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Abstract
In this paper, the Ramanujan 4

π
series is represented as an integral of the com-

plete elliptic integral K and E functions over the interval (0,1). After deriving the
integrals, an integral representation for π was given in terms of the elliptic integral
functions.
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1 Introduction
Towards the end of the first paper that Ramanujan published in England, he wrote at
the beginning of section 13, ”I shall conclude this paper by giving a few series for 1

π
”.

Ramanujan then recorded three series representations for 1
π

.

Ramanujan proposed that [2]

4
π
=

∞

∑
n=0

(6n+1)An

4n , where An =

( 1
2

)3
n

(n!)3

2 The integral representation

Let Ω =
∞

∑
n=0

(6n+1)
( 1

2

)3
n

4n (n!)3

=⇒ Ω =
6

Γ
( 1

2

)3

∞

∑
n=0

nΓ
(
n+ 1

2

)3

(n!)3 4n︸ ︷︷ ︸
A

+
1

Γ
( 1

2

)3

∞

∑
n=0

Γ
(
n+ 1

2

)3

(n!)3 4n︸ ︷︷ ︸
B
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A =
6

Γ
( 1

2

)6

∞

∑
n=0

nΓ
(
n+ 1

2

)3
Γ
( 1

2

)3

(n!)3 4n

=
6

π3

∞

∑
n=0

nβ
((

n+ 1
2

)
, 1

2

)3

4n (n!)3 ,

The beta function is defined as

β (m,n) =
∫ 1

0
xm−1 (1− x)n−1 dx for m,n > 0 (1)

=⇒ A =
6

π3

∞

∑
n=0

( n
4n

)∫ 1

0
xn− 1

2 (1− x)−
1
2 dx

∫ 1

0
yn− 1

2 (1− y)−
1
2 dy

∫ 1

0
zn− 1

2 (1− z)−
1
2 dz

=
6

π3

∫ 1

0

∫ 1

0

∫ 1

0

((1− x)(1− y)(1− z))
−1
2

(xyz)
1
2

∞

∑
n=0

n
(xyz

4

)n
dxdydz

=
6

π3

∫ 1

0

∫ 1

0

∫ 1

0

4xyz

(4− xyz)2 · dxdydz

((1− x)(1− y)(1− z)(xyz))
1
2

=
24
π3

∫ 1

0
y

1
2 (1− y)

−1
2 dy

∫ 1

0
z

1
2 (1− z)

−1
2 dz

∫ 1

0

x
1
2 (1− x)

−1
2

(4− xyz)2 dx

Evaluating the integral inside out, let φ (a) =
∫ 1

0

x
1
2 (1− x)

−1
2

(4−ax)2 dx for a = yz.

Substitute x = sin2
θ

φ (a) =
∫ π

2

0

sinθ

cosθ
· 2sinθ .cosθ(

4−asin2
θ
)2 dθ

= 2
∫ π

2

0

sin2
θ(

4−asin2
θ
)2 dθ

By Weierstrass’ substitution, let t = tanx =⇒ dθ =
dt

1+ t2 , sin t =
t√

1+ t2

=⇒ φ (a) = 2
∫

∞

0

t2

(1+ t2)
(

4− at2

1+t2

)2 · dt
1+ t2

= 2
∫

∞

0

t2

(4+ t2 (4−a))2 dt

m→4−a
= 2

∫
∞

0

t2

(4+mt2)2 dt

φ (4−m) =
2
m

∫
∞

0

dt
4+mt2 − 8

m

∫
∞

0

dt

(4+mt2)2

=
2

m2

∫
∞

0

dt
4
m + t2

− 8
m3

∫
∞

0

dt( 4
m + t2

)2

2



Representing the Ramanujan 4
π

... Abdulsalam RMM

=
2

m2

√
m

2
arctan

(√
m

2

)∣∣∣∣∞
0
− 16

m3√m
· m2

16

∫
∞

0

dt

(t2 +1)2

t=tanα
=

π

2m
√

m
− 1

m
√

m

∫ π
2

0

sec2 α

sec4 α
dα

=
π

2m
√

m
− 1

m
√

m

∫ π
2

0
cos2

α dα

=
π

2m
√

m
− 1

m
√

m

(
α

2
+

sin2α

4

)∣∣∣∣ π
2

0

=
π

2m
√

m
− π

4m
√

m
=

π

4m
√

m

=⇒ φ (a) =
π

4(4−a)
√

4−a

A =
24
π3

∫ 1

0
y

1
2 (1− y)

−1
2 dy

∫ 1

0
z

1
2 (1− z)

−1
2 · π

4(4− yz)
√

4− yz
dz

By Fubini’s theorem, we have that,

A =
6

π2

∫ 1

0
z

1
2 (1− z)

−1
2 dz

∫ 1

0
y

1
2 (1− y)

−1
2 · dy

(4− yz)
√

4− yz

Let Φ(z) =
∫ 1

0

y
1
2 (1− y)

−1
2

(4− yz)
3
2

dy

Substitute y = sin2
θ

Φ(z) =
∫ π

2

0

sinθ

cosθ
· 2sinθ · cosθ(

4− zsin2
θ
) 3

2
dθ

= 2
∫ π

2

0

sin2
θ(

4− zsin2
θ
) 3

2
dθ

z→4z
=

1
4

∫ π
2

0

sin2
θ(

1− zsin2
θ
) 3

2
dθ

=
1
4z

∫ π
2

0

dθ(
1− zsin2

θ
) 3

2
−
∫ π

2

0

dθ(
1− zsin2

θ
) 1

2


It can be proven by Leibnitz-Maclaurin series that

1
(1− x)a =

∞

∑
k=0

(a)k xk

k!

Φ(z) =
1
4z

∫ π
2

0

∞

∑
k=0

zk sin2k
θ
( 3

2

)
k

k!
dθ − 1

4z

∫ π
2

0

∞

∑
k=0

zk sin2k
θ
( 1

2

)
k

k!
dθ

Interchanging the summation for integration and integrating term-wise

Φ(z) =
1
4z

∞

∑
k=0

zk
( 3

2

)
k

k!

∫ π
2

0
sin2k

θdθ − 1
4z

∞

∑
k=0

zk
( 1

2

)
k

k!

∫ π
2

0
sin2k

θdθ
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By substituting x = sin2
θ in (1),

β (m,n) = 2
∫ π

2

0
sin2m−1

θ cos2n−1
θ dθ

2
∫ π

2

0
sin2k

θ dθ = β

(
k+

1
2
,

1
2

)

β

(
k+

1
2
,

1
2

)
=

Γ
(
k+ 1

2

)
Γ
( 1

2

)2

Γ
( 1

2

)
Γ(k+1)

=

( 1
2

)
k ·π

(1)k

=⇒ Φ(z) =
π

8z

∞

∑
k=0

( 3
2

)
k

( 1
2

)
k

(1)k
· zk

k!
− π

8z

∞

∑
k=0

( 1
2

)
k

( 1
2

)
k

(1)k
· zk

k!
(2)

Writing the series in (2) in terms of Gauss’ Hypergeometric function,

Φ(z) =
π

8z 2F1

(
3
2
,

1
2

;1;z
)
− π

8z 2F1

(
1
2
,

1
2

;1;z
)

The Elliptic Integral functions are defined as;

F (k,θ)=
∫

θ

0

dϑ√
1− k2 sin2

ϑ

, E (k,θ)=
∫

θ

0

√
1− k2 sin2

ϑ dϑ , for 0< k< 1 ∧ 0< θ ≤ π

2
.

When θ =
π

2
, the integral is said to be complete. At θ =

π

2
, F (k,θ) is denoted as

K (k)

K (k) =
∫ π

2

0

dθ√
1− k2 sin2

θ

t→sinθ
=

∫ 1

0

dt√
1− k2t2

√
1− t2

t→u2
=

1
2

∫ 1

0

u−
1
2

√
1−uk2

√
1−u

du (3)

Gauss’ Hypergeometric function Integral representation is [1]

β (c−b,b)2F1 (a,b;c;z) =
∫ 1

0

tb−1 (1− t)c−b−1

(1− tz)a dt (4)

By comparing (4) with (3),

b−1 =−1
2
, c−b−1 =−1

2
, z = k2 =⇒ a = b =

1
2
,c = 1 z = k2.

K (k) =
1
2

β

(
1− 1

2
,

1
2

)
2F1

(
1
2
,

1
2

;1;k2
)

=
1
2

β

(
1
2
,

1
2

)
2F1

(
1
2
,

1
2

;1;k2
)

{
β

(
1
2
,

1
2

)
=

Γ
( 1

2

)
Γ
( 1

2

)
Γ(1)

= π

}
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=
π

2 2F1

(
1
2
,

1
2

;1;k2
)

Similarly,

E (k) =
π

2 2F1

(
1
2
,−1

2
;1;k2

)
By Euler’s transformation;

2F1 (a,b;c;z) = (1− z)c−a−b
2F1 (c−a,c−b;c;z)

=⇒ 2F1

(
3
2
,

1
2

;1;k2
)
=

1
1− z 2F1

(
1
2
,−1

2
;1;k2

)

Φ(z) =
π

8z 2F1

(
3
2
,

1
2

;1;z
)
− π

8z 2F1

(
1
2
,

1
2

;1;z
)

=
E (

√
z)

4z(1− z)
− K (

√
z)

4z

z→ z
4=

4E
(√ z

4

)
z(4− z)

−
K
(√ z

4

)
z

=⇒ A =
6

π2

∫ 1

0
z

1
2 (1− z)

−1
2 ·Φ(z)dz

=
6

π2

∫ 1

0
z

1
2 (1− z)

−1
2

(
4E
(√ z

4

)
z(4− z)

−
K
(√ z

4

)
z

)
dz

=
6

π2

∫ 1

0

4E
(√ z

4

)
−4K

(√ z
4

)
+ zK

(√ z
4

)
(4− z)

√
z− z2

dz

B =
1

Γ
( 1

2

)3

∞

∑
n=0

Γ
(
n+ 1

2

)3

(n!)3 4n

=
1

Γ
( 1

2

)6

∞

∑
n=0

Γ
(
n+ 1

2

)3
Γ
( 1

2

)3

(n!)3 4n

Γ( 1
2 )=

√
π

=
1

π3

∞

∑
n=0

β
((

n+ 1
2

)
, 1

2

)3

4n (n!)3

=
1

π3

∞

∑
n=0

(
1
4n

)∫ 1

0
xn− 1

2 (1− x)−
1
2 dx

∫ 1

0
yn− 1

2 (1− y)−
1
2 dy

∫ 1

0
zn− 1

2 (1− z)−
1
2 dz

=
1

π3

∫ 1

0

∫ 1

0

∫ 1

0

((1− x)(1− y)(1− z))
−1
2

(xyz)
1
2

∞

∑
n=0

(xyz
4

)n
dxdydz

=
1

π3

∫ 1

0

∫ 1

0

∫ 1

0

4
4− xyz

· dxdydz

((1− x)(1− y)(1− z)(xyz))
1
2

=
4

π3

∫ 1

0
y
−1
2 (1− y)

−1
2 dy

∫ 1

0
z
−1
2 (1− z)

−1
2 dz

∫ 1

0

x
−1
2 (1− x)

−1
2

4− xyz
dx
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Evaluating the integral inside out, let ϕ (a) =
∫ 1

0

x
−1
2 (1− x)

−1
2

4−ax
dx for a = yz.

Substitute x = sin2
θ

ϕ (a) =
∫ π

2

0

1
sinθ · cosθ

· 2sinθ .cosθ

4−asin2
θ

dθ

= 2
∫ π

2

0

1
4−asin2

θ
dθ

By Weierstrass’ substitution, let t = tanx =⇒ dθ =
dt

1+ t2 ,sin t =
t√

1+ t2
.

ϕ (a) = 2
∫

∞

0

1(
4− at2

1+t2

) · dt
1+ t2

= 2
∫

∞

0

dt
(4+ t2 (4−a))

m→4−a
= 2

∫
∞

0

dt
(4+mt2)

ϕ (4−m) =
2
m

∫
∞

0

dt
4
m + t2

=
2
m
·
√

m
2

arctan
(√

m
2

)∣∣∣∣∞
0

=
2
m
·
√

m
2

· π

2
=

π

2
√

m

ϕ (a) =
π

2
√

4−a

=⇒ B =
4

π3 · π

2

∫ 1

0
y
−1
2 (1− y)

−1
2 dx

=
∫ 1

0
z
−1
2 (1− z)

−1
2 · dz√

4− yz

=
2

π2

∫ 1

0
z
−1
2 (1− z)

−1
2 dz

∫ 1

0
y
−1
2 (1− y)

−1
2 · dy√

4− yz

Let χ (z) =
∫ 1

0

y
−1
2 (1− y)

−1
2

(4− yz)
1
2

dy

Substitute y = sin2
θ

χ (z) =
∫ π

2

0

1
sinθ cosθ

· 2sinθ · cosθ(
4− zsin2

θ
) 1

2
dθ

= 2
∫ π

2

0

dθ√
4− zsin2

θ

z→4z
=

1
2
·2
∫ π

2

0

dθ√
1− zsin2

θ

= K
(√

z
) z→ z

4= K
(√

z
4

)
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=⇒ B =
2

π2

∫ 1

0
z
−1
2 (1− z)

−1
2 K

(√
z
4

)
dz =

2
π2

∫ 1

0

K
(√ z

4

)
√

z− z2
dz

Recall that Ω = A+B

=⇒ Ω =
6

π2

∫ 1

0

4E
(√ z

4

)
−4K

(√ z
4

)
+ zK

(√ z
4

)
(4− z)

√
z− z2

dz+
2

π2

∫ 1

0

K
(√ z

4

)
√

z− z2
dz

=
∫ 1

0

24E
(√ z

4

)
+4(z−4)K

(√ z
4

)
π2 (4− z)

√
z− z2

dz

∴
∞

∑
n=0

(6n+1)
( 1

2

)3
n

4n (n!)3 =
4

π2 =
∫ 1

0

24E
(√ z

4

)
+4(z−4)K

(√ z
4

)
π2 (4− z)

√
z− z2

dz

=⇒ 4
π
=
∫ 1

0

24E
(√ z

4

)
+4(z−4)K

(√ z
4

)
π2 (4− z)

√
z− z2

dz

=⇒ 4π =
∫ 1

0

24E
(√ z

4

)
+4(z−4)K

(√ z
4

)
(4− z)

√
z− z2

dz

=⇒ π =
∫ 1

0

6E
(√ z

4

)
+(z−4)K

(√ z
4

)
(4− z)

√
z− z2

dz

E (
√

z) and K (
√

z) are complete elliptic integrals with z as the elliptic modulus and

(a)n, the Pochhammer symbol is defined as the rising factorial i.e. (a)n =
Γ(a+n)

Γ(a)
=

a(a+1)(a+2)(a+3)(a+4) · · ·(a+n−1).

3 Main Results

4
π
=
∫ 1

0

24E
(√ z

4

)
+4(z−4)K

(√ z
4

)
π2 (4− z)

√
z− z2

dz

π =
∫ 1

0

6E
(√ z

4

)
+(z−4)K

(√ z
4

)
(4− z)

√
z− z2

dz
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