\pi - \alpha}{4} - \frac{\alpha}{2}\right) + \frac{\alpha}{2}, \gamma \in [0,1]$$

$$\cot\left(\frac{\pi + 3\alpha}{12}\right) = \cot\left(\gamma \cdot \frac{\pi - \alpha}{4} + (1 - \gamma) \cdot \frac{\alpha}{2}\right) \leq \gamma \cdot \cot\left(\frac{\pi - \alpha}{4}\right) + (1 - \gamma) \cot\frac{\alpha}{2}$$

So: $-\cot\left(\frac{\pi + 3\alpha}{12}\right) \geq -\gamma \cdot \cot\left(\frac{\pi - \alpha}{4}\right) - (1 - \gamma) \cot\frac{\alpha}{2}$

$$\begin{aligned} \text{We obtain: } \cot\frac{\alpha}{2} - \cot\left(\frac{\pi + 3\alpha}{12}\right) + \cot\left(\frac{\pi - \alpha}{4}\right) &\geq \cot\frac{\alpha}{2} - \gamma \cdot \cot\left(\frac{\pi - \alpha}{4}\right) - (1 - \gamma) \cot\frac{\alpha}{2} + \cot\left(\frac{\pi - \alpha}{4}\right) = \\ &= \gamma \cot\frac{\alpha}{2} + (1 - \gamma) \cot\left(\frac{\pi - \alpha}{4}\right) \geq \cot(\gamma + (1 - \gamma))\left(\frac{\pi - \alpha}{4}\right) \\ &= \cot\left[\frac{\pi - \alpha}{4} - \gamma \cdot \left(\left(\frac{\pi - \alpha}{4} - \frac{\alpha}{2}\right)\right)\right] = \\ &= \cot\left[\frac{\pi - \alpha}{4} + \frac{\alpha}{2} - \frac{\pi + 3\alpha}{12}\right] = \cot\left(\frac{3\pi - 3\alpha + 6\alpha - \pi - 3\alpha}{12}\right) = \cot\frac{\pi}{6} \end{aligned}$$

But: $f(1,0) = f(0,1)$ and $f\left(1, \frac{1}{3}\right) = f\left(\frac{1}{3}, 1\right)$ being symmetric.

$$B + C - 2\left(\frac{\pi - \beta}{2}\right) = \beta - A \geq 0, \text{ it follows: } B + C \geq 2\left(\frac{\pi - \beta}{2}\right)$$

We prove the other inequality:

$$AB + BC + CA \geq A_1B_2 + B_2C_2 + C_2A_2, \text{ or so: } B \geq \frac{B+C}{2} \geq \frac{\pi - \beta}{2}, \text{ it follows: } B \geq \frac{\pi - \beta}{2}$$

$$\sin A + \sin B + \sin C \geq \sin \beta + 2 \sin\left(\frac{\pi - \beta}{2}\right) \text{ we obtain: } \beta \geq A \geq B \geq \frac{\pi - \beta}{2}$$

Then it exists λ respectively $\mu \in [0,1]$, such that:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$A = \lambda \cdot \beta + (1 - \lambda) \cdot \left(\frac{\pi - \beta}{2} \right)$$

$$B = \mu \cdot \beta + (1 - \mu) \cdot \left(\frac{\pi - \beta}{2} \right)$$

$$A - B = (\alpha - \mu) \cdot \beta - (\alpha - \mu) \left(\frac{\pi - \beta}{2} \right) = (\alpha - \mu) \left(\beta - \frac{\pi - \beta}{2} \right) \geq 0$$

It follows: $\lambda \geq \mu$, because $\beta - \frac{\pi - \beta}{2} \geq 0$

$$A + B \geq \frac{2\pi}{3}$$

$$\alpha \cdot \beta + (1 - \alpha) \cdot \left(\frac{\pi - \beta}{2} \right) + \mu \cdot \beta + (1 - \mu) \cdot \left(\frac{\pi - \beta}{2} \right) \geq \frac{2\pi}{3}$$

$$(\alpha - \mu) \cdot \beta + (2 - \lambda - \mu) \cdot \left(\frac{\pi - \beta}{2} \right) \geq \frac{2}{3} \cdot \pi = \frac{2}{3} \left[\beta + 2 \left(\frac{\pi - \beta}{2} \right) \right]$$

$$\text{It follows: } \left(\lambda + \mu - \frac{2}{3} \right) \cdot \beta + \left(2 - \lambda - \mu - \frac{4}{3} \right) \left(\frac{\pi - \beta}{2} \right) \geq 0$$

$$\text{Or: } \left(\alpha + \mu - \frac{2}{3} \right) \cdot \left(\beta - \frac{\pi - \beta}{2} \right) \geq 0$$

$$\text{It follows: } \lambda + \mu - \frac{2}{3} \geq 0$$

$$\sin A + \sin B + \sin C =$$

$$= \sin \left(\alpha \beta + (1 - \lambda) \left(\frac{\pi - \beta}{2} \right) \right) + \sin \left(\mu \beta + (1 - \mu) \left(\frac{\pi - \beta}{2} \right) \right) +$$

$$+ \sin \left[\alpha \beta + (1 - \lambda) \left(\frac{\pi - \beta}{2} \right) + \mu \beta + (1 - \mu) \left(\frac{\pi - \beta}{2} \right) \right] =$$

$$= \sin \left[\lambda \left(\beta - \frac{\pi - \beta}{2} \right) + \frac{\pi - \beta}{2} \right] + \sin \left[\mu \left(\beta - \frac{\pi - \beta}{2} \right) + \frac{\pi - \beta}{2} \right] +$$

$$+ \sin \left[(\lambda + \mu) \left(\beta - \frac{\pi - \beta}{2} \right) + \pi - \beta \right] = g(\lambda, \mu)$$

$$g: [0,1] \times [0,1] \rightarrow \mathbb{R}$$

g is concave defined on the convex set $[0,1] \times [0,1] \cap \{(\lambda, \mu) | \lambda + \mu \geq \frac{2}{3}\}$

It will attain its maximum in the points $A \left(\frac{2}{3}, 0 \right), B(1,0), C(1,1), D(0,1), F \left(0, \frac{2}{3} \right)$

Being simetric it remains to verify $A \left(\frac{2}{3}, 0 \right), B(1,0), C(1,1)$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$g\left(\frac{2}{3}, 0\right) = \sin\left(\frac{2}{3} \cdot \left(\beta - \frac{\pi - \beta}{2}\right) + \frac{\pi - \beta}{2}\right) + \sin\left(\frac{\pi - \beta}{2}\right) + \sin\left(\frac{2}{3} \cdot \left(\beta - \frac{\pi - \beta}{2}\right) + \pi - \beta\right)$$

=

$$= \sin\left(\frac{3\beta + \pi}{6}\right) + \sin\left(\frac{\pi - \beta}{2}\right) + \sin\frac{2\pi}{3} \geq \sin\beta + 2 \sin\left(\frac{\pi - \beta}{2}\right)$$

$$\text{Or: } \sin\frac{2\pi}{3} \geq \sin\beta - \sin\left(\frac{3\beta + \pi}{6}\right) + \sin\left(\frac{\pi - \beta}{2}\right)$$

$$\text{Using the same technique: } \beta \geq \frac{3\beta + \pi}{6} \geq \frac{\pi - \beta}{2}$$

Or Steffensen in discrete form

$$\begin{aligned} \sin\beta - \sin\left(\frac{3\beta + \pi}{6}\right) + \sin\left(\frac{\pi - \beta}{2}\right) &\leq \sin\left(\beta - \frac{3\beta + \pi}{6} + \frac{\pi - \beta}{2}\right) = \\ &= \sin\left(\frac{6\beta - 3\beta - \pi + 3\pi - 3\beta}{6}\right) = \sin\frac{\pi}{3} \end{aligned}$$

Ramus-E, Rouche, Blundon for any acute angled triangle:

If ABC triangle is acute-angled, that has the circumcircle triangle $C(0, R)$,

and the inscribed circle $C(I, r)$ and $A, B, C \in \left[0, \frac{\pi}{2}\right]$

Then it exists two acute-angled triangles that has the same R respectively r

and it exists the double inequality:

$s_1 \leq s \leq s_2$ where s_1, s_2, s are semiperimeters of the those triangles.

Proof:

In the first part of the article we've proved that:

$$\alpha \leq C \leq B \leq A \leq \beta$$

In the situation that the triangle is acute-angled, we can replace

$$\{A, B, C\} \text{ with } \left\{\frac{\pi-A}{2}, \frac{\pi-B}{2}, \frac{\pi-C}{2}\right\}$$

the triangle that has the angles having the measure: $\frac{\pi-A}{2}, \frac{\pi-B}{2}, \frac{\pi-C}{2}$, is acute angled and:

$$\frac{\pi-A}{2} + \frac{\pi-B}{2} + \frac{\pi-C}{2} = \pi, \text{ and}$$

$$\frac{\pi - \beta}{2} \leq \frac{\pi - A}{2} \leq \frac{\pi - B}{2} \leq \frac{\pi - C}{2} \leq \frac{\pi - \alpha}{2}$$

In the same way like in the first part it will follow:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$\begin{aligned} \sin\left(\frac{\pi - \alpha}{2}\right) + 2 \sin\left(\frac{\pi - \frac{\pi - \alpha}{2}}{2}\right) &\leq \sin\left(\frac{\pi - A}{2}\right) + \sin\left(\frac{\pi - B}{2}\right) + \sin\left(\frac{\pi - C}{2}\right) \leq \\ &\leq \sin\left(\frac{\pi - \beta}{2}\right) + 2 \sin\left(\frac{\pi - \frac{\pi - \beta}{2}}{2}\right) \end{aligned}$$

So: $s_1 \leq s \leq s_2$

Bibliography:

- [1] R. Tyrrel Rockafellar: Convex Analysis, Theta Publishing House, 2002.
- [2] Arthur Engel: Mathematical problems, Solving strategies, GIL Publishing House, 2006.
- [3] Shan – He Wu, Yu-Ming Chu: Geometric interpretation of Blundon's inequality and Ciamborlini's inequality, Journal of inequalities and Applications, December 2014

Bellow we illustrate the proof:

O246. Let P be a point inside or on the boundry of a convex polygon A_1, A_2, \dots, A_n . Prove that the maximum value of $f(P) = \sum_{i=1}^n |P - A_i|$ is achieved when P is a vertex

A_1, A_2, \dots, A_n

Proposed by Cosmin Pohoata, Princeton University, USA

Solution by G.R A. 20 Problems Solving Group, Roma, Italy

Let C be the set of points inside or on the boundry of the convexe polygon. We first note that the map $P \rightarrow f(P)$ is convex: if $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$ then, for any $P, Q \in C$, we have that $\alpha P + \beta Q \in C$ and

$$\begin{aligned} f(\alpha P + \beta Q) &= \sum_{i=1}^n [\alpha(P - A_i) + \beta(Q - A_i)] \\ &\leq \alpha \sum_i^n |P - A_i| + \beta \sum_i^n |Q - A_i| = \alpha f(P) + \beta f(Q) \end{aligned}$$

Moreover, for any point P in C is a convex combination of the vertices A_1, A_2, \dots, A_n that is, there exists $\alpha_1, \alpha_2, \dots, \alpha_n \geq 0$ such that $\sum_{i=1}^n \alpha_i = 1$ and

$$P = \sum_{i=1}^n \alpha_i A_i$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Hence, by the convexity of f ,

$$f(P) = f\left(\sum_{t=1}^n \alpha_t A_t\right) \leq \sum_{t=1}^n \alpha_t f(A_t) \leq \sum_{t=1}^n \alpha_t \max_{t=1, \dots, n} f(A_t) = \max_{t=1, \dots, n} f(A_t)$$

which means that the maximum value of $f(P)$ is attained when P is a vertex of C .