

R M M

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

ABOUT PROBLEM 5399

SCHOOL SCIENCE AND MATHEMATICS ASSOCIATION

SSMA JOURNAL FOUNDED IN 1901 IN CHICAGO

By Marin Chirciu – Romania

1) Let a, b, c be positive real numbers. Prove that:

$$\frac{2a + 2b}{\sqrt{6a^2 + 4ab + 6b^2}} + \frac{2b + 2c}{\sqrt{6b^2 + 4bc + 6c^2}} + \frac{2c + 2a}{\sqrt{6c^2 + 4ca + 6a^2}} \leq 3$$

Proposed by Angel Plaza – University of Las Palmas de Gran Canaria – Spain

Solution

We have $6a^2 + 4ab + 6b^2 \geq 4(a + b)^2 \Leftrightarrow 2(a - b)^2 \geq 0$, obviously, with equality for

$$a = b. \text{ It follows } \sum \frac{2a+2b}{\sqrt{6a^2+4ab+6b^2}} \leq \sum \frac{2a+2b}{\sqrt{4(a+b)^2}} = \sum \frac{2a+2b}{2(a+b)} = 3$$

We deduce that the inequality from enunciation holds, with equality if and only if

$$a = b = c.$$

Remark. The problem can be developed.

2) If $a, b, c > 0$ and $n \geq 1$, prove that:

$$\frac{a + b}{\sqrt{na^2 + (16 - 2n)ab + nb^2}} + \frac{b + c}{\sqrt{nb^2 + (16 - 2n)bc + nc^2}} + \frac{c + a}{\sqrt{nc^2 + (16 - 2n)ca + na^2}} \leq \frac{3}{2}$$

Proposed by Marin Chirciu – Romania

Solution

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

We have $na^2 + (4 - 2n)ab + nb^2 \geq (a + b)^2 \Leftrightarrow (n - 1)(a - b)^2 \geq 0$, obviously, with

equality for $n = 1$ or $a = b$.

$$\text{It follows } \sum \frac{a+b}{\sqrt{na^2 + (4-2n)ab + nb^2}} \leq \sum \frac{a+b}{\sqrt{(a+b)^2}} = \sum \frac{a+b}{a+b} = 3$$

We deduce that the inequality from enunciation holds, with equality if and only if $n = 1$ or

$$a = b = c.$$

3) If $a, b, c > 0$ and $n \geq 4$, prove that:

$$\frac{a+b}{\sqrt{na^2 + (16-2n)ab + nb^2}} + \frac{b+c}{\sqrt{nb^2 + (16-2n)bc + nc^2}} + \frac{c+a}{\sqrt{nc^2 + (16-2n)ca + na^2}} \leq \frac{3}{2}$$

Proposed by Marin Chirciu – Romania

Solution

We have $na^2 + (16 - 2n)ab + nb^2 \geq 4(a + b)^2 \Leftrightarrow (n - 4)(a - b)^2 \geq 0$, obviously,

with equality for $n = 4$ or $a = b$.

$$\text{It follows } \sum \frac{a+b}{\sqrt{na^2 + (16-2n)ab + nb^2}} \leq \sum \frac{a+b}{\sqrt{4(a+b)^2}} = \sum \frac{a+b}{2(a+b)} = \frac{3}{2}$$

We deduce that the inequality from enunciation holds, with equality if and only if $n = 4$ or

$$a = b = c.$$

4) If $a, b, c > 0$ and $n \geq 9$, prove that:

$$\frac{a+b}{\sqrt{na^2 + (36-2n)ab + nb^2}} + \frac{b+c}{\sqrt{nb^2 + (36-2n)bc + nc^2}} + \frac{c+a}{\sqrt{nc^2 + (36-2n)ca + na^2}} \leq 1$$

Proposed by Marin Chirciu – Romania

Solution

We have $na^2 + (36 - 2n)ab + nb^2 \geq 9(a + b)^2 \Leftrightarrow (n - 9)(a - b)^2 \geq 0$, obviously,

with equality for $n = 9$ or $a = b$. It follows

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$\sum \frac{a+b}{\sqrt{na^2 + (36-2n)ab + nb^2}} \leq \sum \frac{a+b}{\sqrt{9(a+b)^2}} = \sum \frac{a+b}{3(a+b)} = 1$$

We deduce that the inequality from enunciation holds, with equality if and only if $n = 9$ or

$$a = b = c.$$

Remark. The inequality can be generalized:

5) If $a, b, c > 0$ and $n \geq k^2 > 0$, prove that:

$$\frac{a+b}{\sqrt{na^2 + (4k^2 - 2n)ab + nb^2}} + \frac{b+c}{\sqrt{nb^2 + (4k^2 - 2n)bc + nc^2}} + \frac{c+a}{\sqrt{nc^2 + (4k^2 - 2n)ca + na^2}} \leq \frac{3}{k}$$

Proposed by Marin Chirciu – Romania

Solution

We have $na^2 + (4k^2 - 2n)ab + nb^2 \geq k^2(a+b)^2 \Leftrightarrow (n - k^2)(a - b)^2 \geq 0$, obviously,

with equality for $n = 4$ or $a = b$.

$$\text{It follows } \sum \frac{a+b}{\sqrt{na^2 + (4k^2 - 2n)ab + nb^2}} \leq \sum \frac{a+b}{\sqrt{k^2(a+b)^2}} = \sum \frac{a+b}{k(a+b)} = \frac{3}{k}$$

We deduce that the inequality from enunciation holds, with equality if and only if $n = k^2$

or $a = b = c$.