

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

ABOUT PROBLEM JP.206

RMM – 24, SPRING EDITION 2020-PAPER VARIANT

By Marin Chirciu – Romania

1) In ΔABC :

$$\frac{4r}{R^2} \leq \frac{h_a}{r_b r_c} + \frac{h_b}{r_c r_a} + \frac{h_c}{r_a r_b} \leq \frac{R}{2r^2}$$

Proposed by George Apostolopoulos – Messolonghi – Greece

Solution

We prove the following Lemma:

Lemma

2) In ΔABC :

$$\frac{h_a}{r_b r_c} + \frac{h_b}{r_c r_a} + \frac{h_c}{r_a r_b} = \frac{1}{2R} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right]$$

Proof.

Using $h_a = \frac{2s}{a}$ and $r_a = \frac{s}{s-a}$ we obtain:

$$\begin{aligned} \frac{h_a}{r_b r_c} + \frac{h_b}{r_c r_a} + \frac{h_c}{r_a r_b} &= \sum \frac{\frac{2s}{a}}{\frac{s}{s-b} \cdot \frac{s}{s-c}} = \frac{2}{s} \sum \frac{(s-b)(s-c)}{a} \\ &= \frac{2}{rs} \cdot \frac{r}{4Rs} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] = \\ &= \frac{1}{2R} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right], \text{ which follows from } \sum \frac{(s-b)(s-c)}{a} = \frac{r}{4Rs} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] \end{aligned}$$

Let's get back to the main problem:

Using Lemma, the enunciation can be written: $\frac{4r}{R^2} \leq \frac{1}{2R} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] \leq \frac{R}{2r^2}$

The right-hand inequality:

$\frac{1}{2R} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] \leq \frac{R}{2r^2} \Leftrightarrow s^2(R^2 - r^2) \geq r^2(4R + r)^2$, which follows from Gerretsen's

inequality $s^2 \geq 16Rr - 5r^2$. It remains to prove that:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$(16Rr - 5r^2)(R^2 - r^2) \geq r^2(4R + r)^2 \Leftrightarrow 16R^3 - 21R^2r - 24Rr^2 + 4r^3 \geq 0 \Leftrightarrow$$

$(R - 2r)(16R^2 + 11Rr - 2r^2) \geq 0$, obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

The left-hand inequality:

$$\frac{1}{2R} \left[1 + \left(\frac{4R + r}{s} \right)^2 \right] \geq \frac{4r}{R^2} \Leftrightarrow R(4R + r)^2 \geq s^2(8r - R)$$

We distinguish the following cases:

Case 1). If $(8r - R) < 0$, the inequality is obvious.

Case 2). If $(8r - R) \geq 0$, the inequality follows from Gerretsen's inequality:

$s^2 \leq 4R^2 + 4Rr + 3r^2$. It remains to prove that:

$$R(4R + r)^2 \geq (4R^2 + 4Rr + 3r^2)(8r - R) \Leftrightarrow 5R^3 - 5R^2r - 7Rr^2 - 6r^3 \geq 0 \Leftrightarrow$$

$\Leftrightarrow (R - 2r)(5R^2 + 5Rr + 3r^2) \geq 0$, obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

Remark.

The double inequality 1) can be strengthened:

3) In ΔABC :

$$\frac{2}{R} \leq \frac{h_a}{r_b r_c} + \frac{h_b}{r_c r_a} + \frac{h_c}{r_a r_b} \leq \frac{1}{R} + \frac{1}{2r}$$

Proposed by Marin Chirciu – Romania

Solution

Using Lemma, the enunciation can be written: $\frac{2}{R} \leq \frac{1}{2R} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] \leq \frac{1}{R} + \frac{1}{2r}$.

The right-hand inequality:

$$\frac{1}{2R} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] \leq \frac{1}{R} + \frac{1}{2r} \Leftrightarrow s^2 \geq \frac{r(4R+r)^2}{R+r}$$

$$s^2 \geq 16Rr - 5r^2 \geq \frac{r(4R+r)^2}{R+r}$$

Equality holds if and only if the triangle is equilateral.

The left-hand inequality:

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$\frac{1}{2R} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] \geq \frac{2}{R} \Leftrightarrow (4R+r)^2 \geq 3s^2, \text{ (Doucet's inequality)}$$

Equality holds if and only if the triangle is equilateral.

Remark.

A sequence of inequalities can be written:

4) In ΔABC :

$$\frac{4r}{R^2} \leq \frac{2}{R} \leq \frac{h_a}{r_b r_c} + \frac{h_b}{r_c r_a} + \frac{h_c}{r_a r_b} \leq \frac{1}{R} + \frac{1}{2r} \leq \frac{R}{2r^2}$$

Solution

See the double inequality 3) and Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

Remark.

Interchanging r_a with h_a we can propose:

5) In ΔABC :

$$\frac{1}{r} \leq \frac{r_a}{h_b h_c} + \frac{r_b}{h_c h_a} + \frac{r_c}{h_a h_b} \leq \frac{1}{2r} \left(1 + \frac{R}{2r} \right)$$

Proposed by Marin Chirciu – Romania

Solution

We prove the following lemma:

Lemma

6) In ΔABC :

$$\frac{r_a}{h_b h_c} + \frac{r_b}{h_c h_a} + \frac{r_c}{h_a h_b} = \frac{1}{4r} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right]$$

Proof.

Using $h_a = \frac{2s}{a}$ and $r_a = \frac{s}{s-a}$ we obtain:

$$\frac{r_a}{h_b h_c} + \frac{r_b}{h_c h_a} + \frac{r_c}{h_a h_b} = \sum \frac{\frac{S}{2S \cdot 2S}}{\frac{a}{a} \cdot \frac{c}{c}} = \frac{1}{4S} \sum \frac{bc}{s-a} = \frac{1}{4rs} \cdot \frac{s^2 + (4R+r)^2}{s} =$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$= \frac{1}{4r} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right], \text{ which follows from } \sum \frac{bc}{s-a} = \frac{s^2 + (4R+r)^2}{s}$$

Let's get back to the main problem:

Using Lemma, the enunciation can be written: $\frac{1}{r} \leq \frac{1}{4r} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] \leq \frac{1}{2r} \left(1 + \frac{R}{2r} \right)$

The right-hand inequality:

$\frac{1}{4r} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] \leq \frac{1}{2r} \left(1 + \frac{R}{2r} \right) \Leftrightarrow s^2 \geq \frac{r(4R+r)^2}{R+r}$, *which follows from Gerretsen's inequality*

$$s^2 \geq 16Rr - 5r^2 \geq \frac{r(4R+r)^2}{R+r}$$

Equality holds if and only if the triangle is equilateral.

The left-hand inequality:

$$\frac{1}{4r} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] \geq \frac{1}{r} \Leftrightarrow (4R+r)^2 \geq 3s^2, \text{ (Doucet's inequality)}$$

Equality holds if and only if the triangle is equilateral.

Remark.

Between the sums $\frac{h_a}{r_b r_c} + \frac{h_b}{r_c h_a} + \frac{h_c}{r_a r_b}$ and $\frac{r_a}{h_b h_c} + \frac{r_b}{h_c h_a} + \frac{r_c}{h_a h_b}$ the following relationship holds:

7) In ΔABC :

$$\frac{h_a}{r_b r_c} + \frac{h_b}{r_c h_a} + \frac{h_c}{r_a r_b} \leq \frac{r_a}{h_b h_c} + \frac{r_b}{h_c h_a} + \frac{r_c}{h_a h_b}$$

Proposed by Marin Chirciu – Romania

Solution

Using the above lemmas: $\sum \frac{h_a}{r_b r_c} = \frac{1}{2R} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right]$ and $\sum \frac{r_a}{h_b h_c} = \frac{1}{4r} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right]$

the inequality can be written:

$$\frac{1}{2R} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] \leq \frac{1}{4r} \left[1 + \left(\frac{4R+r}{s} \right)^2 \right] \Leftrightarrow R \geq 2r \text{ (Euler's inequality)}$$

Equality holds if and only if the triangle is equilateral.

References:

Romanian Mathematical Magazine-Interactive Journal-www.ssmrmh.ro