

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

ABOUT 996 INEQUALITY IN TRIANGLE

ROMANIAN MATHEMATICAL MAGAZINE

2018

By Marin Chirciu – Romania

1) In ΔABC the following relationship holds:

$$12R \leq \sum \frac{b^2 + c^2}{h_a} \leq \frac{9R^3\sqrt{3}}{s}$$

Proposed by Mehmet Şahin – Ankara – Turkey

Solution:

We will prove the following lemma:

Lemma:

2) In ΔABC the following relationship holds:

$$\sum \frac{b^2 + c^2}{h_a} = \frac{s^2 + r^2 - 2Rr}{r}$$

Proof:

Using $h_a = \frac{2s}{a}$ we obtain:

$$\sum \frac{b^2 + c^2}{h_a} = \sum \frac{b^2 + c^2}{\frac{2s}{a}} = \sum \frac{a(b^2 + c^2)}{2s} = \frac{2s(s^2 + r^2 - 2Rr)}{2rs} = \frac{s^2 + r^2 - 2Rr}{r}$$

Using the Lemma, the left-hand inequality can be written:

$$\frac{s^2 + r^2 - 2Rr}{r} \geq 12R \Leftrightarrow s^2 \geq 14Rr - r^2, \text{ true from Gerretsen's inequality:}$$

$s^2 \geq 16Rr - 5r^2$ and Euler's inequality $R \geq 2r$.

For right-hand inequality we prove that:

$$\sum \frac{b^2 + c^2}{h_a} \leq \frac{6R^2}{r} \Leftrightarrow \frac{s^2 + r^2 - 2Rr}{r} \leq \frac{6R^2}{r} \Leftrightarrow s^2 \leq 6R^2 + 2Rr - r^2, \text{ true from Gerretsen's}$$

inequality: $s^2 \leq 4R^2 + 4Rr + 3r^2$ and Euler's inequality $R \geq 2r$.

Then $\frac{6R^2}{r} \leq \frac{9R^3\sqrt{3}}{rs} \Leftrightarrow s \leq \frac{3R\sqrt{3}}{2}$ (Mitrinovic's inequality)

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Equality holds if and only if the triangle is equilateral.

Remark:

If we replace h_a with r_a we propose:

3) In ΔABC the following relationship holds:

$$12R \leq \sum \frac{b^2 + c^2}{r_a} \leq 4R \left(\frac{2R}{r} - 1 \right)$$

Proposed by Marin Chirciu – Romania

Solution:

We prove the following lemma:

Lemma:

4) In ΔABC the following lemma:

$$\sum \frac{b^2 + c^2}{r_a} = \frac{2(s^2 - 3r^2 - 6Rr)}{r}$$

Proof:

Using $h_a = \frac{s}{s-a}$ we obtain:

$$\begin{aligned} \sum \frac{b^2 + c^2}{r_a} &= \sum \frac{b^2 + c^2}{\frac{s}{s-a}} = \sum \frac{(b^2 + c^2)(s-a)}{s} = \frac{2s(s^2 - 3r^2 - 6Rr)}{rs} = \\ &= \frac{2(s^2 - 3r^2 - 6Rr)}{r} \end{aligned}$$

Using Lemma, the left-hand inequality can be written:

$\frac{2(s^2 - 3r^2 - 6Rr)}{r} \geq 12R \Leftrightarrow s^2 \geq 12Rr + 3r^2$, true from Gerretsen's inequality:

$s^2 \geq 16Rr - 5r^2$ and Euler's inequality $R \geq 2r$.

The right-hand inequality can be written:

$$\frac{2(s^2 - 3r^2 - 6Rr)}{r} \leq 4R \left(\frac{2R}{r} - 1 \right) \Leftrightarrow \frac{s^2 + r^2 - 2Rr}{r} \leq \frac{6R^2}{r} \Leftrightarrow s^2 \leq 4R^2 + 4Rr + 3r^2$$

(Gerretsen's inequality).

Equality holds if and only if the triangle is equilateral.

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

Remark:

Between the sums $\sum \frac{b^2+c^2}{h_a}$ and $\sum \frac{b^2+c^2}{r_a}$ the following relationship holds:

5) In ΔABC the following relationship holds:

$$\sum \frac{b^2+c^2}{h_a} \leq \sum \frac{b^2+c^2}{r_a}$$

Proposed by Marin Chirciu – Romania

Solution:

Using the above Lemmas, we have:

$$\sum \frac{b^2+c^2}{h_a} = \frac{s^2+r^2-2Rr}{r} \text{ and } \sum \frac{b^2+c^2}{r_a} = \frac{2(s^2-3r^2-6Rr)}{r}$$

We write the inequality:

$$\frac{s^2+r^2-2Rr}{r} \leq \frac{2(s^2-3r^2-6Rr)}{r} \Leftrightarrow s^2 \geq 10Rr + 7r^2, \text{ true from Gerretsen's inequality:}$$

$s^2 \geq 16Rr - 5r^2$ and Euler's inequality $R \geq 2r$.

Remark:

We can write the sequence of inequalities:

6) In ΔABC the following inequality holds:

$$12R \leq \frac{b^2+c^2}{h_a} \leq \sum \frac{b^2+c^2}{r_a} \leq 4R \left(\frac{2R}{r} - 1 \right)$$

Solution:

See inequalities 5), 3) and 1).

Equality holds if and only if the triangle is equilateral.