

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
 ABOUT BĂTINEȚU'S INEQUALITIES

PROBLEMS X.64, X.65, X.74-RMM 24-SPRING EDITION 2020-PAPER VARIANT

By Marin Chirciu – Romania

1) X.64. BĂTINEȚU'S INEQUALITY – 1

If $x, y, z > 0$ then in ΔABC the following relationship holds:

$$\frac{y+z}{x} \cdot a^2 + \frac{z+x}{y} \cdot b^2 + \frac{x+y}{z} \cdot c^2 \geq 8\sqrt{3} \cdot S$$

Proposed by D.M. Bătinețu – Giurgiu – Romania

Proof.

We prove:

Lemma

2) If $x, y, z > 0$ then in ΔABC

$$\frac{y+z}{x} \cdot a^2 + \frac{z+x}{y} \cdot b^2 + \frac{x+y}{z} \cdot c^2 \geq 2 \sum bc$$

Proof.

$$\begin{aligned} M_s &= \sum \frac{y+z}{x} \cdot a^2 = \sum \left(\frac{y+z}{x} + 1 - 1 \right) \cdot a^2 = \sum \frac{x+y+z}{x} a^2 - \sum a^2 = \\ &= (x+y+z) \sum \frac{a^2}{x} - \sum a^2 \stackrel{\text{Bergstrom}}{\geq} (x+y+z) \frac{(\sum a)^2}{x+y+z} - \sum a^2 = \\ &= (\sum a)^2 - \sum a^2 = \sum a^2 + 2 \sum bc - \sum a^2 = 2 \sum bc \end{aligned}$$

Let's get back to the main problem:

Using the Lemma, it suffices to prove that:

$$\begin{aligned} 2 \sum bc &\geq 8\sqrt{3} \cdot S \Leftrightarrow \sum bc \geq 4\sqrt{3} \cdot S \Leftrightarrow \left(\sum bc \right)^2 \geq 48S^2 \Leftrightarrow \\ &\Leftrightarrow (s^2 + r^2 + 4Rr)^2 \geq 48r^2s^2 \Leftrightarrow s^2(s^2 + 8Rr - 46r^2) + r^2(4R + r)^2 \geq 0 \end{aligned}$$

We've used the known identity in triangle $\sum bc = s^2 + r^2 + 4Rr$

We distinguish the cases:

Case 1). If $(s^2 + 8Rr - 46r^2) \geq 0$, the inequality is obvious.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Case 2). If $(s^2 + 8Rr - 46r^2) < 0$, the inequality can be rewritten:

$r^2(4R + r)^2 \geq s^2(46r^2 - 8Rr - s^2)$, which follows from Blundon-Gerretsen's inequality

$$16Rr - 5r^2 \leq s^2 \leq \frac{R(4R+r)^2}{2(2R-r)}. \text{ It remains to prove that:}$$

$$r^2(4R + r)^2 \geq \frac{R(4R+r)^2}{2(2R-r)}(46r^2 - 8Rr - 16Rr + 5r^2) \Leftrightarrow 24R^2 - 47Rr - 2r^2 \geq 0$$

$$\Leftrightarrow (R - 2r)(24R + r) \geq 0, \text{ obviously from Euler's inequality } R \geq 2r.$$

Equality holds if and only if the triangle is equilateral.

3) X.65. BĂTINEȚU INEQUALITY – 2

If $x, y, z > 0$ then in ΔABC the following relationship holds:

$$\frac{y+z}{x} \cdot a^4 + \frac{z+x}{y} \cdot b^4 + \frac{x+y}{z} \cdot c^4 \geq 32S^2$$

Proposed by D.M. Bătinețu – Giurgiu – Romania

Solution

We prove:

Lemma.

4) If $x, y, z > 0$ then in ΔABC :

$$\frac{y+z}{x} \cdot a^4 + \frac{z+x}{y} \cdot b^4 + \frac{x+y}{z} \cdot c^4 \geq 2 \sum b^2 c^2$$

Proof.

$$\begin{aligned} M_s &= \sum \frac{y+z}{x} \cdot a^4 = \sum \left(\frac{y+z}{x} + 1 - 1 \right) \cdot a^4 = \sum \frac{x+y+z}{x} a^4 - \sum a^4 = \\ &= (x+y+z) \sum \frac{a^4}{x} - \sum a^4 \stackrel{\text{Bergstrom}}{\geq} (x+y+z) \frac{(\sum a^2)^2}{x+y+z} - \sum a^4 = \\ &= \left(\sum a^2 \right)^2 - \sum a^4 = \sum a^4 + 2 \sum b^2 c^2 - \sum a^4 = 2 \sum b^2 c^2 \end{aligned}$$

Let's get back to the main problem:

Using the Lemma, it suffices to prove that:

$$2 \sum b^2 c^2 \geq 32S^2 \Leftrightarrow \sum b^2 c^2 \geq 16S^2 \Leftrightarrow s^4 + s^2(2r^2 - 8Rr) + r^2(4R + r)^2 \geq$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$\geq 16r^2s^2 \Leftrightarrow s^2(s^2 - 8Rr - 14r^2) + r^2(4R + r)^2 \geq 0$$

We've used the known identity in triangle $\sum b^2c^2 = s^4 + s^2(2r^2 - 8Rr) + r^2(4R + r)^2$

We distinguish the cases:

Case 1). If $(s^2 - 8Rr - 14r^2) \geq 0$, the inequality is obvious.

Case 2). If $(s^2 - 8Rr - 14r^2) < 0$, the inequality can be rewritten:

$r^2(4R + r)^2 \geq s^2(8Rr + 14r^2 - s^2)$, which follows from Blundon-Gerretsen's inequality

$$16Rr - 5r^2 \leq s^2 \leq \frac{R(4R+r)^2}{2(2R-r)}. \text{ It remains to prove that:}$$

$$r^2(4R + r)^2 \geq \frac{R(4R+r)^2}{2(2R-r)}(8Rr + 14r^2 - 16Rr + 5r^2) \Leftrightarrow 8R^2 - 17Rr - 2r^2 \geq 0 \Leftrightarrow$$

$$\Leftrightarrow (R - 2r)(8R + r) \geq 0, \text{ obviously from Euler's inequality } R \geq 2r.$$

Equality holds if and only if the triangle is equilateral.

5) X.74. If $x, y, z > 0$ then in ΔABC the following relationship holds:

$$\left(\frac{y^2 + z^2}{x^2} + \frac{z^2 + x^2}{y^2} + \frac{x^2 + y^2}{z^2} \right) (a^4 + b^4 + c^4) \geq 96S^2$$

Proposed by D.M. Bătinețu – Giurgiu, Dan Nănuță – Romania

Solution

We prove:

Lemma.

6) In ΔABC :

$$a^4 + b^4 + c^4 \geq 16S^2$$

F. Goldner, 1949

Proof.

$$\begin{aligned} \text{Using } \sum a^4 &= 2[s^4 - s^2(8Rr + 6r^2) + r^2(4R + r)^2], \text{ we have } a^4 + b^4 + c^4 \geq 16S^2 \Leftrightarrow \\ &\Leftrightarrow 2[s^4 - s^2(8Rr + 6r^2) + r^2(4R + r)^2] \geq 16r^2s^2 \Leftrightarrow \\ &\Leftrightarrow s^2(s^2 - 8Rr - 14r^2) + r^2(4R + r)^2 \geq 0. \end{aligned}$$

We distinguish the cases:

Case 1). If $(s^2 - 8Rr - 14r^2) \geq 0$, the inequality is obvious.

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

Case 2). If $(s^2 - 8Rr - 14r^2) < 0$, the inequality can be rewritten:

$r^2(4R + r)^2 \geq s^2(8Rr + 14r^2 - s^2)$, which follows from Blundon-Gerretsen inequality

$16Rr - 5r^2 \leq s^2 \leq \frac{R(4R+r)^2}{2(2R-r)}$. It remains to prove that:

$$r^2(4R + r)^2 \geq \frac{R(4R+r)^2}{2(2R-r)} (8Rr + 14r^2 - 16Rr + 5r^2) \Leftrightarrow 8R^2 - 17Rr - 2r^2 \geq 0 \Leftrightarrow$$

$$\Leftrightarrow (R - 2r)(8R + r) \geq 0, \text{ obviously from Euler's inequality } R \geq 2r.$$

Equality holds if and only if the triangle is equilateral.

Let's get back to the main problem:

We have $\frac{y^2+z^2}{x^2} + \frac{z^2+x^2}{y^2} + \frac{x^2+y^2}{z^2} \geq 6$, which follows from $\frac{x^2}{y^2} + \frac{y^2}{x^2} \geq 2$, with equality for $x = y$

and the analogs.

Using the Lemma and the above inequality we obtain the conclusion.

Equality holds if and only if the triangle is equilateral and $x = y = z$.

Remark.

In the same way we can propose:

7) If $x, y, z > 0$ then in ΔABC the following relationship holds:

$$\frac{y+z}{x} \cdot (b+c)^2 + \frac{z+x}{y} \cdot (c+a)^2 + \frac{x+y}{z} \cdot (a+b)^2 \geq 32\sqrt{3} \cdot s$$

Proposed by Marin Chirciu – Romania

Solution.

We prove:

Lemma.

8) If $x, y, z > 0$ then in ΔABC :

$$\frac{y+z}{x} \cdot (b+c)^2 + \frac{z+x}{y} \cdot (c+a)^2 + \frac{x+y}{z} \cdot (a+b)^2 \geq 8s^2 + 2 \sum bc$$

Proof.

$$M_s = \sum \frac{y+z}{x} \cdot (b+c)^2 = \sum \left(\frac{y+z}{x} + 1 - 1 \right) \cdot (b+c)^2 =$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$\begin{aligned}
 &= \sum \frac{x+y+z}{x} (b+c)^2 - \sum (b+c)^2 = (x+y+z) \sum \frac{(b+c)^2}{x} - \sum (b+c)^2 \geq \\
 &\stackrel{\text{Bergstrom}}{\geq} (x+y+z) \frac{(2 \sum a)^2}{x+y+z} - \sum (b+c)^2 = 4 \left(\sum a \right)^2 - \sum (b^2 + c^2 + 2bc) = \\
 &= 4 \sum a^2 + 8 \sum bc - 2 \sum a^2 - 2 \sum bc = 2 \sum a^2 + 6 \sum bc = 8s^2 + 2 \sum bc
 \end{aligned}$$

Let's get back to the main problem:

Using the Lemma, it suffices to prove that:

$$\begin{aligned}
 8s^2 + 2 \sum bc &\geq 32\sqrt{3} \cdot S \Leftrightarrow 5s^2 + 4Rr + r^2 \geq 16\sqrt{3} \cdot S \Leftrightarrow \\
 &\Leftrightarrow (5s^2 + 4Rr + r^2)^2 \geq 768r^2s^2 \Leftrightarrow \\
 &\Leftrightarrow s^2(25s^2 + 40Rr - 758r^2) + r^2(4R + r)^2 \geq 0
 \end{aligned}$$

We've used the known identity in triangle $\sum bc = s^2 + r^2 + 4Rr$.

We distinguish the cases:

Case 1). If $(25s^2 + 40Rr - 758r^2) \geq 0$, the inequality is obvious.

Case 2). If $(25s^2 + 40Rr - 758r^2) < 0$, the inequality can be rewritten:

$r^2(4R + r)^2 \geq s^2(46r^2 - 8Rr - s^2)$, which follows from Blundon-Gerretsen inequality

$$16Rr - 5r^2 \leq s^2 \leq \frac{R(4R+r)^2}{2(2R-r)}. \text{ It remains to prove that:}$$

$$r^2(4R + r)^2 \geq \frac{R(4R+r)^2}{2(2R-r)} (758r^2 - 40Rr - 25(16Rr - 5r^2)) \Leftrightarrow$$

$$\Leftrightarrow 440R^2 - 879Rr - 2r^2 \geq 0 \Leftrightarrow (R - 2r)(440R + r) \geq 0, \text{ obvious from Euler's}$$

inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

9) If $x, y, z > 0$ then in ΔABC the following relationship holds:

$$\frac{y+z}{x} \cdot (b+c)^4 + \frac{z+x}{y} \cdot (c+a)^4 + \frac{x+y}{z} \cdot (a+b)^4 \geq 512S^2$$

Proposed by Marin Chirciu – Romania

Solution

We prove:

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

Lemma

10) If $x, y, z > 0$ then in ΔABC :

$$\frac{y+z}{x} \cdot (b+c)^4 + \frac{z+x}{y} \cdot (c+a)^4 + \frac{x+y}{z} \cdot (a+b)^4 \geq 2 \sum (a+b)^2 (a+c)^2$$

Proof.

$$\begin{aligned} M_s &= \sum \frac{y+z}{x} \cdot (b+c)^4 = \sum \left(\frac{y+z}{x} + 1 - 1 \right) \cdot (b+c)^4 = \\ &= \sum \frac{x+y+z}{x} (b+c)^4 - \sum (b+c)^4 = (x+y+z) \sum \frac{(b+c)^4}{x} - \sum (b+c)^4 \geq \\ &\stackrel{\text{Bergstrom}}{\geq} (x+y+z) \frac{(\sum (b+c)^2)^2}{x+y+z} - \sum (b+c)^4 = \left(\sum (b+c)^2 \right)^2 - \sum (b+c)^4 = \\ &= \sum (b+c)^4 + 2 \sum (a+b)^2 (a+c)^2 - \sum (b+c)^4 = 2 \sum (a+b)^2 (a+c)^2 \end{aligned}$$

Let's get back to the main problem:

Using the Lemma, it suffices to prove that:

$$\begin{aligned} 2 \sum (a+b)^2 (a+c)^2 &\geq 512S^2 \Leftrightarrow \sum (a+b)^2 (a+c)^2 \geq 256S^2 \Leftrightarrow \\ &\Leftrightarrow 9s^4 + s^2(8Rr - 6r^2) + r^2(4R + r)^2 \geq 256r^2s^2 \Leftrightarrow \\ &\Leftrightarrow s^2(9s^2 + 8Rr - 262r^2) + r^2(4R + r)^2 \geq 0 \end{aligned}$$

We've used the known identity in triangle

$$\sum (a+b)^2 (a+c)^2 = 9s^4 + s^2(8Rr - 6r^2) + r^2(4R + r)^2$$

We distinguish the cases:

Case 1). If $(9s^2 + 8Rr - 262r^2) \geq 0$, the inequality is obvious.

Case 2). If $(9s^2 + 8Rr - 262r^2) < 0$, the inequality can be rewritten:

$r^2(4R + r)^2 \geq s^2(262r^2 - 8Rr - 9s^2)$, which follows from Blundon-Gerretsen

$$16Rr - 5r^2 \leq s^2 \leq \frac{R(4R+r)^2}{2(2R-r)}. \text{ It remains to prove that:}$$

$$r^2(4R + r)^2 \geq \frac{R(4R+r)^2}{2(2R-r)} (262r^2 - 8Rr - 9(16Rr - 5r^2)) \Leftrightarrow$$

$$\Leftrightarrow 152R^2 - 303Rr - 2r^2 \geq 0 \Leftrightarrow (R - 2r)(152R + r) \geq 0, \text{ obvious from Euler's inequality } R \geq 2r.$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

Equality if and only if the triangle is equilateral.

11) If $x, y, z > 0$ then in ΔABC the following relationship holds:

$$\frac{y+z}{x} \cdot b^2 c^2 + \frac{z+x}{y} \cdot c^2 a^2 + \frac{x+y}{z} \cdot a^2 b^2 \geq 32S^2$$

Proposed by Marin Chirciu – Romania

Solution

We prove:

Lemma.

12) If $x, y, z > 0$ then in ΔABC :

$$\frac{y+z}{x} \cdot b^2 c^2 + \frac{z+x}{y} \cdot c^2 a^2 + \frac{x+y}{z} \cdot a^2 b^2 \geq 2abc \sum a$$

Proof.

$$\begin{aligned} M_s &= \sum \frac{y+z}{x} \cdot b^2 c^2 = \sum \left(\frac{y+z}{x} + 1 - 1 \right) \cdot b^2 c^2 = \sum \frac{x+y+z}{x} b^2 c^2 - \sum b^2 c^2 = \\ &= (x+y+z) \sum \frac{b^2 c^2}{x} - \sum b^2 c^2 \stackrel{\text{Bergstrom}}{\geq} (x+y+z) \frac{(\sum bc)^2}{x+y+z} - \sum b^2 c^2 = \\ &= \left(\sum bc \right)^2 - \sum b^2 c^2 = \sum b^2 c^2 + 2abc \sum a - \sum b^2 c^2 = 2abc \sum a \end{aligned}$$

Let's get to the main problem:

Using the Lemma, it suffices to prove that:

$$2abc \sum a \geq 32S^2 \Leftrightarrow 8Rrs^2 \geq 16r^2s^2 \Leftrightarrow R \geq 2r \text{ (Euler's inequality)}$$

Equality holds if and only if the triangle is equilateral.

13) If $x, y, z > 0$ then in ΔABC the following relationship holds:

$$\frac{y+z}{x} \cdot r_b^2 r_c^2 + \frac{z+x}{y} \cdot r_c^2 r_a^2 + \frac{x+y}{z} \cdot r_a^2 r_b^2 \geq 18S^2$$

Proposed by Marin Chirciu – Romania

Solution

We prove:

Lemma.

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

14) If $x, y, z > 0$ then in ΔABC :

$$\frac{y+z}{x} \cdot r_b^2 r_c^2 + \frac{z+x}{y} \cdot r_c^2 r_a^2 + \frac{x+y}{z} \cdot r_a^2 r_b^2 \geq 2r_a r_b r_c \sum r_a$$

Proof.

$$\begin{aligned} M_s &= \sum \frac{y+z}{x} \cdot r_b^2 r_c^2 = \sum \left(\frac{y+z}{x} + 1 - 1 \right) \cdot r_b^2 r_c^2 = \sum \frac{x+y+z}{x} r_b^2 r_c^2 = \\ &= (x+y+z) \sum \frac{r_b^2 r_c^2}{x} - \sum r_b^2 r_c^2 \stackrel{\text{Bergstrom}}{\geq} (x+y+z) \frac{(\sum r_b r_c)^2}{x+y+z} - \sum r_b^2 r_c^2 = \\ &= \left(\sum r_b r_c \right)^2 - \sum r_b^2 r_c^2 = \sum r_b^2 r_c^2 + 2r_a r_b r_c \sum r_a - \sum r_b^2 r_c^2 = 2r_a r_b r_c \sum r_a \end{aligned}$$

Let's get back to the main problem:

Using the Lemma, it suffices to prove that:

$$2r_a r_b r_c \sum r_a \geq 18S^2 \Leftrightarrow r_a r_b r_c \sum r_a \geq 9r^2 s^2 \Leftrightarrow 2rs^2(4R+r) \geq 9r^2 s^2 \Leftrightarrow R \geq 2r$$

(Euler)

Equality holds if and only if the triangle is equilateral.

15) If $x, y, z > 0$ then in ΔABC the following relationship holds:

$$\frac{y+z}{x} \cdot r_a^2 + \frac{z+x}{y} \cdot r_b^2 + \frac{x+y}{z} \cdot r_c^2 \geq 6\sqrt{3} \cdot S$$

Proposed by Marin Chirciu – Romania

Solution

We prove:

Lemma:

16) If $x, y, z > 0$ then in ΔABC :

$$\frac{y+z}{x} \cdot r_a^2 + \frac{z+x}{y} \cdot r_b^2 + \frac{x+y}{z} \cdot r_c^2 \geq 2 \sum r_b r_c$$

Proof.

$$\begin{aligned} M_s &= \sum \frac{y+z}{x} \cdot r_a^2 = \sum \left(\frac{y+z}{x} + 1 - 1 \right) \cdot r_a^2 = \sum \frac{x+y+z}{x} r_a^2 - \sum r_a^2 = \\ &= (x+y+z) \sum \frac{r_a^2}{x} - \sum r_a^2 \stackrel{\text{Bergstrom}}{\geq} (x+y+z) \frac{(\sum r_a)^2}{x+y+z} - \sum r_a^2 = \end{aligned}$$



ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$= \left(\sum r_b r_c \right)^2 - \sum r_a^2 = \sum r_a^2 + 2 \sum r_b r_c - \sum r_a^2 = 2 \sum r_b r_c$$

Let's get back to the main problem:

Using the Lemma, it suffices to prove that:

$$2 \sum r_b r_c \geq 6\sqrt{3} \cdot s \Leftrightarrow \sum r_b r_c \geq 3\sqrt{3} \cdot rs \Leftrightarrow s^2 \geq 3\sqrt{3} \cdot rs \Leftrightarrow s \geq 3r\sqrt{3} \text{ (Mitrinovic)}$$

Equality holds if and only if the triangle is equilateral.

References:

Romanian Mathematical Magazine-Interactive Journal-www.ssmrmh.ro