INTEGRATING A GENERALIZED RATIONAL FUNCTION
Benny Lé Van
Abstract

In this paper, the author would present the solution for the following generalized
integral:

| _.[ dx
N7 14 xN

Of which N is a natural number. The purpose of this paper is not only showing the
result, but also more importantly presenting the author’s process to find the solution.
In particular, the author assesses the integral for cases where N is a power of two, an
odd number, and an even number, respectively. Finally, those findings are applied to

form the generalized result.

Key words: (Indefinite) Integral, Rational Function.
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Introduction
This paper discusses on the generalized indefinite integral:

I —j dx N eN
N 1+xN( )

Firstly, the author approach simple cases such as:

ForN =0,N = 1,and N = 2, respectively:

Io=jdx=x+const
dx
11=j—=ln|1+x|+const
1+x

I f dx tan 1 x + t
= —— = an X cons
2 1+ x2

Additionally, two following integrals are applied throughout the paper:

=55 @>0

x2 — q?
dx
b= v @0

In order to calculate J;, the following fraction decomposition is performed:

1 _ 1 _ 1( 1 1 )
x2—a?2 (x—a)(x+a) 2a\x—a x+a

Thus,
_l(fdx fdx)_1(1| |~ Infx + a]) + .
]1_2a o ~+a) " 2a njx —a njx +a cons
1 X—a
:—ln| |+const
2a lIx+a

Regarding /,:

x
]z=fd—x_lf(d—x=lf(di=%tan‘lg+const

x2+4+a? a?

For N = 3:

I_f dx
U 1+ a3

Applying x3 + 1 = (x + 1)(x? — x + 1), it is supposed to find real numbers
A, B, and C such that
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1  Ax+B N
x3+1 x2—x+1 x+1
Replacing x = 0, x = 1, and x = 2 to the above, we get:
( B+C=1
A+B+1C—1
2 2
LZ 1 1 1

vx € R\ {—1}

121
e (4;B;C) = (_§;§;§)

“A+-B+-C==
34+38+30=5

And then:
dx
13=f
1+ x3
1 —-x+ 2 1 dx
=§jx2—x+1dx+§jx+1
=EIL%+%dx+llnlx+1l + const
3) x?—x+1 3
1 2x — 1 1 dx 1
=—gjmdx+§fx2_—x+1+§lnlx+ll+c0nst

1(dx?—x+1) 1 dx 1
=——J —f—+—ln|x+1|+const

+
6) x2—-x+1 2 52 3 3
(x-32) +3
1/, 1
1l |x + 1] 11 (x? +1) + t ‘1x_§+ t
= —In|x ——=Inx" —Xx an cons
3 6 V3,3
2 2
1l| +1] 11(2 +1)+1t 12X onst
= —In|x ——=Inx" —Xx —1{an cons
3 6 BB

Following up the introduction as presented in Section 1, the paper will discuss
on particular cases of N in order to direct the generalized result. Accordingly,
Section 2 to Section 6 discuss on the case that N are powers of two, i.e.
N =2"(n € N;n > 2); Section 7 discusses on the case that N are odd
numbers, i.e. N = 2s + 1 (s € N*); Section 8 discusses on the case that N are
even numbers, i.e. N=2r(r € N;r >2); and Section 9 presents the

conclusion for the generalized integral.
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N = 4: multiple solutions for a problem

This section discusses on multiple solutions for the case N = 4.

| _j dx
Y1+ xt

2.1. Partial fraction decomposition
Factoring:
x*+1
=x*+2x% + 1 — 2x?
= (x%?+1)% - 2x?

= (x® —V2x + 1)(x% + V2x + 1)

Hence, we shall perform the following partial fraction decomposition:

1 _ Ax + B Cx+D

= +
x*+1 x2—-2x+1 x2+2x+1

Of which A, B, C, and D are given real numbers.

Vx ER

Replacing x = 0, x = v2 and x = i (as R < C) to the above, we get:

B+D=1
1 1
<\/§A+B+§(\/§C+D)=g

< (4;B;C;D) = (—

1

1 1
2\/512;2\/7;2

2x+\/§

A+Bi+C Di_l
V2 V2 V2 V2 2
Thus,
dx
14:j
1+ x4
1 +1+1 1 _|_1+1
_f 2 2V
= x + dx
2—\2x+1 x2+2x+1
—2x+\/— 1] dx
dx + -
4\/— —V2x+1

+1f dx
4) x2+V2x +1
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1 fd(xz—x/ix+1)+ 1 jd(x2+\/§x+1)
42 x2 —\2x+1 42 x2+2x +1

4

2 Z 2
REEN A AR

V2 V2 2
) + 2\1/2 [tan=}(V2x — 1) + tan~1(V2x + 1)]

) d(x—%) ) d(x+%)
¥ ¥

_ 1 1n<x2 +V2x +1
42 \x2—\2x+1
+ const
2.2.  Analyzed method I
To confront complicated problems, we sometimes divide and conquer. In
contrast, to deal with simple but rough problems, it is supposed to drive those
large but soft. This philosophy is entirely applied in this sub-section.

In particular, before dealing with

| _j dx
YT )1+ xt

K—j X4
1= x4+1x

K—f X 4
2 x4+1x

We assess the follows:

Simply and softly,

x3 1[dix*+1) 1
K1:] dxz—fgz—ln(x4+1)+const

x*+1 4 x*¥+1 4
2
K, = Jﬁdx — % (xi§++)1 = Etan‘l(xz) + const
Besides,
1 1 2(x* + 1)
xz—\/fx+1+x2+\/§x+1= x*+1
Thus,

X _fx2+1d
37 ) x4 +1 x

_1<f dx +f dx )
2\ x2—V2x +1 x2 4++/2x+1
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2

1 1
) _
=_[ d(x ﬁ) . d(x+ﬁ) ]
Py ey
= % [tan_l(\/ix - 1)+ tan_l(\/ix +1)] + const

Due to the calculation of K;, K,, and K5, we consequently enable to deal with

the following form:

X

fx3+x+rc(x2+1)d _jx3+icx2+x+ic
x*+1 x*+1
Of which k is a given real number.

As a result, if we somehow calculate the following integral

x*+1 dx

Then by a subtraction, we enable to find

| _j dx
YT )1+ xt

This is the direction of Analyzed method I.
As x*+1=(x2—v2x+1)(x*+V2x + 1), if we choose k = +v2, the

]x3+1cx2+x

problem is solved. For k = v/2:

dx

jx3+x/§x2+x
K, =

x*+1

_j X3 +V2x% +x J
T Vs D vzt 1)

X
= dx
fxz—\/ix+1

(2,
= X
x2 —2x+1
1 2x —/2

1 dx
== dx+—f
2) x2 —\2x+1 V2J) x2—\2x+1
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=ljd(x2_ﬁx+1)+if d<x_%)
2) x2—\2x+1 2 (x—%) +

1
= Eln(x2 —V2x +1) +tan"}(V2x — 1) + const

By a linear combination of K,, K,, and Kj:

x3+\V2x2+x+2
K- = dx
5 x*+1

=K1+K2+\/§K3

1 1
= Zln(x4 +1)+ Etan‘l(xz) +tan~1(vV2x — 1) + tan~'(V2x + 1) + const

Besides:
1 1
Zln(x4 +1) - Eln(x2 —V2x + 1)

1 1
= Zln(x4 +1)— Zln(x2 —\2x + 1)2

1 ( x*+1 )
=—In >
4 (xz—\/fx+1)

1 (x2+«/§x+1>
=—In
4 \x2—-V2x+1
Returning to 1,, we get:
dx
14_ =f
1+x*
1
=—(K; —K,)
\/E( 5 4

= % [iln(x4 +1)+ %tan‘l(xZ) + tan_l(\/ix — 1) + tan‘l(\/fx n 1)]

171
——|[=In(x2 —-v2x + 1) + tan 1 (+v/2x — 1 ]+const
3 ) + tan” (V2 — 1)
1 x2+\/§x+1> 1 1
= In + —tan"}(V2x + 1) + —=tan"1(x2) + const
442 (xz—\/zx+1 V2 ( ) 242
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In comparison to the result as found by partial fraction decomposition, we get:

i -1 L =1(42
\/Etan (\/§x+1)+2\/§tan (x%)

1 -1 _ -1
= N [tan=*(V2x — 1) + tan~1(V2x + 1)] + const

o tan‘l(\/ix + 1) — tan‘l(\/ix - 1) + tan~(x?) = const
Indeed, forming the function
E(x) = tan"}(vV2x + 1) — tan~!(¥2x — 1) + tan™* (x?)
Then
V2 V2 2x
2 - 2 + x*+1
(V2x+1)" +1 (V2x-1)"+1

E'(x) =

1 1 2x
)
2x2 +2\2x+2 2x2—2V2x+2/ x*+1
V2 (—2\/796)_'_ 2x
=—X
2 x*+1 x*+1
2x 2x
=— +
x*+1 x*+1
=0

Ex)=0 Vx€eR
= E(x) = const Vx ER

Besides, Z(0) = % Thus:

/s
E(x)=§ vx € R

As above clarified, the two approaches of an integral result in two different
expressions. This fact is explained by the constant of integration.
2.3.  Analyzed method I1
In the previous approach, we apply the summation
1 1 2(x2 + 1)
xz—\/fx+1+x2+\/§x+1= x*+1
In this sub-section, we apply the subtraction

1 1 _ 22«
x2—V2x+1 x2++V2x+1 x*+1
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Regarding Analyzed method I, integral I, is calculated as follow:

I_f dx _sz_”d fxzd
t T iyt el 1

As obtained in sub-section 2.2:

x?+1 1
K; = fmdx = 7 [tan"*(V2x — 1) + tan~(V2x + 1)] + const

In order to calculate

xZ
K. =
6 _[x4+1dx

We perform the following subtraction:

K—J x4
6 x4+1x

_f X. X d
N x4+1x
17 1 1
=—jx( — )dx]
2421 x2—=V2x+1 x24V2x+1
1 X d j X d_
= X — X
220 x2 —\2x +1 x2+V2x+1 |
i 1 1 1 1 7
X ——=+— X+ —=——=
_ 1 V2 V2 V2 V2
= dx — dx
2V2 1) x2 =2x +1 x2+V2x + 1
1 ] 2x —2 J j 2x +/2
= X — X
4\2|) x2 —2x +1 x2+2x+1

1 dx dx

+Z[ xz—\/fx+1_fx2+\/§x+1]
1 Ud(xz—\/fx+1)_ d(x? +V2x + 1)
42

x2 —2x +1 x2 +2x +1
+4f (e y d(ﬁ%w
4[ (x—%) +1 (x+%) +1J

1 | <x2—\/2x+1
n
4+/2 x2+V2x+1

+ const

) [ (V2 1) + tan (V2 + 1)

En.9



And finally,

dx
L= [ m=ke ks

1 <x2+\/§x+1

= In
42 x2 —\2x+1

+ const

> + 2\1/5 [tan=*(V2x — 1) + tan~1(V2x + 1)]

This results is consistent the expression as found by partial fraction
decomposition.

The integral 1, has been solved in three distinct ways, which of those have their
own pros and cons. The most logic-like approach may be partial fraction
decomposition, while analyzed methods technically apply algebraic
transformations. However, the three ways contain massive calculation.
Therefore, we shall necessarily find a shortcut. The to-be-found new way will

tremendously help deal with the generalized integral:

I,n = ] neN
2n 1 + x2" ( )
24. Sum & Sub

This method is inspired by the two algebraic equalities:
241 (4 l) = 201 — (1)
X +x—2—(x+x) 2 and x +x2—(x x) +2

In order to calculate integral I,, we shall respectively find the so-called Sum &

X _fx2+1d
37 ) x4+ 1 x

K —sz_ld
7 xt+1 x

Sub integrals:

Accordingly:
1 1
x*+1 I+ d(x-3)
K3:fx4+1dx=f 1dxzf ~
x2+ﬁ (X—z) + 2
1
=itan‘1 _§+const
MRy
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And

1 1
x? -1 -3z d(x+3)
K7=.[x dx=j—1dx=f—2
2

441 2, 1 1
X +x (x+§) -2
1
1 X+E—\/§
= In 1 + const
2‘/5 x+—+\/§

X
As a result;

4+1 2
1 | x+l+\/7 1 1x—%
= n + tan— + const

1
1 <x2+\/2x+1> 1 X7
4 _
2

= In tan X + const
42 x2 —\2x+1 V2 V2

In comparison to the result as found by partial fraction decomposition, the
constant of integration form the equality:
1

x
tan‘l(\/ix + 1) + tan‘l(\/fx - 1) —tan~?! \/Ex = g Vx € R

Moreover, the Sum & Sub method help solve integrals in following forms:

( 10 :j dx
+ (1) x*+ux?+1

2 x?
) :fx4+vx2+1dx

Of which, u and v are given real numbers.

In Section 2, we have solved a problem with four approaches. In summary, the
Sum & Sub method seems to be the most effective way. However, other

methods may be also useful in the case we have to deal with more complicated

; _f dx
87 ) x84+ 1

Before that, integrals Is and I, will be discussed in the next section.

problems, such as integral Ig:
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ForN=5and N=6
3.1. Integral I
Factoring: x> +1=(x + D(x*—x3+x2—x+ 1)

By complex numbers, we enable to further factor as follow:

x°+1=0
& x>=—-1=cosm+isinw

m+k2r = w4+ k2m
@xk=cosT+LsmT (k=0;4)

o x, = (ein/s; e3irr/5; —1; e7irc/5; e9irc/5) (k —0; 4)

Of which:
( oy = 2cos™ = 14++/5
| X0 + x4 = c055 i
{ PO Sl L
| x1 +x; = 2 cos =T
k xOX4 - xle = 1
So,
T 3
x°+1=(x+1) (x2 — 2x cos— + 1) (xz — 2x cos— + 1)
5 5
We shall find the five real numbers (4; B; C; D; E) such that
1 A Bx3+Cx*+Dx+E

= + Vx € R\ {—1
x5+1 x4+1 x*—x34x2-x+1 V=1

Solving the above, we get:

(4;B;C;D;E) = (1;—1&;—%;%)
5° 55 55
Rewriting:
1 1/ 1 —x3 +2x* —3x + 4
x5+1=§<x+1+x4—x3+x2—x+1>

Next, we shall find the four real numbers (T; U; V; W) such that

—x3+2x2-3x+4 Tx+ U Vx+ W
- txi—x+1 2 T * 3m v ER
x*—2xcosg +1 x? —2xcos g +1

Forx =0,x =1andx =i (as R c C), we get the system:
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r U+W =4
THU VW

T
2—2cosg 2—2c053Tn

T N Ui V N Wi — 9

_ — =2—-2i
T T

\ 2cos§ 2cos§ ZCOS% 2c0535n

T 3
s (T;U;V; W) = (—2 COSE;Z;—Z Cos?;Z)

As a result:
s 3n
—x34+2x2 —3x+ 4 —2xcos§+2 —2X COS & = + 2

+ 3 Vx € R
x?2 —2xcos?+ 1

x*—x3+xt—x+1 42 —2xC055+1

Conseuently, integral I is performed as follow:

I_j dx
> ) x5 +1
—x3 +2x* —3x + 4
j dx
~5 x+1 t—x3+x2—-x+1
1 1 —2xc055+2 2xc0335 + 2
=§J 1 ¥ T
Xt —2xc055+1 —2xc055+1

1 dx —2x cos%+ 2 —2x cos?%n+ 2
== J +] = dx+j 3 dx
>\Jx+1 x?—2xcosg+1 x2—2xcosTn+1

dx

—2XxCcosS—= 3 + 2 —2Xx cos 35 + 2
dx+f

1
== 1n|x+1|+f

T
> x?—2xcosg+1 x2—2xc053?n+1

+ const

As a lemma, we assess:

L(S)—f —2xcosd + 2
) x2—=2xcos6+1 x

f —2xcos 8 + 2(cos §)? + 2(sin §)? 4
= x

x2—2xcosd +1

B f 2x + 2(cos 6)?
cos x2—2xcosd +1

dx
2_2xcoso+1

dx + 2(sin §)? f "
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dx

B —cos6jd(x2 —2xcosé +1)
x?—2xcosd+1
dx
x%2 — 2xcos6 + (cos 6)? + (sin 6)?
d(x — cos§)
cos 6)? + (sin §)?

X — COoS O

=—coséIn(x?—2xcoséd +1) + 2sindtan?! TV + const

+ 2(sin §)? j

= —cos§In(x? — 2x cos§ + 1) + 2(sin §)? j =

Returning to integral Iz:

1 T 3
I = g[lnlx +1|+L (—) + L (—)] + const

5 5
1 X — cos=
T T T - =
=z In|x + 1] — COSgln (x2 - 2x cos§+ 1) + Zsingtan_1 7 5
5
3
3 3 3m X — COST&-
— cos—In (xz — 2x cos— + 1) + 2sin—tan™?!
5 5 5 . 3m
sin
5
+ const
Coincidentally, the result of integral I5 could be written as:
dx
b=
x>+ 1
Ll 4+ 1] = S1n(e? — x 4 1) + —tan—1 2= 4 const
= —In|x —=In(x* —x —tan cons
3 6 BT
1 X — cos =
_ = e T 2 _ r T 4- 3
=3 In|x + 1] cosgln(x 2xcos3+1)+251n3tan sin%

+ const
= %[lnlx + 1|+ L (g)] + const

This is a key point to form a conjecture for the case that N are odd numbers, i.e.
N = 2s + 1 (s € NT), which will be discussed in Section 7.
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3.2. Integral I4
Factoring x® +1 = (x? + D(x* —x%2 + 1)
And applying 12 (u) foru = —1, i.e.
dx
0r_ — -
l(=1) jx4—x2+1
Integral I, could be calculated as follow:

16=f dx
x®+1
(x%2+1) — x?
- x®+1 dx
=jx2+1dx—f x dx
x®+1 x®+1
x2+1 f d(x?)
(x? +1)(x4—x2+1) (x3)2+1
= jﬁ—%tan‘l(aﬁ) + const
=5 (f :413 ;z(fl_ D) dx — %tan‘l(x3) + const
— lsz—-l_ldx —ljidx —ltan‘l(x3) + const
2) x*—x?+1 2) x*—x?+1 3
1
_ %f%dx _%fl—lxzdx —%tan‘l(x3) + const
x*+—5—1 x?2+-5-1

—tan~(x3) + const

x+%)2—3 3

iy 1 dlery)
ey

1
1 1( 1) 11x+——\/§ 1

_ _ X ~1(..3

=—tan ! |x —— n ——tan"Y(x3) + const
2 X 43 x+l+\/§ 3
1 _1< 1) 1 (x +\/_x+1> L an=1(3) 4 const

=—tan 1 (x —— — —tan"1(x cons
2 P AW V3x+1/) 3
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4.

N = 8: multiple methods combined

This section discuss on the following integral:

| _f dx
87 J x8+1

Factoring:
x8+1
=x8+2x*+1—2x*
= (x*+1)? — 2x*
= (x* —V2x?2 + 1) (x* + V2x% + 1)
= (x4 — 2x? cos% + 1) (x4 + 2x? cos% + 1)
= (x4 +2x%2 + 1 — 2x? cos% - 2x2) (x4 +2x% + 1 + 2x? cos%— 2x2)
= [(x2 +1)? — 2x? (1 + cos %)] [(x2 +1)? — 2x? (1 — cos %)]
= [(x2 +1)? — 4x? (cos g)z] [(x2 +1)? — 4x? (sing)z]
= (x2 — 2xcosg+ 1) (x2 + 2xcosg+ 1) (x2 — 2xsing+ 1) (x2
+ 2x sin% + 1)

The first thoughts may relate to partial fraction decomposition. Accordingly,

we shall find the eight real numbers (4, B, C, D, E,F, G, H) such that

1 _ Ax + B N Cx+D Ex+ F
x8 +1 x2—2xcos%+1 x2+2xcos%+1 x2—2xsin%+1
Gx+H
T Vx ER
x2+2xsin§+1

This approach still seems to be possible. However, massive calculation is
unavoidable. Furthermore, after finding the eight real numbers, we have to deal

with multiple integrals under the form

ux +v
fpx2+qx+rdx
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Hence, this method should be temporarily delayed and we can try other
approaches as detailed in Section 2. As the Sum & Sub is surprisingly effective,
it should be first considered. In accordance with the Sum & Sub philosophy, we

have to deal with two following integrals:

(lefx4+1d

x8+1 x

N —jx4_1d

k 2= [ 1™

As well as the pathway in Sub-Section 2.4:
1
x*+1 1+.7
N1=j8 1dx=f 1dx

x° + x4_|_F

It seems possible to perform (x4 + 14) under (x + l) or (x2 + iz) However,
X X X

it is noticeable that

And

1 _2
d(x2 i—2> = (2x+—3>dx
X X
Conseequently, it is difficult to find any relations between the above and the
integrated (1 + x—14) dx. So, the Sum & Sub may not work alone.

With Analyzed methods, we may consider the two integrals:
N - fx4 +1 4
17 ) x8+1 x

x4—
N. =
3 ,[x8+1dx

Applying the fraction decomposition

x4+1_1< 1 4 1 )
XB+1 2\t —V2x2 4+ 1 xt V22 + 1

Thus,

N jX4+1d 1<f dx +f dx )
= X = —
RS 2\) x*—V2x2+1 ) x*+V2x2 +1
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Now we can apply the Sum & Sub, where

(10 —2 f
{ (=v2) = \/_x2 +1
12(vV2 f
/(v2) = x* + \/_x2 +1
Applying to Analayzed method | for integral Ns:
x* x%. x?
N3=fx8+1dx=]x8+1dx

1 1
=—jx2 — )dx
242 x*—V2x2+1 x*+V2x2+1

1 ( x? 4 _j x? d)

C2vZ\) xt —VZx2 +1 * x4 +2x2 +1 g
I s _ g2

= [(-V2) - 1(2)

The result holds when Analyzed method Il is applied:

4 x4—

X+ 1 (xt—2x? + 1)(x* +v2x2 + 1)

[ (x® + V2x* + x2) — (x° + x?) ]

_(x4 —V2x2 + 1)(x4 +/2x2 + 1)

[ x? x?(x*+1)

1

V2

1

VZIlxt—vVZxr+1 (x* —V2x2 + 1)(x* + V2x2 + 1)]
T

V2

=

2 2

X x( 1 1 )]
—V2x2+1 —V2x2+1 x4+\/§x2+1

1 x? x?
N 2\/§<x4—\/§x2 +1_x4+\/§x2+1>
As Analyzed methods are applied, it is noticeable that the partial fraction
decomposition method still works if we find the four real numbers (4, B, C, D)
such that
1 Ax*+ B Cx?>+D

x8+1=x4—\/§x2+1+x4+\/§x2+1

As described in Sub-Section 2.1, the solution for the above equation is

1 1 1 1
(A)B) C)D) - (_ﬁlz,ﬁ,z)

Vx € R

En.18



Therefore, it is said that we shall combine multiple approaches in order to deal
with integral I5. This fact is clarified when the Sum & Sub is applied at the
second stage of the solution. Applying consequences as presented in Sub-
Section 2.3, we get:

1(=V2) = j \/_x2+1
w(v2) = _[x4+\/—x2+1

14( \/—) j \/—x2+1dx

HeaN|

Returning to integral Ig:

dx
x4+\/_x2+1

1 _x4+1 x*
x+1 x8+41 x8+1

1( 1 1
2\x% —2x2+1 x*+V2x2+1

N 1 ( x? x? >
22 \x* +V2x2+1 x*—+V2x2+1

Integrating the above:

= | = (D) + (D] + % [-12(—VZ) + 2(VZ)]

x8+1
In order to calculate integrals I (1) and IZ (v), we shall factor:
T T
x* —\V2x2 4+ 1 =x4—2x2cosz+ 1=x*+2x%+ 1—2x2cosZ—2x2

2

T
— 2 2_ 2 -~
=(x“+1) (1+cos4) (x?+1)? - (cos8)

As well as

s T
X4+V2x2+1=x4+2x2cosz+1:x4+2x2+1+2x2cosz—2x2

2

= (x2+1)? - (1 — Cos 4) (x* +1)* - (Sing)
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Noticeably,

T T
2442 = 2+2COSZ= 2(1+cosz) = 4(cos—
T T .
2—-42= 2—2cosZ= 2(1—cosz) = 4(sm—
Denoting:
( x2+1

!II(A)=,[x4+Ax2+1dx

~ x?—1
LI4(/1)=jx4+Ax2+1dx

Of which A is a given real number.

We respectively obtain:

x%+1 1+
+(—/2) = _ X
1 2)_fx4—\/§x2+1dx_f a

And

—(_J7) x?> -1 B 1‘?
[

_ d(x+%) B d(x+1
j(x+ j( 2

Y _(2+v2)

1
1 T x+§—2cos%
= —sec—In + const

4 8 x+1+2cosE
X 8

1 7 [x*—2x cos% +1
= —sec—In + const

4 8 x2+2xcos%+1
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Similarly,

1
x?+1 1+
II(\/E)=.[ dx=.[ X dx
x4 +2x2 +1 xz+l2+\/§

=f d(’;—%) _
(x—%) +2+2
1 =« x—l

= —sec—tan~ ! X =+ const
2 8 2 cos 3

And

1->
L; (V2 f dx=f X dx
4( ) x4+\/_x2+1 x2+i2+\/§
X

+%)2—(2—\/§)='[(x+%) —4(sin%)2

1 x+%—251n%
=—csc—1
g cscgln

_ d(x+%) d(x+%)
j( 2

+ const

x+1+Zsin£
X 8

1 7 [x*—2x sin% +1
= —csc—In + const

4 8 x2+2xsin%+1

Returning to integrals I9(—v2), 12(v2), I12(—V2), and I2(2):

B-VD= [ = 2+1—1[1:(—ﬁ>—1;(—ﬁ>1

802 = [ o= NH 21 (72) - 1:(2)]
HEBRIE wsz dx =11 (VD) + 17(~V2)
B2) = [ o = 311 (V2) + (VD)
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At the final step:

b= [ g =5 8(VD) + BOD] + = [-1(-v2) + E(V2)]

B+l
_[14( —V2) - I;(—V2) + 1§ (V2) - I; (V2)]
+4_[ IF(—V2) - 1;(—V2) + 1§ (V2) + 1; (V2))

G EERA L) FEAALITY,)

2- \/‘

I; (V2)
1
- [@-v2) (zz:(—ﬁ) ~1;(V2)) + (2 +V2) (-1 (—V2) + 1 (V2) )]

It is also noticeable that:

(2-v2) (1 (—V2) - 1; (+2))

w2l1 & x—1 1 x2—2xsin%+1
=4 (sin —) —csc—tan~?! % ——csc=In 7
8/ 12 '8 2sing 48 x2+2xsin§+1

2

+ const

. x—1 x2+2xsin%+1
= sin— 2tan‘1—§t+1n =
8 ZSin§ x2 —2xsing+1

8

+ const

And similarly,
(2+V2) (~1: (—V2) + 11 (+2))

1 x2—2xcos%+1 1 x—%
——sec—In 7 + —sec—tan™! =
4 8 x2+2xcos§+1 2 8 2cos§

2

=4 (cos g)

+ const

p x—% x2+2xcos%+1
= cosg 2tan~! = +1n

T + const
2cos8 2—2xcos§+1
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Therefore, integral I could be expressed as follow:

| _f dx
S ) X8 +1
1 2 . T
1 T X —= X +2xsm§+1
= —<{sin— 2tan‘1—)7cr+ln =
8 8 2sins x2 —2xsing+1
8 8
1 2 1
T X —= X +2xcos§+1
+ cos—|2tan~? )gT+ln = + const
8 2cos§ x2—2xcos§+1

The above expression drives us wonder if there exist any relation between
integrals Ig and 1,, where:

| _j dx
YT xt+1
1
1 . _1x—§+ 1 | (x2+\/7x+1>+ .
= — tan n cons
242 V2 42 \x2—-V2x+1
1 ]
1 X—% 1 (x*+V2x+1
=_—|v2tan™? x+—1n( ) + const
4 V2 V2 \x2—V2x+1
1 )
LU PO (x2+«/§x+1> T const
=—x—|2tan!—=+1In cons
4 2 V2 x2 —\2x +1
[ 1 2 . T 1
1 T x— X +2x51nZ+1
=—sin—|2tan™! — +In - + const
4 4 2sin— x2 —2xsin—+1
4 4 |
[ 1 2 T
1 T X = X +2xcosZ+1
=—cos—|2tan?! = +1n - + const
4 4 2COSZ x2—2xcosZ+1

There should be an existed relation between integrals Ig and 1,. If this relation

Is found, it is the key to deal with the generalized integral I,». This fact will be

discussed in next sections of this paper.
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N = 16: integrating by deriving

This section discusses on the following integral:

! _j dx
o) xle+1

As presented in the previous section:

x8+1
_1( 1 N 1 )
2\x% —\V2x24+1 x*+V2x2+1

N 1 ( x? B x? )
22 \x* +V2x2 +1 x*—+2x2+1
Applying the three methods as presented in the previous section, we got:
1 Ax*+ B Cx*>+D
x8+1=x4—\/§x2+1+x4+\/§x2+1
The obtained result was (4; B; C; D) = (—%%%%)
Integral Ig was calculated based on the follows:

{( I‘?(“)zjx4+ii2+1

2 xz
00 = | ey

Vx € R

Of which, u and v are given real numbers. The above integrals could be solved
effectively thanks to Sum & Sub method.
Regarding integral I,,, we perform the partial fraction decomposition:
1 Ax*+ B Cx*+D

x16 +1 :xS—\/fx4+1+x8+\/§x4+1
The resultis also (4; B;C; D) = (—%;%;%;é).
Next, we further perform rewrite the above under

Z a;x* + b;
x*+Kkx?+1

Of which, a;, b;, and k are given real numbers. In particular, x will be found

Vx € R

directly through the factoring of (x'® + 1), a; and b; will be found based on

further processes of partial fraction decomposition.
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And thanks to the impressive Sum & Sub, those integrals could be simply
solved. Hence, despite the massive calculation, there is somehow a way to find
integral I,,. However, if we can find any relation between the found results of
integrals 1, and Ig, we can build a conjecture for integral I,,.

Indeed, we obtained

| _j dx
YT ) xt+1
1 2 . T 1
1 T x—; X +2xst+1
= —sin— 2tan‘1—n+ln = + const
4 4 2 sin— x2 —2xsin—+1
4 4 |
1 2 11
1 T X = X +2xcosZ+1
= —cos—|2tan?! = +1n T + const
4 4 2 COS —+ x%2—2xcos++1
) )
And
| _j dx
87 J x8+1
1 T x—l x2+2xsin%+1
=—{sin=[2tan"'—=% +1In -
8 8 25in§ x2—2xsin§+1
1 2 1
T X —= X +2xcos§+1
+ cos—|2tan~? J;I+ln = + const
8 ZCOS§ x2—2xcos§+1

With regard to above integrals, if we put

1
t)=t|2t ‘1x_E+l Xttt
me = an 2t n x2—2xt+1

Then we can re-perform

I—J dx _1 ( T[)+ t—l ( TE)+ ;
4 = x4+1—47] Sln4 cons —47] COS4 cons

As well as

Ig = fxgd-t 1 = %[n (sin g) +1n (cos g)] + const

_1[( n)_l_( Bn)]+ ;
=3 n cos8 n |\ cos 3 cons
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Before building the conjecture, we perform the factoring:
x1+1=x"+2x8+1—2x8
= (x®+1)% — 2x®
= (x® —V2x* +1)(x® + V2x* + 1)

T 3w
_ (.8 _ .4 n 8 _ 9.4 or
—(x 2x cos4+1)(x 2x* cos 7 +1>
T 3T
=(x8+2x4+1—2x4—2x4cosz) (x8+2x4+1—2x4—2x4 COST)
— 4 2 4 E [ 4 2 4-( 3_7-[)]
—[(x +1)% —2x (1+cos4)] (x*+ 1) —2x*|1 + cos 2
TN 2 3m\ 2
= [(x4+1)2—4x4 (cos§) ”(x4+1)2—4x4 (cos?)]
(4 _ .2 n 4 2 n ( 4 _ 5.2 3_” )
—(x 2x c058+1)(x + 2x cos8+1)x 2x cos8+1
3
<x4 + 2x? cos 2 + 1)
T 31 5
= (x4 — 2x? cosg + 1) (x4 — 2x? cos + 1) (x4 — 2x? cos?+ 1)

<x4 — 2x? cos7—ﬂ + 1)
8
It is necessary to perform the above transformation in order to put the
following function:
((t) =x*—2x%t+1

Returning to the factoring:

For{(z):
8
TN 4920 F
((8)—x 2x cos8+1
4 2 2 2 n
=x*4+2x“+1—2x°—2x cos§

s
— (42 2 _ 9.2 -
= (x*+1)*—2x (1+cos8)
2

= (x% 4+ 1) — 4x? (cos 116)

= (xz — 2xcosln—6+ 1) (xz + 2xc051£6+ 1)

En.26



For ¢ (3?”)
R¥[4 3

— ) =x*—2x%cos—+1
((8) X xC058

3w
=x*4+2x%2+1—2x? —2x2cos?

3n
= (x% 4+ 1)? — 2x? (1 + cos?)

37\ 2
= (x2+1)% -4 2( _)
(x“+1) X COS16

—(2 2 37T+1)(2+2 3”+Q
=1\Xx XC0516 X XC0816

For((%ﬂ):
(57‘[)_ 4oy 57T+1
¢ 3 =X xc058
4 2 2 2 St
=x"+2x*+1—-2x°—2x cos;
5t
=(x2+1)2—2x2(1+cos?>
51\
— 2 12_4 2( _)
(x*+1) x*|cos T~
—(2 2 5”+Q(2+2 5”+Q
=\{x xcos16 X xcos16
For{(%”):

(7n)_ 4_ 92 77T+1
¢ 3 =X xc058

7T
=x*+2x%+1—-2x? —2x2cos?

7m
= (x?+1)% — 2x? (1 + cos?)

7m\>
= 2+12—42< —)
(x ) X cos16

—(2 2 ZE+1)(2+2 ZE+0
=\Xx JCCOS16 X XC0516
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Thus,

3
2k + )7 2k + 1)m
x16+1=1_[ x2—2xcos¥+1 x2+2xcos¥+1
L | 16 16

2k +1 2k +1
(xz —2x sin%+ 1) (xz + 2x sin%+ 1)]

3

1]

k=0

Considering fucntion n(t):

1

X —— x?+2xt+1
=t|2tan ! —X + In[ =V—"—
n(®) Mo +n<x2—2xt+1>

We obtained

I—J dx _1 ( T[)+ t—l ( TL’)+ ;
4 = x4+1—477 Sln4 cons —47’] COS4 cons

As well as

Ig = fxgdi 1 = %[n (sin g) +1n (cos g)] + const

-3l o )] cons
=3 n |\ cos 3 n | cos 3 cons
. T . - T . T 3n
For integral 1, S isanarc that is less than - For integral Ig, 5 and ~ are odd
multiples of% and also less than g Coincidentally, for integral I,¢, arcs of 1—”6

3w 51

7 .
=, = and f have appeared and are all odd multiples of % and also less than g

The result remains consistent through another way of factoring as follow:
T
x* + 2x? cos§+ 1
T
=x*+2x2+1—2x? + 2x? cos ¢
A
— 2 2 _ 2 — —
= (x*+1)*—2x (1 cos 8)
T \2
— 2 2 _ 2 in —
= (x*+1)* —4x (sm 16)

= (xz - 2xsin1n—6+ 1) (xz + 2xsin%+ 1)

—(2 2 7n+1)(2+2xcos7n+1)
=[x X cos = X T
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As well as
3
x* 4 2x? cos; +1
3w

=x4+2x2+1—2x2+2x2cos?

3
= (x?+1)% — 2x? (1—005?)
3m\?
— 2 1 2_4 2(' _)
(x=+1) X sm16
—(2 2 '3E+Q(2+2 '3n+Q
=|x x sin—— x x sin

—(2 2 5ﬂ+0(2+2 5”+Q
=1|x XC0516 X XC0516

Based on above presentation, we enable to build the conjecture:

| _f dx
167 | x16 +1

1 T - 3m 51 7
= 16 [n (sm —) +1 (sm —) +1n (sm —) +1n (sm —)] + const

16 16 16 16
_ 1[ ( n)_l_ ( 3n)+ ( 5n>+ ( 7n)]+ .
—16ncos16 ncos16 ncos16 ncos16 cons

Once the conjecture appears, what we have to do is proving that conjecture is
true, in other words, we have to derive the predicted result. That is the reason

why this section is named “integrating by deriving”. Indeed, forming:

= s ) s 0 ) s )
16(x) = 7o [n{cosTo) +ncos= ) +n{cosT~)+7|cos =

3 1
_12 Qk+ Dm 2 tan-1 X—5
“16L.°°7 16 an 2k + Dn

k=0 2 COoS————
16
x% 4 2x COSW +1
+ In
QRk+ Dm

2 _ \eh T K
X 2X CcOoS 16 +1
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1

2k + D\’ 1 . X%
COS tan™

16 Qk+ Dm Rk + Drm

2 cos 1—6 2 C051—6

1 x2+2xcosw+1

In
4COSW x2—2xcosw+l

+

Deriving the function F; 4 (x):

It 2k + Dn | :
Fle(x) = Z,Z(; (cos T > l(x 3 %)2 » (COS 2k + 1)77)2
)

(x + %)2 —4 (cos W)ZJ

—

1 2k + D\’ X% +1
=ZZ T 16 2k + D)2
x4+1+<4(cosTn) —2>x2

x%—1 ]

N
x4+1+<2—4<cosW) )sz

_123: 2k + Dr\? X241
— 2L\ 16 2k + Dr
3

x*+ 1+ 2x2% cos

x? -1

Qk+ D

x*+1—2x2cos 5
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1 T\2 x2+1 x? -1
= - (cos—) == =
4 16 x4+1+2x2cos§ x4+1—2x2cos§
+( 37‘[)2 x?+1 x? -1
CcoSs — —
16 _x4 + 1+ 2x2 cos% x*+1—2x2%cos ?%T
+( Sn)z x>+ 1 x% -1
cos— —
16 _x4 + 1+ 2x2 cos% x*+1—2x2%cos 5%
+( 7n)2 x> +1 x% -1
cos16

_x4 + 1+ 2x2 cos 7;

x*+1—2x2 cos%r_

2
Due to properties (cos8)? = [sin (g — 0)] and cos(mr — 0) = —cos 6, we

continue to perform the derivative as follow:

T \ 2

x>+ 1

1—x?

F{¢(x) =% (cos E)

i
u
+

371)2
coS 16

] 3n)2
sin—~

sin 116)2

x*+ 1+ 2x2 cosE

+
8

x* +

92 n
1-2x cos8

x?+1 1 — x?

4 2 37'c+ 4 ’ 3w
x*+14+ 2x cos? x*+1-—2x cos?
x?+1 1—x?

3t

_x4 + 1 — 2x2cos )

x> +1

x*+ 1+ 2x2 cos%

1 — x?

_I_

x*+1—2x2 cos%
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1 (cos 16) (x2+1)+ (sm 16)2 (1—x?)
4 x*+ 1+ 2x? cos

ool

(cos 1”—6)2 (1—x2)+ (sin%)2 (x2+1)

4+1—2xzcos%

+

(Cosi6) (x? +1)+(sm ) (1—x?)

+ 3T
x* 4+ 1+ 2x2 cos 5

2

(Cosi—g) (1- 2)+(sm ) (x?+1)

x*+1—2x2 cos%r

+

2 T ) A 2 3_7'[
=1 1+ x c058 N 1—x cos8 1+ x° cos 3

4 x4+1+2x2cos% x*+1—2x2%cos

+

4 3w
= 4 2 2
3 x*+14+ 2x cos8

1 — x? cos%r

+

x*+1—2x2 COS%T

In the above, we have applied properties (cos8)? + (sinf)? =1 and
(cos 0)? — (sin 8)? = cos(28).
Returning to F{,(x):
1 1 1
Fig(x) = —

+
4 x4+1+2x2cos%

x*+1—2x2 cos%

T 1 1
+ x% cos— -

8 x4+1+2x2cosg x4+1—2x2cos%

1 1
+ 37T+ 3T
x4+1+2x2cos? x4+1—2x2cos?
3 1 1
+ x? cosz -

x*+ 1+ 2x2 cos%r x*+1—2x2 cos%
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T 2
1 2(x* + 1) 4x* (COS §) s 2(x* + 1)

4x8+1—2x4cos% x8+1—2x4cos% x8+1—2x4cos%Tn

2
4 n
4x (cos8)
x8+1—2x4cos%Tn
4 m\?
1 x*t+1 2x (COSg) xt+1
=§ T 7T T
x8+1—2x4cosz x8+1—2x4cosz x8+1+2x4cosz
2
4 n
2x (cos8)

x84+ 1+ 2x* cos%

_ —x“ +1—2x* (COS g)z s x*+1—2x* (cos %T)z

x8+1—2x4cos% x8+1+2x4cos%

N =

N =

1 1
- (x4+1)< + )
x8 —V2x*+1 x8++2x*+1

(COS %)2 N (COS 3?”)

x8 —V2x*+1 x8++2x*+1

2

— 2x*

Flle(x)

1{2(x*+ DB+ 1)
x16 +1

2x* ((cos %)2 (x® +V2x* +1) + (COS %T)Z (x® —Vax* + 1)>

x16 +1

(* + 1B +1) —x*(x8+1) — \V2x8 [(COS %)2 _ (Cos 3@”)2]

Fig(x) = 16+ 1
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x8 +1—+/2x8 [(cos %)2 — (sin %)2]

Flo(x) =
16 (x) x16 +1
x8 +1—+/2x8 cos%
Flo(x) =
16(x) 16 + 1
1
Flo(x) = ————
16(x) 16 1 1
Thus,

— x —
116 = xl6—+1 = F16(X') + const

In a full expression:

| _f dx
167 | x16 +1

1w 2k+1) x -2
_ L T ~1 X
- 162 cos— g [2tan 2k + Dn
k=0 2 coS————
16
x% 4 2x COSW +1
+ In + const
x2% —2x COSM +1
16
It is noticeable that:
1 2 T
dx 1 T X —= X +2xcosZ+1
4=f4—=—cos— 2tan~?! < +1In - + const
x*+1 4 4 2cosg x2—2xcosZ+1
And
dx
o[
x8+1
v~ (2k+1) x -1
_ 1 n —1 X
- 82 €0S™g 2 tan 2k + Dn
k=0 2 cos—g——
x% 4+ 2x cos(2k+1)n +1
+ In 2k + D + const

x2 —ZxcosT+ 1

Those results bring back a key point for us to build a generalized conjecture,

which will be discussed in the nest section.
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6.

N = 2": The Symphony No. 2"
6.1. Overtune

Based on calculated integrals 1,, Ig, and I;, as presented in previous sections,

we enable to predict a conjecture for the generalized problem, i.e.

| _f dx
2T ) 1 a7

271—2_1 1
1 Z Rk + 1m 2 tan-1 X =
—on T an 2k + Dr
k=0 2 COSZ—n
x% + 2x COS(21<2+1)71 +1
+ In PP 2k + Dr + const

57 +1

As an overtune, we shall discuss: why 272 — 1?

Firstly, the process of factoring gives us:
x"+1=0ex=-1ox¥ =cost+isinm

Of which w (w € C) are roots of equation w?" = —1, we get:

m+k2r = w4+ k2m R
Wy = COST-I-lSlnT (k=0;2"-1)
QRk+1)r  QRk+Dm .
= cosz—n+ Esin——72— (k=0;2"-1)
By definition,
2Q"-1-k)+1lr = [22"—-1—-k)+1]n
Wyn_q_ = COS on + 1 sin o
@ml—1-2knr @' —-1-2Kk)n
Wyn_q_ = COS o + i sin o
Qk+ Dm] 2k + D
Wyn_q_ = COS |2m — —omn + isin |2m — —Qon
QRk+1)nr  QRk+Dm
Won_q_p = cosz—n — Lsmz—n
Consequently,
QRk+ Dm
Wi+ wWyn_q_p = 2 cosz—n
— 0N —
Qk+ D> [ @k+Da]? | *=02Z-D
WrWon_q1_ = cosz—n + sz—n =
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According to Vieta’s theorem, w; and w,n_,_ are two roots of the equation:

2k + D)~
x2—2xcos%+1=0
Thus,
271
- 5 QRk+ Dm
xc +1= 1_[ x¢—2xcos————+ 1
2n
k=0

In the above process of factoring, there is a total of 2™ elements, from element
k = 0 to element k = 2™ — 1. In those 2™ elements, it is optional to choose any
element k and then element 2™ — 1 — k. Therefore, no matter how element k is
chosen, either from element k = 0 to element k = 2"~1 — 1 (i.e. k belongs to
the front half of total 2™ elements), or from element k = 2"~ to element
k = 2™ —1 (i.e. k belongs to the back half of total 2™ elements), the result of
determining k and 2™ — 1 — k remains unchanged. This symmetric property is
just like Ck = ¢k,

This is so-called the Symmetric proposition for 2™ elements. As illustrated
above, k is chosen in the front half, i.e. from element k = 0 to element
k=2"1—-1,

Besides, putting

QRk+ Dm

o +1 (k=0;2"—-1)

P.(x) = x* — 2x cos

Then by definition,
221 —1—-k) +1]n
[2( ) ] l

Pyn-1_;_,(x) = x* — 2x cos

on
Pyn-1_y_ (%) = x* — 2x cos (2%~ ;n_ 2k)n +1
Pyn-1_;_,(x) = x* — 2x cos [n — (21€2+1)7T] +1
Pyn-1_q_,(x) = x% + 2x cosM +1

21’1
Applying Symmetric proposition for 2"~ elements, for k chosen from the front
half (i.e. from element k = 0 to element k = 2"~2 — 1), we can rewrite thee

factoring result as follow:
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2n721

n 2k+ 1)m 2k+ 1)m
x* +1= 1_[ [xz - 2xcos(—)+ 1] [xz + 2xcos¥+ 1]
2" 2n
k=0
Above discussions are the first answer for the question: why 2"~2 — 1?

Secondly, looking back to calculated integrals 1,, Ig, and I, and considering

the function

1
xX—= X2+ 2xt+1
n() =t|2tan'—=ZX +In (—)

2t x?—2xt+1
Then
I, = Jx‘}d% = %n (sin%) + const = %n (cos %) + const
Ig = fxgd—il = %[n (sin g) +1n (cos g)] + const
1 s 3
= g [n (cos §) +1 (cos ?>] + const
And

| _f dx
167 | x16 +1

_1[(_n)+ (_3n>+ (_5n)+(_7n>]+ ;
—1617 sm16 nsm16 nsm16 nsm16 cons

_1[( n)_l_ ( 3n>+ ( 5n)+ ( 7n)]+ .
—1617 cos16 ncos16 77cos16 ncosl6 cons

Hence, we could build a conjecture for the generalized integral as follow:

k k
1—f dx —120(' )+ t—lzo( ) + const
n = 1+x2n—2nk_on sin ;) + cons —znk_or] cos ay) + cons

Besides the fact that k > 0, the supermum of k should satisfy that

@+ DT T o1 < gn
= <-o
on 2

In other words, let k, be the strongest number such that k < k,, we get:

2kg+1=2"1—-12k,=2"1-2c k,=2"2-1

124%

This is why the summation is from elementk = 0to k = k, = 22 — 1,

Conseuently, the generalized conjecture is true for 22 -1 >0 & n > 2.
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6.2. The Symphony
l. Molto Allegro
We shall prove that:

| _f dx
A L

om—2_ 1
1 Z Rk + Dr 2 tan-1 XY=y
~om €8T n an 2k + Dr
k=0 2 cos om
x% + 2x Cos(Zkz;nl)n +1 ( )
+ In +const (mMeEN,n=>2

x? —2x cos(2k2+1)n +1

Denoting:

x?+1
{(H(A) - jx‘* +Ax?2+1 dx

_ x?—-1
k14(/1)=]x4+/1x2+1dx

Of which A is a given real number.

ForA = —2cos@:

1
x%+1 I+
IZ(—ZCOSH):] 2 > dx:f X dx
x*—2x“cosf+1 x2_|_x_12_2c059

x_%)2+2—2cost9_ (X_%)2+4(Sin%)2

4(x-3) A(x—3)
j(

9 X ==
=1}(—2cosf) = Ecsc—tan‘1 X

+ const

2 .
251n7

And
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1_(2 9)_j x2 -1 p _f 1_F d
A cosb) = x* —2x2%2cos6 + 1 *= x2+i—2c059 ’
X2

d(x+%) _ d(x+%)
f(

2

x+l)2—2—20050 (x+1) —4(cosg)

2

X X

1 0 x+%—2005%
—Zseciln

+ const

1
x+z+20057

1 8 x2—2xcos%+1

= —sec—1
seczn

+ const
4

x2 +2xcos%+ 1

Forming the function F,n(x) as follow:
an (x)

17 @kt 1) x -1
. 1
- - z cos————|2 -1 X

o tan L Qk+ D
k=0 2c 0S~——>n

Qk+ D
zn
Qk+ Drm
271

x% 4+ 2x cos +1

+ In + const

x2 — 2x cos +1

Of which

2k +1 __
ay = 2k + Dn )” (k=0;22-1)

Where arcs «ay, are all odd multiples of z_n and less than g Thanks to above

results of I (—2cos®) and I;(—2cos@), the function F,n(x) could be
transformed as:

Fon(x)

COsT o an @k + D
k=0 2 COS~——n——

2k + Dr x2+2xcos(2kz+1)n+1
teosTon I 2k + Dn
x? —2x cos~——z—— + 1

1
1 Z N T

+ const
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Fon(x)

k=0 2 sin

1 2k + 1m
N (2k+1)7-[l x+§+2005% N .
cos o n 1 2k + Dr cons
x+;—2cosz—n

271-2_

1 1(_ (2k+1)n>2 Qk+Dm_ . x—%
Z E Sin———| csc——tan

2n=2 2n 2n . 2k+Drm
k=0 sin ~——=7—"—

1
1/ @k+Dr\° Qk+1Dr  |x+5+2c08 "7
+ 7 cos —on sec on In 1 2k + D

X+ x 2 COS——7——
Il. Andante

This movement presents the derivative calculation of F,n(x):
Fan(x)

2n—2_1

1 Z 1/ (k+Dr)’ Qk+Dm . X%
~gnz 2\> T n ST BT 0k + D
k=0 SIN——7—

1
2 cos o sec o n 1 2k + Dr cons
x+2- 2 COS~——n——

- =Y (sin(z"“)”)z( (1+5)

2n 1)’ - (2k + Dm\?
x—;) +4(51n2—n)

+ (cos (2k + 1)n>2 (1 B x_lz)
(

2 2
x + 1) —4 <cos —(Zk + Dn)
X
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len (.X)

1 z_ ( 2k + 1)n>2 (x2+1)
= sin
2" k=0 2" x*+1—2x? cos(2kz,+11)n
.\ (COS (2k + 1)n>2 (1—x%)
2" x*+1—2x? COS(Zan;_il)n

2n—2_4q QRk+ Dm

e 1 1 —x* cos=—7—
n\X) = n-2 z
2 k=0 x*+1—2x2 COSM

2n—1
Let
2k + 1) -
k =(ZTl) (k=0;2n2-1)
By definition,
B [22" 2 —-1—k)+ 1]n
ﬁz”‘z—l—k - zn_l
B 1t —-1-2krn
Bon-z_1_y = on-1
B Rk+ Dm
Bon-2_q_j =T — ot
Bon-2_q_ =T — Py
Which implies:

cos(Bon-2_1_p) = — COS B
Applying Symmetic proposition for 2"72 elements, choosing k and then
determining 2"~2 — 1 — k does not depend on the position of k in a set of 272
elements. Accordingly, this set could be separated into two halves, the front
contains 2™3 elements from k = 0 to k = 2"3 — 1, and the back contains
2™~3 remaining elements from k = 2" 3 to k = 2"% — 1.

Following up the above transformation:
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len (X)

1 1—xzcos(2k2n;_11)ﬂ

n-2
2 k=0 |x*+1—2x2 cos(Zkzn;_ll)n

1+ x? Cos(Zan;_ll)n

x*+ 1+ 2x? COS(Zan;_ll)n

+

len (X)

1 1

n-—2
2 k=0 |[x*+1—2x? cos(Zkzn;_ll)n

1

x*+ 1+ 2x? cos(Zkzn;_ll)n

QRk+ Dm 1

2n—1

+ x? cos

x* + 1+ 2x? cos(Zkzn;_ll)n

1

x*+1—2x? cos(Zkzn;_ll)n

2
21 (xt + 1) — 4x? (cos —(2](2:__11)”>

=
-2
2" k=0 x84+ 1—2x* cos(zgn;_zl)n

2
2n3-11 4 x* [1 -2 (cos M) ]

len (X) =

2n—1

1

len (X) = on-3

k=0 x84+ 1—2x* cos(zgn;_zl)n

2k + Dm

2n—2

k=0 x8+1—2x* cos(Zan;_zl)n

2n3-1
1 1—x*cos

len(X) = on-3
Here come the arcs of
B QRk+ Dm

Yk n—2

(k = 0; 775 = 1)
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I1l.  Menuetto
This movement reveals whether there is any relations between a;,, B, and yy.

Putting

2nm—y

= 2
on-m co Rk + 1)m

Zm _ 2m—1 \&en T 2Jit
k=0 x“ +1—2x S Sn—m+1

2n—m+1

1—x

me(X) =

Forming ¥,,(x), we may rewrite:

, 1 i N QY COS(2k2+11)n
an(X) = lpz(x) = on-2 (Zk + 1)7'[

k=0 x*+4+1—2x2%cos =T

As well as
Fon () = W3(x) = 77 2k + Dn

k=0 x84+ 1—2x*cos =2
It is importantly noticeable that:
Fyn(x) = ¥, (x) = ¥5(x)
Before using this notification, it is necessary to ensure that m € N and:

{ mz=2 {mZZ @{anZ e2<m<n

2mm —1>0 2mm >1 -m=0
Due to W,(x) = W;(x), there should be a question on the relation between
¥, (x) and W, (x). If this relation actually exists, it is the key to clinch the

generalized integral.

Expressing:
B 1 et 1— x2" cos —(Zl;n-lii)ﬂ
Vi1 (X) = 55— Z
2 co x2™ 4 1 — 2x?" cos(zgn;_,%)n

Now, we shall prove that ¥,,(x) = ¥,,.,(x) form e Nand 2 < m < n.
Denoting:
3 2k + D

kE— on-m+1

(k= 0,777 =)
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By definition:
22" ™ —-1—k)+ 1]n

Pan-m_1k = n-m+1
@™ -1 -2k
Pon-m_g_p = on-m+1
Rk + m
Ponmogog =T = o

pon-m_1_ =T — Py
Which implies:
cos(pan-m_y_i) = — cos Py
Applying Symmetric proposition for 2™~ elements, we may transform:

1 1—x n—m+1
¥ () = 5 2 2k + Dn

m _ 2m1
k=0 x< +1-—2x 0S “Sn=m+1

2mMm_q

W ()
e =0 |x?™+1—2x2"" s—(zzlfl *,'n}z"
.\ 1+ x? COS(ZZI;;mHTC
x?™+ 1+ 2x27" c s—(zzlfl ;}F
W ()
1 e 1
K k=0 [x2" 41— 2x2" s(zzlfl;m}rzn
N 1
x2™ + 1+ 2x2" " c s—(zzlfl ;}F
2™ cos 2k + Dm 1
2\ 1 4 202 s—(zzlfl _tnﬂn
1
) x?™ =1+ 2x7" " co —(22151 ;2”
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1 2nmin Z(me+1 + 1) — 4x2" (cos

2k + 1)n)2

2n—m+1
0 = g G ™ 1 - 2xm cos BT
; LA x2" [1 -2 (cos —(22]7{1——;12”) ]
() = o5 IZ; L2 L] _ g2 (21;:1711)71
1 2n-m-1_4 1 — 52" (2]§n+n11)7t
W, (x) = on-m-1 kZo 2™ 4] — 242 o (21;7;1—1711)7T

m(x) = m+1(x)
So, we have proved that ¥,,,(x) =

This results in:

Y 1(x)formeNand2 <m < n.

1 n €N
Fin () = 9,00 = W5(0) = -+ = Wy (1) = W00 W) 2
Therefore, QED is obtained as per the expression of ¥,,(x). Indeed:
n-n_ n- (Zk + 1)7'[
() = — Ayl i
X) = n—-n z
2 =0 x2"+1-—2x2"""c —(2212-:31)”
Y, (x) = Z
=ox?™ +1—2x2""" cos @+ )m ; L
1—x2"" cos%
l'Pn(x) Bl 1 T
x?" +1—2x? cos
00 =
As
_ meN
Fijn(x) = ¥ () = 1
Which means:
dx neN
an(X') = f—xzn n 1 V?’l{n > 2
QED.
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IV.  Allegro assai
The proof is granted upon the completion of Movement Il — Menuetto. The

conclusion is presented in Movement IV — Allegro assai.

We have proved that

dx
Fyn(x) = jm v (1S
Which means
dx
fr = f T+
—— 1
=i Z COSM 2tan™?! " X
2" k=0 2" 2COS—(2k2-I;11)TC
x? + 2x cos(2kz+1)n +1
+ In 2k + Dn + const (n€ N,n>2)

x? = 2xcos——z——+1

This is such a beautiful expression, which could also be written as

| _j dx
A L

17 e+ x -2
. 1
Z cos——— |2 tan™! X

=5 2n Ck + Dn
k=0 2 COS=——5n——

x% + 2x cos(Zkz;nl)n +1
os (2k2-|;11)7r

1

1 2k + 1) xX—=

In = — z 2 cosgtan‘1 X
2n 2n

k=0 2 COS~——n——

+ In + const

x2 —2xc +1

2k + 1)711 x% + 2x cos~——7—— +1

+ cos n
2n x2—2xcos(2kZ;n1)n+1

+ const
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15« 2k + 1) x
- 1
I =0 Z 2 sin—————tan"! X

n
k=0 2 2 sin —(2k2-I;1)7T
1 2k + )m
N (2k+1)7-[1 X+E+2COS% N .
CoS on n 1 (Zk n 1)7_[ cons
X+=—2Cc0S——57—"—
2
Furthermore, we may denote:
( x _%
=2tan™ ——==
fiox) = 2tan™ o
3
x + % + 2cosf
dey(x) =1In
L X+ —2cosb
Then the result of I,» could be expressed as:
L j dx
N L
221
1 - k+Dm 2k + Dm
Ipn = > z sin ———— f@k+nm\ (x) + c0s ———— g2+ 1) (x)
L [ e 7o)

+ const
Of which, n is an integer and n > 2.
6.3. Encore
Looking back, what we can find may be the beauty of the generalized integral
as well as its solution. Of which, the key for us to reach the treasure should be
function W¥,,(x). Accordingly, the relation ¥,,(x) = ¥,,,,(x) is just like a
bridge to heaven.
Interestingly, although W,,(x) is an x-variable function, the gold is found
thanks to m. We seemed to perform the integration by substitution from
variable x to variable m in order to reach the goal. Indeed, the technique of
integration by substitution has been performed in this paper. However, the
substitution from x to m is truly the game-changing move.
Besides, with the relation between ¥,,(x) and ¥, (x), we may comment that
the generalized integral in this section is calculated based on integration by

substitution and mathematical induction.
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Generalization:N =2s+1 (s € N*)

This section discusses on the generalized integral I, ;:

dx
IZS+1 = jx25+1 + 1 (S € N+)

In the introducing section, integral I; was calculated as follow:
j dx _1<.[ dx +f —-x + 2 d)
x3+1 3\ x+1 xz—x+1x

1 dx —2xcos3+2
=z j +j dx
3\J x+1 x2—2xcos3+1

In Sub-Section 3.2, integral Is was calculated as follow:

dx
IS:Jx5+1
1 dx —x3+2x2-3x+4
=§(fx+1+jx4—x3+x2—x+1dx>

1 dx —2x cos5 +2 —2Xx cos 35 +2
== j +] 7 dx+j 3 dx
>\Jx+1 x? —2xcosg+1 x2—2xcosTn+1

Based on above results, we may build a conjecture for integral I, as follow:
dx
Irs41 = x25+1 41

1 Yo (=1)P(2s — p)xP
2541 .fx +1 f =0(—1)qxq dx)

1 —2x cos + Dr +2
_ f Z f 25 +1 dx
2s+1 x+1 (21+1)7r+1
2s+1
Therefore, it is supposed to prove the following so-called 2s + 1 equality:
<+ —2xCoS (22] ++11)n+2 2s +1
= Vx € R\ {—1}
(2] + 1)71- x2s+1 4+ 1

=0 x? — 2x cos +1

2s+1
Let complex numbers w; be roots of the equation x***! 4+ 1 = 0. Factoring:

w25+1

r —1=cosm+isinm
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e A P 2sv1 U=0:29)
By the the property of complex conjugates:
(4s—-2j+1)mr (“s—-2j+m
Wops—j = COS 25 + 1 + 1 sin 75+ 1
[4s+2—-Q2j+D]r = [4s+2-(2j+ D]n

- o8 25 + 1 Fisin 2s + 1
= Cos[2n—wl +isin[ n—wl

2s +1 2s+1

25 + 1 ST
Therefore, we get:

2j+Dm
{wj + wys_j = 2COSZS—+1

In other words,

2j+Dr

x? —2x COSW-I- 1= (x — a)]-)(x — wZS_j)

Generalizing:

2s
x5t 41 = l_[(x = wj)
j=0
Considering function L(&) as defined in Sub-Section 3.1:

L(6)—f —2xcosd + 2
) x2—2xcosS+1 x

The partial fraction decomposition method requires to find two real numbers A
and B such that:

—2xcos—(22]S |11) + 2 A B
(2j+ Dm X—w X—wo x€C\{ i 25—j}
2 _ = J 25—j
x“ — 2x cos s T 1 +1

The above results in:

2j+n

A(x - wZS_j) + B(x — a)j) = —2x cos s+ 1
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_ (2j + D
< (A+B)x — (Aa)ZS_j + Ba)j) = —-2x COSW

Which leads to the system of equations:

A+B=-2 (j + Dm
= —-2c0s————
2s+1 © (4B) = (—wj; —w,_))
Awgs—j + Bwj = —2

Returning to prove the 2s + 1 equality:

2j+ rm
2s+1 T2
(2]+1)7T
2s+1

Q2j+Dm

—2X cos + 2
_I_z 25+1
Tx 1 rd (x—wj)(x Was-)

_O)S (l)] (1)25 ]
X — Wg X— W X— Wy

j=0

s—1

+

—2Xx cos

j=0x?—2xcos—5———+1

j=0
2s
1
=2s+1-— xz
= X — (,l)]
Jj=0
d
520(" - ‘Uj)
=2s+1—x s (x—w-)
j=0 J

d_y 25+1
X 75 (x +1)

=2s+1- 1
25+1
=ZS+1—(ZS+1)W
2s +1
st 1 q

QED. This leads to the following result of the generalized integral I, ;:
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dx
Iys41 = jm
2j+ D=

s—1
_ 1 f dx +ZJ —ZXCOSZS—H-i'Z dx
2s+1() x+1 <« 2 _ 9 (2j+1)”+1
j=0 X xCOS—ZS-l-l

( s—1 i
1 dx 2j+ D=
- <] +y LT
2s+1 x+1 £ 2s+1
\ J=0
p
! In|x + 1]
= )
2s+1) %
\
s—-1
N 2j+ rm 2_ 2j+
_ 2s+1 \F TS
Jj=0
2j+rm
_(2j+Dm XS F1
+ 2 sin > 1 t 2+ Dn + const
2s+1

On the other hand, the above generalized result could be rewritten under

complex logarithms as follow:

dx
IZS+1 = fx25+1 + 1
s—1 (2] + 1)77:

_ 1 .’- +z —2XCO0S~—5 /55— TEE +2 »
2s+1) |x+1 (2j+ Dm

2
-0 X% — 2x COS s+ 1 +1
28
- Z— dx
2s +1 i X — W;

j=0

28

Z[—wj ln(x — wj)] + const

T 25 + 14
]:

Noticeably, the above expression is also true for s =0 and help build a

conjecture for integral 1,,- which will be discussed in the next section.
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Generalization: N = 2r (r e N;r > 2)

This section discusses on the generalized integral I,,:

dx

Reminding the partial fraction decomposition for integral I, as presented in
Sub-Section 2.1:

11 —\2x + 2 V2x + 2
=2l

+
x*+1 2 _\2x+1 x24+V2x+1
1 —2xcos%+2 —2xcos:%n+2
4 x? —2xcosz+1 x2—2xcosTT[+1

Besides, based on results of integrals Ig and I, as presented in Section 4 and
Section 5, respectively, we enable to predict the so-called 2r equality as
follow:

QL+ Drm
—2x COST-I- 2 2r

= 2r
z=0x2—2xcosw+1 T +1

r—1

Vx € R

Let complex numbers w, be roots of the equation x*” + 1 = 0. We get:

w?" =—-1=cosm+isinm
21+ )m 21+ m _
S w; = cos¥+isinu (l=0;2r—1)
2r 2r
By the the property of complex conjugates:
B (4r—2l—1)n+_ . @r=21-Dm
Wyp_1-] = COS o [ sin >
[4r — 2L+ D]r ~  [4r— QI+ 1D]n
= CoSs + 1 sin
2r 2r
21+ )rm 21+ )m
= CoS 271—g + i sin 27r—u
2r 2r
QL+Dnr . Ql+Dnm
= c0s——— — [sin———
2r 2r
The above results in:
2l+Dr
{wl + Wopqy = 2 oS ————
W War—1 =1
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In other words,

21+ 1)
—2x cos% +1=0(—w)x—wy_1-1)

x2

Generalizing:

2r—1
x4+ 1= H(x—a)l)
j=0

Similar to the calculation as performed in Section 7:

r—1 QL+ Dm
—2X CcoS o + 2
QL+ Dm
2 A —
1=0 X 2Xx coSs o7 +1
r—1 2L+ D

—2x COST + 2

= (x — w)(x — wzpr_q-p)

— W —W2r_1-1
X =W X~ W1y

oot — wy)
x%(xzr +1)

X% +1
2rx?"
S x¥ 41
2r

T+ 1

QED. This leads to the following result of the generalized integral I,,:

= 2r —

= 2r
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dx
lor = J-xzr +1
QL+ Drn

1 —2xcos———"—+2
= —f Z 2r dx
2r QL+ Dm

2 = 7
=0 X 2Xx coS 5 +1

1 riL QL+ D
T 2r 2r
1=0
r—1
1 QL+ Dm 2L+ Dm
= —Z —cos—————1In|x? - 2xcos————+1
2r 2r 2r
1=0
21+ 1
+ 2si (ZHDﬂt 27 cos! Zr) + t
sin > an - 2+ D cons
2r

The above result is true for N are even numbers, including the case of integral
I,n as presented in Section 6. On the other hand, the above generalized result

could be rewritten under complex logarithms as follow:

dx
lor = jx2r+ 1

1 -1 —2x cos @i+ D ;_ m + 2
= r dx
2r =0 x% — 2xcos%+ 1

2r—1

1 —w;

= — z dx

2r X — wy

1=0
2r—1

1
= — Z [—w; In(x — w;)] + const
2r e

The above result is also true for r =1, which results in an interesting

consequence:

i x+1i
—ln< )—tan X = const

X —1
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Conclusion
From the results as obtained in Section 7 and Section 8, we get the following

generalized integral:

dx
Iy zf—1+x"’ (N e Nt)
N-1

1
=3 Z [—w, In(x — w,)] + const
z=0

Of which w, are roots of the equation xV = —1, i.e.
z+1)nr = Qz+D=m (2z+1)in

wz=cosT+LsmT=e N (z=0O;N-1)

Besides, for positive integer N, we can also develop the integral as follow:

I_j dx —]de—ljdx—ll
N Tre v ) T8 T 14+ xN N

In other words, we enable to solve for the case that N are integers (N € Z).

The final result of the generalized integral is fairly obvious with a solution
which is not so complicated. However, in order to find that result, the author
has dealt with a process of calculation as detailed from Section 2 to Section 6.
Introducing this paper, the author wishes to share the message “glory presents

not only at the destination, but also throughout the journey”.
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