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Abstract

In this paper, the Ramanujan % series is represented as an integral of the com-
plete elliptic integral K and E functions over the interval (0, 1). After deriving the
integrals, an integral representation for 7 was given in terms of the elliptic integral
functions.
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1 Introduction

Towards the end of the first paper that Ramanujan published in England, he wrote at
the beginning of section 13, ”’I shall conclude this paper by giving a few series for %”.
Ramanujan then recorded three series representations for %

Ramanujan proposed that [2]
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The beta function is defined as
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Evaluating the integral inside out, let ¢ (a) = / ;dx for a =yz.
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By Fubini’s theorem, we have that,
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It can be proven by Leibnitz-Maclaurin series that
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Interchanging the summation for integration and integrating term-wise
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By substituting x = sin® 6 in (1),
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Writing the series in (2) in terms of Gauss’ Hypergeometric function,
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The Elliptic Integral functions are defined as;
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When 0 = —, the integral is said to be complete. At 6 = 5 F (k,0) is denoted as
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By Euler’s transformation;
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Evaluating the integral inside out, let(p(a):/ *2 ( ax) dx fora =yz.
Jo -
Substitute x = sin® 6
Z 1 2sin6.cos O
= . do
¢(a) /0 sin®-cos@® 4 —asin’6
3 1
:2/2 ———~do
0 4—asin“ 6
By Weierstrass’ substitution, let t = tanx — dO = i sint = !
y T 2T 142
dt
2/ o at2 1—|—l‘2
l+t2
72/“’ dt
o (4+12(4—-a))
m—>_4—az/°° dt
B 0o (4+me?)
2 (= dt
4—m :—/
ol ) mlo &4
) o
=— @arctan @
m 2 2 0
_ 2 ym=m_ =
m 2 2 2ym
(@)=
¢ C2Vd—a
— = E/I Ty dr
2 2 Jo y y
L -1 dz
— 72 172 2.
A (1-2) T
2 b -1 I -1 dy
= — 72 (1—z de/ 2 (1 — 2
2 a-ate[ya-yT 2
217
Let x (z /y y)l dy
(4—yz2)2
Substitute y = sin” 6
7 1 2sin6 - cos O
@)= [ ~ do

sin @ cos 6 (4—zsin2 0)*

_2/72r 9 Z:>4zl 2/7 d9
0 4—zsin20 2 Jo /1—zsin%0

:K(\/z)zi“K(\/E)



Representing the Ramanujan % Abdulsalam RMM

Recall that Q = A+ B
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E (1/7) and K (4/z) are complete elliptic integrals with z as the elliptic modulus and
r
(a),,, the Pochhammer symbol is defined as the rising factorial i.e. (a), = (a+n) =
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3 Main Results

References

[1] Zaid Alyafeai. Advanced Inegral Techniques.

[2] BRUCE C.BERNDT, S.BHARGAVA, and FRANK G. GARVAN. RAMANU-
JAN’S THEORIES OF ELLIPTIC FUNCTIONS TO ALTERNATIVE BASES.



	Introduction
	The integral representation
	Main Results

