

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 2 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
R \geq 2 r ; 5 R \geq 10 r ; 8 R-3 R \geq 10 r ; 8 R-10 r \geq 3 R ;(8 R-10 r)^{3} \geq(3 R)^{3}=27 R^{3} \\
27 R^{3} \leq(8 R-10 r)^{3} ; 27 R^{3}=27 \cdot R \cdot R \cdot R=3 \sqrt{3} R \cdot 3 \sqrt{3} R \cdot R= \\
=6 \sqrt{3} R \cdot \frac{3 \sqrt{3}}{2} R \cdot R \geq 6 \sqrt{3} R \cdot s \cdot 2 r=12 \sqrt{3} s R r=3 \sqrt{3} \cdot 4 s R r=3 \sqrt{3} a b c \\
(8 R-10 r)^{3} \geq 3 \sqrt{3} a b c ;(8 R-10 r)^{6} \geq 27 a^{2} b^{2} c^{2}
\end{gathered}
$$

Solution 3 by Boris Colakovic-Belgrade-Serbie

$$
\begin{gathered}
27 a^{2} b^{2} c^{2} \leq(8 R-10 r)^{6} \Leftrightarrow\left(27 a^{2} b^{2} c^{2}\right)^{\frac{1}{3}} \leq(8 R-10 r)^{2} \Leftrightarrow \\
\Leftrightarrow 3 \sqrt[3]{a^{2} b^{2} c^{2}}=3 \sqrt[3]{a b c} \cdot \sqrt[3]{a b c} \leq(a+b+c) \cdot \frac{a+b+c}{3}=2 s \cdot \frac{2 s}{3}=\frac{4}{3} s^{2} \text { Gerretsen }_{\leq}^{\leq} \\
\leq \frac{4}{3}\left(4 R^{2}+4 R r+3 r^{2}\right) \leq 4(4 R-5 r)^{2} \Leftrightarrow 4 R^{2}+4 R r+3 r^{2} \leq 3(4 R-5 r)^{2} \Leftrightarrow \\
\Leftrightarrow 11 R^{2}-31 R r+18 r^{2} \geq 0 \Leftrightarrow(R-2 r)(11 R-9 r) \geq 0 \Rightarrow R \geq 2 r \text { Euler }
\end{gathered}
$$

Solution 4 by Soumava Chakraborty-Kolkata-India
Given inequality $\Leftrightarrow \sqrt{3} \sqrt[3]{a b c} \stackrel{(1)}{\leq} \mathbf{8 R} \mathbf{- 1 0 r}$. But LHS of (1) $\stackrel{G \leq A}{\leq} \frac{a+b+c}{\sqrt{3}}=\frac{2 s}{\sqrt{3}} \stackrel{\text { Mitrinovic }}{\leq} \frac{3 \sqrt{3} R}{\sqrt{3}}$

$$
=3 R \stackrel{?}{\leq} 8 R-10 r \Leftrightarrow 5 R \geq 10 r \Leftrightarrow R \geq 2 r \rightarrow \text { true (Euler) (Proved) }
$$

1062. In $\triangle A B C$ the following relationship holds:

$$
\frac{a w_{a}^{2}}{h_{a}}+\frac{b w_{b}^{2}}{h_{b}}+\frac{c w_{c}^{2}}{h_{c}} \geq 2 r^{2} \sqrt{\frac{486 r}{R}}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Marian Ursărescu-Romania

We must show: $\frac{1}{2 S}\left(a^{2} w_{a}^{2}+b^{2} w_{b}^{2}+c^{2} w_{c}^{2}\right) \geq 18 r^{2} \sqrt{\frac{6 r}{R}}$

$$
\begin{equation*}
\text { But } r \leq \frac{R}{2} \Rightarrow 6 r \leq 3 R \Rightarrow \frac{6 r}{R} \leq 3 \text { (2) } \tag{1}
\end{equation*}
$$

From (1)+ (2): We must show: $a^{2} w_{a}^{2}+b^{2} w_{b}^{2}+c^{2} w_{c}^{2} \geq 36 S r^{2} \sqrt{3}$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\left.\begin{array}{c}
\text { www.ssmrmh.ro } \\
a^{2} w_{a}^{2}+b^{2} w_{b}^{2}+c^{2} w_{c}^{2} \geq 3 \sqrt[3]{(a b c)^{2}\left(w_{a} w_{b} w_{c}\right)^{2}} \\
B u t \sqrt[3]{w_{a} w_{b} w_{c}} \geq 3 r \tag{4}\\
a^{2} w_{a}^{2}+b^{2} w_{b}^{2}+c^{2} w_{c}^{2} \geq 27 r^{2} \sqrt[3]{(a b c)^{2}}
\end{array}\right\} \Rightarrow
$$

From (3)+ (4) we must show: $2+r^{2} \sqrt[3]{(a b c)^{2}} \geq 36 S r^{2} \sqrt{3} \Leftrightarrow 3 \sqrt[3]{(a b c)^{2}} \geq 4 S \sqrt{3} \Leftrightarrow$

$$
\begin{gather*}
3 \sqrt[3]{(4 R S)^{2}} \geq 4 S \sqrt{3} \Leftrightarrow 27 \cdot 16 R^{2} S^{2} \geq 64 S^{3} 3 \sqrt{3} \Leftrightarrow \\
3 \sqrt{3} R^{2} \geq 4 S \Leftrightarrow 3 \sqrt{3} R^{2} \geq 4 s r \tag{5}
\end{gather*}
$$

$\left.\begin{array}{c}\text { But } R \geq 2 r \\ r \geq \frac{2 s}{3 \sqrt{3}}\end{array}\right\} \Rightarrow R^{2} \geq \frac{4 s r}{3 \sqrt{3}} \Rightarrow 3 \sqrt{3} R^{2} \geq 4 s r \Rightarrow(5)$ it's true.
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
L H S=\sum a w_{a}^{2}\left(\frac{a}{2 r s}\right)=\frac{1}{2 r s} \sum a^{2} w_{a}^{2} \\
\stackrel{w_{a} \geq h_{a}, e t c}{\geq} \frac{1}{2 r s} \sum\left(a^{2}\left(\frac{4 r^{2} S^{2}}{a^{2}}\right)\right)=6 r s \stackrel{?}{\geq} 2 r^{2} \sqrt{\frac{486 r}{R}} \\
\Leftrightarrow 36 r^{2} S^{2} \geq 4 r^{4}\left(\frac{486 r}{R}\right) \Leftrightarrow 9 R S^{2} \xrightarrow[(1)]{\geq} 486 r^{3}
\end{gathered}
$$

But $9 R \stackrel{\text { Euler }}{\geq} 18 r \& S^{2} \geq 27 r^{2}$. Multiplying the above two, $9 R S^{2} \geq 486 r^{3}$

$$
\Rightarrow(1) \text { is true (proved) }
$$

1063. If in $\triangle A B C, I$ - incentre, R_{a}, R_{b}, R_{c} - circumradii in $\triangle B I C, \Delta C I A, \Delta A I B$ then:

$$
\sqrt{6} \leq \sqrt{\frac{R_{a}}{h_{a}}}+\sqrt{\frac{R_{b}}{h_{b}}}+\sqrt{\frac{R_{c}}{h_{c}}} \leq \sqrt{\frac{6 m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}}}
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& R_{a}=\frac{B I \cdot C I \cdot B C}{4 \cdot \frac{1}{2} B C \cdot r}=\frac{\frac{r}{\sin \frac{B}{2}} \cdot \frac{r}{\sin \frac{C}{2}} a}{2 a r}=\frac{r \sin \frac{A}{2}}{2\left(\pi \sin \frac{A}{2}\right)}=\frac{r \sin \frac{A}{2}}{2\left(\frac{r}{4 R}\right)} \stackrel{(1)}{=} 2 R \sin \frac{A}{2} \\
& \therefore \sqrt{\frac{R_{a}}{h_{a}}} \stackrel{b y(1)}{=} \sqrt{2 R \sin \frac{A}{2} \cdot \frac{2 R_{a}}{a b c}}=\sqrt{\frac{4 R^{2}}{4 R r s} a \sin \frac{A}{2}} \stackrel{(a)}{=} \sqrt{\frac{R}{r s}} \sqrt{a \sin \frac{A}{2}} \\
& \text { Similarly, } \sqrt{\frac{R_{b}}{h_{b}}} \stackrel{(b)}{=} \sqrt{\frac{R}{r s}} \sqrt{a \sin \frac{B}{2}} \& \sqrt{\frac{R_{c}}{h_{c}}} \stackrel{(c)}{=} \sqrt{\frac{R}{r s}} \sqrt{c \sin \frac{c}{2}} \\
& \text { (a) }+ \text { (b) }+ \text { (c) } \Rightarrow \sum \sqrt{\frac{R_{a}}{h_{a}}} \stackrel{(2)}{=} \sqrt{\frac{R}{r s}} \sum \sqrt{a \sin \frac{A}{2}} \\
& \stackrel{A-G}{\geq} 3 \sqrt{\frac{R}{r s}} \sqrt[6]{4 \operatorname{Rrs}\left(\frac{r}{4 R}\right)} \stackrel{?}{\geq} \sqrt{6} \Leftrightarrow 27 R^{3} \geq 8 r s^{2} \rightarrow \text { (i) } \\
& \text { Now, } R^{2} \stackrel{\text { Mitrinovic }}{\geq} \frac{4 S^{2}}{27} \& R \stackrel{\text { Euler }}{\geq} 2 r
\end{aligned}
$$

$\therefore \mathbf{2 7} \boldsymbol{R}^{3} \geq \mathbf{8 r s}{ }^{2}$ (multiplying the above two) \Rightarrow (i) is true $\therefore \sum \sqrt{\frac{R_{a}}{h_{a}}} \geq \sqrt{6}$

$$
\text { Also, using (2), } \sum \sqrt{\frac{R_{a}}{h_{a}}} \frac{C B S}{\leq} \sqrt{\frac{R}{r s}} \sqrt{2 S} \sqrt{\sum \sin \frac{A}{2}}
$$

$$
\begin{gathered}
\stackrel{\text { Jensen }}{\leq} \sqrt{\frac{R}{r s}} \sqrt{2 S} \sqrt{3 \sin \left(\frac{\pi}{6}\right)}\left(\because f(x)=\sin \frac{x}{2} \forall x \in(0, \pi) \text { is concave }\right) \\
=\sqrt{\frac{3 R}{r}} \therefore \sum \sqrt{\frac{R_{a}}{h_{a}}} \stackrel{(i i)}{\leq} \sqrt{\frac{3 R}{r}}
\end{gathered}
$$

Now, $\sqrt{\frac{6 m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}}} \stackrel{m_{a} \geq \sqrt{s(s-a)}, \text { etc }}{\geq} \sqrt{\frac{\frac{6 S r s}{\frac{16 R^{2} r^{2} s^{2}}{8 R^{3}}}}{\geq}}=\sqrt{\frac{3 R}{r}} \stackrel{\text { by }(i i)}{\geq} \sum \sqrt{\frac{R_{a}}{h_{a}}} \Rightarrow \sum \sqrt{\frac{R_{a}}{h_{a}}} \leq \sqrt{\frac{6 m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}}}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

1064. In $\triangle A B C$ the following relationship holds:

$$
\frac{a m_{a}}{h_{a}}+\frac{b m_{b}}{h_{b}}+\frac{c m_{c}}{h_{c}} \geq 2 \sqrt{3 \sqrt{3} S}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Mustafa Tarek-Cairo-Egypt

We know that the altitude the least segment from the vertex of the triangle to the other side and coincide at the median \Leftrightarrow the triangle is isosceles then

$$
\begin{gathered}
m_{a} \geq h_{a}, m_{b} \geq h_{b}, m_{c} \geq h_{c} \\
\text { LHS } \geq a+b+c=2 s ? 2 \sqrt{3 \sqrt{3} S} \Leftrightarrow \frac{s^{2} \sqrt{3}}{9} \geq \Delta \text { (true) } \\
\text { as } \Leftrightarrow \frac{s^{2} \sqrt{3}}{9} \geq r s \Leftrightarrow s \stackrel{\text { Mitrinovic }}{\geq} 3 \sqrt{3} r \text { (isoperimetric inequality) }
\end{gathered}
$$

Solution 2 by Marian Ursărescu-Romania

$$
\begin{equation*}
\frac{a m_{a}}{h_{a}}+\frac{b m_{b}}{h_{b}}+\frac{c m_{c}}{h_{c}} \geq 3 \sqrt[3]{\frac{a b c m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}}} \tag{1}
\end{equation*}
$$

But $m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2} \geq \sqrt{b c} \cos \frac{A}{2} \Rightarrow m_{a} m_{b} m_{c} \geq a b c \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$

$$
\begin{align*}
& \text { From (1)+(2) } \Rightarrow \frac{a m_{a}}{h_{a}}+\frac{b m_{b}}{h_{b}}+\frac{c m_{c}}{h_{c}} \geq 3 \sqrt[3]{\frac{a^{2} b^{2} c^{2} \cos _{\frac{A}{2}} \cos _{2}^{B} \cos \frac{c}{2}}{h_{a} h_{b} h_{c}}} \tag{3}\\
& a b c=4 s R r, \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\frac{s}{4 R} \text { and } h_{a} h_{b} h_{c}=\frac{2 s^{2} r^{2}}{R}
\end{align*}
$$

$$
\begin{equation*}
\frac{a m_{a}}{h_{a}}+\frac{b m_{b}}{h_{b}}+\frac{c m_{c}}{h_{c}} \geq 3 \sqrt{\frac{16 s^{2} R^{2} r^{2} \cdot s \cdot R}{4 R \cdot 2 s^{2} r^{2}}} \Rightarrow \text { we must show: } \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
3 \sqrt[3]{2 R^{2} s} \geq 2 \sqrt{3 \sqrt{3} S} \Leftrightarrow 3^{6} 2^{2} R^{4} s^{2} \geq 2^{6} 3^{3} 3 \sqrt{3} s^{3} r^{3} \Leftrightarrow 9 R^{4} \geq 16 \sqrt{3} s r^{3} \tag{5}
\end{equation*}
$$

$$
\left.\begin{array}{l}
R^{3} \geq 8 r^{3} \\
R \geq \frac{2}{3 \sqrt{3}} s
\end{array}\right\} \Rightarrow R^{4} \geq \frac{16}{3 \sqrt{3}} s r^{3} \Leftrightarrow 9 R^{4} \geq 16 \sqrt{3} s r^{3} \Rightarrow \text { (5) it's true. }
$$

1065. In $\triangle A B C$ the following relationship holds:

$$
\frac{\sqrt{b^{2}+c^{2}}}{h_{a}}+\frac{\sqrt{c^{2}+a^{2}}}{h_{b}}+\frac{\sqrt{a^{2}+b^{2}}}{h_{c}} \leq \frac{9 R^{2}}{\sqrt{2} \cdot S}
$$

Proposed by Mehmet Sahin-Ankara-Turkey

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Solution 1 by Daniel Sitaru-Romania

$$
\begin{gathered}
\sum_{c y c(a, b, c)} \frac{\sqrt{b^{2}+c^{2}}}{h_{a}} \\
C B S \\
\leq \sum_{c y c(a, b, c)}\left(b^{2}+c^{2}\right) \cdot \sum_{c y c(a, b, c)} \frac{1}{h_{a}^{2}}
\end{gathered}=\sqrt{2 \sum_{c y c(a, b, c)} a^{2} \cdot \sum_{c y c(a, b, c)} \frac{a^{2}}{4 S^{2}}}=
$$

Solution 2 by Soumava Chakraborty-Kolkata-India
WLOG, we may assume $a \geq b \geq c$. Then $\sqrt{b^{2}+c^{2}} \leq \sqrt{c^{2}+a^{2}} \leq \sqrt{a^{2}+b^{2}} \&$

$$
\begin{gathered}
\frac{1}{h_{a}} \geq \frac{1}{h_{b}} \geq \frac{1}{h_{c}}: \sum \frac{\sqrt{b^{2}+c^{2}}}{h_{a}} \stackrel{\text { Chebyshev }}{\leq} \frac{1}{3}\left(\sum \frac{1}{h_{a}}\right)\left(\sum \sqrt{b^{2}+c^{2}}\right) \\
\stackrel{\text { CBS } \sqrt{3}}{\leq} \frac{3}{3} \sqrt{2 \sum a^{2}} \stackrel{\text { LEIBNIZ }}{\leq} \frac{\sqrt{3} \sqrt{2} \cdot 3 R}{3 r}=\frac{\sqrt{6} R s}{r s} \stackrel{\text { MITRINOVIC }}{\leq} \frac{\sqrt{6} R \frac{3 \sqrt{3} R}{2}}{S}=\frac{9 R^{2}}{\sqrt{2} S}
\end{gathered}
$$

1066. Find $\Omega \in \mathbb{R}$ such that in acute $\triangle A B C$ holds:

$$
\Omega=\left(\frac{b \cos B}{c \cos c}+\frac{c \cos c}{b \cos B}\right) \cos 2 A+\left(\frac{c \cos C}{a \cos A}+\frac{a \cos A}{c \cos C}\right) \cos 2 B+\left(\frac{a \cos B}{b \cos B}+\frac{b \cos B}{a \cos A}\right) \cos 2 C
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Serban George Florin-Romania

$$
\begin{gathered}
\Omega=\sum\left(\frac{b \cos B}{c \cos C}+\frac{c \cos C}{b \cos B}\right) \cdot \cos 2 A=\sum\left(\frac{2 R \sin B \cos B}{2 R \sin C \cos C}+\frac{2 R \sin C \cos C}{2 R \sin B \cos B}\right) \cdot \cos 2 A \\
=\sum\left(\frac{\sin 2 B}{\sin 2 C}+\frac{\sin 2 C}{\cos 2 C}\right) \cdot \cos 2 A \\
\Omega=\frac{\sin 2 B \cos 2 A}{\sin 2 C}+\frac{\sin 2 C \cos 2 A}{\cos 2 C}+\frac{\sin 2 A \cdot \cos 2 B}{\sin 2 C}+\frac{\sin 2 C \cos 2 B}{\sin 2 A}+ \\
+\frac{\sin 2 A \cos 2 C}{\sin 2 B}+\frac{\sin 2 B \cos 2 C}{\sin 2 A}=\sum\left(\frac{\sin 2 A \cos 2 B}{\sin 2 C}+\frac{\sin 2 B \cos 2 A}{\sin 2 C}\right)= \\
=\sum \frac{\sin (2 A+2 B)}{\sin 2 C}=\sum \frac{\sin (2 A-2 C)}{\sin 2 C} \\
\Omega=\sum-\frac{\sin 2 C}{\sin 2 C}=\sum(-1)=-3
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.roSolution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\left(\frac{b \cos B}{c \cos C}+\frac{c \cos C}{b \cos B}\right) \cos 2 A=\left(\frac{2 R \sin B \cos B}{2 R \sin C \cos C}+\frac{2 R \sin C \cos C}{2 R \sin B \cos B}\right) \cdot \cos 2 A \\
=\left(\frac{\sin 2 B}{\sin 2 C}+\frac{\sin 2 C}{\sin 2 B}\right) \cos 2 A=\left(\frac{2 \sin ^{2} 2 B+2 \sin ^{2} 2 C}{2 \sin 2 B \sin 2 C}\right) \cos 2 A \\
=\frac{(1-\cos 4 B-1-\cos 4 C) \cdot 2 \sin 2 A \cos 2 A}{4 \sin 2 A \sin 2 B \sin 2 C} \stackrel{(1)}{=} \frac{2 \sin 4 A-\sin 4 A \cos 4 B-\sin 4 A \cos 4 C}{4 \sin 2 A \sin 2 B \sin 2 C} \\
\operatorname{Similarly},\left(\frac{c \cos C}{a \cos A}+\frac{a \cos A}{c \cos C}\right) \cos 2 B \stackrel{(2)}{=} \frac{2 \sin 4 B-\sin 4 B \cos 4 C-\sin 4 B \cos 4 A}{4 \sin 2 A \sin 2 B \sin 2 C} \& \\
\left(\frac{a \cos A}{b \cos B}+\frac{b \cos B}{a \cos A}\right) \cos 2 C \stackrel{(3)}{=} \frac{2 \sin 4 C-\sin 4 C \cos 4 A-\sin 4 C \cos 4 B}{4 \sin 2 A \sin 2 B \sin 2 C} \\
(1)+(2)+(3) \Rightarrow L H S=\frac{2 \sum \sin 4 A-\sum(\sin 4 A \cos 4 B+\cos 4 A \sin 4 B)}{4 \sin 2 A \sin 2 B \sin 2 C} \\
=\frac{2 \sum \sin 4 A-\sum \sin (4 A+4 B)}{4 \sin 2 A \sin 2 B \sin 2 C}=\frac{2 \sum \sin 4 A-\sum \sin (4 \pi-4 C)}{4 \sin 2 A \sin 2 B \sin 2 C} \\
=\frac{2 \sum \sin 4 A+\sum \sin 4 A}{4 \sin 2 A \sin 2 B \sin 2 C} \stackrel{(a)}{=} \frac{3 \sum \sin 4 A}{4 \sin 2 A \sin 2 B \sin 2 C} \\
\text { Now, } \sum \sin 4 A=2 \sin (2 A+2 B) \cos (2 A-2 B)+2 \sin 2 C \cos 2 C \\
=-2 \sin 2 C \cos (2 A-2 B)+2 \sin 2 C \cos (2 A+2 B)
\end{gathered}
$$

$$
=2 \sin 2 C\{\cos (2 A+2 B)-\cos (2 A-2 B)\} \stackrel{(b)}{=}-4 \sin 2 C \sin 2 A \sin 2 B
$$

$$
\text { (a), (b) } \Rightarrow L H S=\frac{-12 \sin 2 A \sin 2 B \sin 2 C}{4 \sin 2 A \sin 2 B \sin 2 C}=-3 \text { (answer) }
$$

1067. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{h_{a}-2 r}+\sqrt{h_{b}-2 r}+\sqrt{h_{c}-2 r} \leq \sqrt{h_{a}+h_{b}+h_{c}}
$$

Proposed by Bogdan Fustei - Romania

Solution 1 by Mehmet Sahin-Ankara-Turkey

$$
\sqrt{h_{a}-2 r}+\sqrt{h_{b}-2 r}+\sqrt{h_{c}-2 r} \leq \sqrt{h_{a}+h_{b}+h_{c}}
$$

Let $T=\sqrt{h_{a}-2 r}+\sqrt{h_{b}-2 r}+\sqrt{h_{c}-2 r}$. Using $h_{a}=\frac{2 \Delta}{a}, h_{b}=\frac{2 \Delta}{b}, h_{c}=\frac{2 \Delta}{c}$

$$
T=\sqrt{\frac{2 \Delta}{a}-2 r}+\sqrt{\frac{2 \Delta}{b}-2 r}+\sqrt{\frac{2 \Delta}{c}-2 r}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
T=\sqrt{\frac{2 r}{a}} \cdot \sqrt{(s-a)}+\sqrt{\frac{2 r}{b}} \cdot \sqrt{(s-b)}+\sqrt{\frac{2 r}{c}} \cdot \sqrt{(s-c)} \\
T^{2} \stackrel{c-s}{\leq} 2 r\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \cdot(s) \\
T^{2} \leq 2 \Delta\left(\frac{s^{2}+r^{2}+4 R r}{4 R \Delta}\right)=\frac{1}{2 R}\left(s^{2}+r^{2}+4 R r\right) \\
T^{2} \leq h_{a}+h_{b}+h_{c} ; T \leq \sqrt{h_{a}+h_{b}+h_{c}}
\end{gathered}
$$

Solution 2 by Soumitra Mandal-Chandar Nagore-India

$$
\begin{gathered}
\Delta=\frac{a \cdot h_{a}}{2}=\frac{b \cdot h_{b}}{2}=\frac{c \cdot h_{c}}{2} \\
\sum_{c y c} \sqrt{h_{a}-2 r}=\sum_{c y c} \sqrt{\frac{2 \Delta}{a}-2 r}=\sum_{c y c} \sqrt{\frac{2 r}{a}(s-a)} \\
\substack{\text { Cauchy } \\
\text { Schwarz }} \\
\left(\sum_{c y c} \frac{2 r}{a}\right)\left(\sum_{c y c}(s-a)\right)
\end{gathered} \sqrt{\sum_{c y c} \frac{2 r}{a}}=\sqrt{\sum_{c y c} h_{a}} .
$$

1068. In $\triangle A B C, \Delta A^{\prime} B^{\prime} C^{\prime}$ the following relationship holds:

$$
\begin{array}{r}
\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)\left(c+c^{\prime}\right) \geq 32 \sqrt{R R^{\prime} S S^{\prime}}+4\left(\sqrt{R S}-\sqrt{R^{\prime} S^{\prime}}\right)^{2} \\
\text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

Solution by Lahiru Samarakoon-Sri Lanka

$$
\begin{gathered}
\left(a+a^{\prime}\right)\left(b+b^{\prime}\right)\left(c+c^{\prime}\right) \geq 24 \sqrt{R R^{\prime} S S^{\prime}}+4 R S+4 R^{\prime} S^{\prime} b u t, R=\frac{a b c}{4 S} \\
\left(a+a^{\prime}\right)\left(b+c^{\prime}\right)\left(c+c^{\prime}\right) \geq 6 \sqrt{a a^{\prime} b b^{\prime} c c^{\prime}}+a b c+a^{\prime} b^{\prime} c^{\prime} \Rightarrow \\
\Rightarrow\left(a b c+a^{\prime} b c+b^{\prime} a c+c^{\prime} a b+a^{\prime} b^{\prime} c+b^{\prime} c^{\prime} a+a^{\prime} c^{\prime} b+a^{\prime} b^{\prime} c^{\prime}\right) \geq 6 \sqrt{a a^{\prime} b b^{\prime} c c^{\prime}}
\end{gathered}
$$

So, we have to prove, $a b^{\prime} c^{\prime}+b c^{\prime} a^{\prime}+c a^{\prime} b^{\prime}+a b c^{\prime}+b c a^{\prime}+a c b^{\prime} \geq 6 \sqrt{a a^{\prime} b b^{\prime} c c^{\prime}}$
Then, $A M \geq G M$
$\frac{a^{\prime} b^{\prime} c^{\prime}+b^{\prime} c^{\prime} a^{\prime}+c a^{\prime} b^{\prime}+a b c^{\prime}+b c a^{\prime}+a c b^{\prime}}{6} \geq 6 \sqrt{a^{3} a^{\prime 3} b^{3} b^{\prime 3} c^{3} c^{\prime 3}}=\sqrt{a a^{\prime} b b^{\prime} c c^{\prime}}$
So, it's true.

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
1069. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{\frac{r_{b} r_{c}}{a}}+\sqrt{\frac{r_{c} r_{a}}{b}}+\sqrt{\frac{r_{a} r_{b}}{c}} \leq \sqrt{\frac{s\left(h_{a}+h_{b}+h_{c}\right)}{2 r}}
$$

Proposed by Bogdan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
L H S=\sum \sqrt{\frac{r_{a} r_{b} r_{c}}{a s \tan \frac{A}{2}}}=\sum \sqrt{\frac{r s^{2}}{4 R s \sin \frac{A}{2} \cos \frac{A}{2} \tan \frac{A}{2}}}=\sum \sqrt{\frac{r s^{2}}{4 R s}} \csc \frac{A}{2} \\
=\sum \sqrt{\frac{r s^{2}}{4 R s} \sqrt{\frac{b c(s-a)}{(s-b)(s-c)(s-a)}}} \\
=\sum \sqrt{\frac{r s^{2}}{4 R S \cdot r^{2} s}} \sqrt{b c(s-a)}
\end{gathered} \frac{c B S}{\leq} \sqrt{\frac{1}{4 R r}} \sqrt{\sum a b} \sqrt{\sum(s-a)}=\sqrt{\frac{2 R}{4 R r} \cdot \frac{\sum a b}{2 R} \cdot s}=\sqrt{\frac{s}{2 r}\left(\sum h_{a}\right)} .
$$

1070. In $\triangle A B C$ the following relationship holds:

$$
\frac{a(s-a)}{b+c}+\frac{b(s-b)}{c+a}+\frac{c(s-c)}{a+b} \leq \frac{3 \sqrt{3} R}{4}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Boris Colakovic-Belgrade-Serbie

$$
\begin{gathered}
s-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2} ; \frac{a(s-a)}{b+c}=\frac{1}{2} \frac{a(b+c-a)}{b+c}=\frac{1}{2}\left(a-\frac{a^{2}}{b+c}\right) \\
s-b=\frac{a+b+c}{2}-b=\frac{a+c-b}{2} ; \frac{b(s-b)}{c+a}=\frac{1}{2} \frac{b(a+c-b)}{c+a}=\frac{1}{2}\left(b-\frac{b^{2}}{c+a}\right) \\
s-c=\frac{a+b+c}{2}-c=\frac{a+b-c}{2} ; \frac{c(s-c)}{a+b}=\frac{1}{2} \frac{c(a+b-c)}{a+b}=\frac{1}{2}\left(c-\frac{c^{2}}{a+b}\right) \\
\text { LHS }=\frac{1}{2}(a+b+c)-\frac{1}{2}\left(\frac{a^{2}}{b+c}+\frac{b^{2}}{c+a}+\frac{c^{2}}{a+b}\right) \leq \frac{1}{2}(a+b+c)-\frac{1}{2} \cdot \frac{(a+b+c)^{2}}{2(a+b+c)}= \\
=\frac{1}{2} \cdot 2 s-\frac{1}{4} \cdot \frac{4 s^{2}}{2 s}=s-\frac{s}{2}=\frac{s}{2} \leq \frac{1}{2} \cdot \frac{3 \sqrt{3}}{2} R=\frac{3 \sqrt{3}}{4} R
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 2 by Myagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
s-a=x ; s-b=y ; s-c=z ; s=x+y+z \\
\frac{3 \sqrt{3} R}{4} \geq \frac{s}{2} \geq \sum \frac{a(s-a)}{b+c} \text { ASSURE; } \frac{x+y+z}{2} \geq \sum \frac{(y+z) x}{2 x+y+z} \text { ASSURE } \\
\quad \frac{1}{2} \sum \frac{(y+z) \cdot 2 x}{2 x+y+z} \stackrel{G M \leq A M}{\leq} \frac{1}{2} \sum \frac{\left(\frac{2 x+y+z}{2}\right)^{2}}{2 x+y+z}= \\
=\frac{1}{8} \sum(2 x+y+z)=\frac{1}{8} \cdot 4(x+y+z)=\frac{x+y+z}{2}
\end{gathered}
$$

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
L H S=\sum \frac{a(2 s-a-s)}{2 s-a}=\sum a-s \sum \frac{a}{2 s-a} \\
=2 s-s \sum \frac{a-2 s+2 s}{2 s-a}=2 s-s \sum(-1)-2 s^{2} \sum \frac{1}{b+c} \\
=5 s-2 s^{2} \frac{\sum(c+a)(a+b)}{2 a b c+\sum a b(2 s-c)}=5 s-2 s^{2} \frac{\left(\sum a^{2}+2 \sum a b\right)+\sum a b}{2 s\left(s^{2}+4 R r+r^{2}\right)-4 R r s} \\
=5 s-2 s^{2} \cdot \frac{5 s^{2}+4 R r+r^{2}}{2 s\left(s^{2}+2 R r+r^{2}\right)}=s\left(5-\frac{5 s^{2}+4 R r+r^{2}}{s^{2}+2 R r+r^{2}}\right) \\
=s \frac{6 R r+4 r^{2}}{s^{2}+2 R r+r^{2}} \stackrel{\text { Mitrinovic }}{\leq} \frac{3 \sqrt{3} R}{2} \frac{6 R r+4 r^{2}}{s^{2}+2 R r+r^{2}} \stackrel{? 3 \sqrt{3} R}{4} \\
\Leftrightarrow \frac{4\left(3 R r+2 r^{2}\right)}{s^{2}+2 R r+r^{2}} \leq 1 \Leftrightarrow s^{2}{\underset{(1)}{\leq} 10 R r+7 r^{2}}_{\text {But, LHS of (1) } \stackrel{G e r r e t s e n}{\geq}}^{\geq} 16 R r-5 r^{2} \geq ? 10 R r+7 r^{2} \\
\Leftrightarrow 6 R r \stackrel{?}{\geq} 12 r^{2} \Leftrightarrow R^{2} \stackrel{?}{\geq} 2 r \rightarrow \text { true (Euler) (proved) }
\end{gathered}
$$

1071. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{h_{a}}{a w_{a}^{2}}\right)^{2}+\left(\frac{h_{b}}{b w_{b}^{2}}\right)^{2}+\left(\frac{h_{c}}{c w_{c}^{2}}\right)^{2} \geq \frac{1}{R^{2}\left(2 R^{2}+r^{2}\right)}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Marian Ursărescu-Romania

$$
\begin{gather*}
\left(\frac{h_{a}}{a w_{a}^{2}}\right)^{2}+\left(\frac{h_{b}}{b w_{b}^{2}}\right)^{2}+\left(\frac{h_{c}}{c w_{c}}\right)^{2} \geq 3 \sqrt[3]{\frac{\left(h_{a} h_{b} h_{c}\right)^{2}}{a^{2} b^{2} c^{2}\left(w_{a} w_{b} w_{c}\right)^{4}}} \tag{1}\\
\text { But } w_{a} \leq \sqrt{s(s-a)} \Rightarrow w_{a}^{4} \leq s^{2}(s-a)^{2} \Rightarrow \frac{1}{w_{a}^{4}} \geq \frac{1}{s^{2}(s-a)^{2}} \tag{2}\\
\text { From (1)+(2) } \Rightarrow \sum\left(\frac{h_{a}}{a w_{a}^{2}}\right)^{2} \geq 3 \sqrt[3]{\frac{\left(h_{a} h_{b} h_{c}\right)^{2}}{a^{2} b^{2} c^{2} s^{6}(s-a)^{2}(s-b)^{2}(s-c)^{2}}} \tag{3}\\
\qquad\left(h_{a} h_{b} h_{c}\right)^{2}=\frac{4 s^{4} r^{4}}{R^{2}} \text { (4) } \tag{4}\\
(a b c)^{2}=16 s^{2} R^{2} r^{2} \quad \text { (5) and }((s-a)(s-b)(s-c))^{2}=s^{2} r^{4} \tag{6}
\end{gather*}
$$

$$
\begin{equation*}
\text { From (3)+(4)+(5)+(6) } \Rightarrow \sum\left(\frac{h_{a}}{a w_{a}^{2}}\right)^{2} \geq \frac{3}{\sqrt[3]{4 R^{4} r^{2} s^{6}}} \tag{7}
\end{equation*}
$$

From (7) we must show this: $\frac{3}{\sqrt[3]{4 R^{4} s^{2} s^{6}}} \geq \frac{1}{R^{2}\left(2 R^{2}+r^{2}\right)} \Leftrightarrow \frac{27}{4 R^{4} r^{2} s^{6}} \geq \frac{1}{R^{6}\left(2 R^{2}+r^{2}\right)^{3}} \Leftrightarrow$

$$
\begin{equation*}
27 R^{2}\left(2 R^{2}+r^{2}\right)^{3} \geq 4 r^{2} s^{6} \tag{8}
\end{equation*}
$$

But $R \geq 2 r \Rightarrow R^{2} \geq 4 r^{2}$ (9)
Form (8)+(9) we must show this: $27\left(2 R^{2}+r^{2}\right)^{3} \geq s^{6} \Leftrightarrow 3\left(2 R^{2}+r^{2}\right) \geq s^{2}$ (10)
But from Gerretsen we have: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \Rightarrow$

$$
s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \leq 6 R^{2}+3 r^{2} \Leftrightarrow 4 R r \leq 2 R^{2} \Leftrightarrow 2 r \leq R \text { true. }
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum\left(\frac{h_{a}}{a w_{a}^{2}}\right)^{2} \stackrel{(1)}{\geq} \frac{1}{3}\left(\sum \frac{h_{a}}{a w_{a}^{2}}\right)^{2} \\
\sum \frac{h_{a}}{a w_{a}^{2}}=\sum \frac{2 r s}{a} \cdot \frac{1}{a \cdot \frac{4 b^{2} c^{2}}{(b+c)^{2}} \cdot \frac{s(s-a)}{b c}} \\
=\sum \frac{2 r s}{a} \cdot \frac{(b+c)^{2}}{4 s(s-a) \cdot 4 R r s}=\sum \frac{(b+c)^{2}}{8 R s a(s-a)} \\
=\frac{1}{8 R s} \sum \frac{(s+s-a)^{2}}{a(s-a)}=\frac{1}{8 R s} \sum \frac{s^{2}+(s-a)^{2}+2 s(s-a)}{a(s-a)} \\
=\frac{1}{8 R} \sum \frac{(s-a)+a}{a(s-a)}+\frac{1}{8 R s} \sum \frac{s-a}{a}+\frac{2 s}{8 R s} \sum \frac{1}{a} \\
=\frac{1}{8 R} \sum \frac{1}{a}+\frac{1}{8 R} \sum \frac{1}{s-a}+\frac{1}{8 R} \sum \frac{1}{a}+\frac{1}{4 R} \sum \frac{1}{a}-\frac{3}{8 R s}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
=\frac{1}{2 R} \sum \frac{1}{a}+\frac{1}{8 R} \sum \frac{1}{s-a}-\frac{3}{8 R s}=\left(\frac{\sum a b}{2 R}\right)\left(\frac{1}{4 R r s}\right)+\frac{4 R r+r^{2}}{8 R r^{2} s}-\frac{3}{8 R r s} \\
\left(\because \sum(s-a)(s-c)=\sum\left(s^{2}-s(b+c)+b c\right)=3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}=4 R r+r^{2}\right) \\
=\frac{\sum h_{a}}{4 R r s}+\frac{4 R+r}{8 R r s}-\frac{3}{8 R s} \stackrel{\sum h_{a} \geq 9 r}{\geq} \frac{9}{4 R s}-\frac{3}{8 R s}+\frac{4 R+r}{8 R r s} \\
=\frac{18 r-3 r+4 R+r}{8 R r s}=\frac{4 R+16 r}{8 R r s}=\frac{R+4 r}{2 R r s} \therefore \sum \frac{h_{a}}{a w_{a}^{2}} \stackrel{(2)}{\geq} \frac{R+4 r}{2 R r s} \\
(1),(2) \Rightarrow L H S \geq \frac{1}{3} \frac{(R+4 r)^{2}}{4 R^{2} r^{2} s^{2}} \stackrel{?}{\geq} \frac{1}{R^{2}\left(2 R^{2}+r^{2}\right)} \Leftrightarrow\left(2 R^{2}+r^{2}\right)(R+4 r)^{2} \underset{(3)}{\geq} 12 r^{2} s^{2}
\end{gathered}
$$

Solution 3 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
\sum\left(\frac{h_{a}}{a \cdot w_{a}^{2}}\right)^{2} \geq \sum\left(\frac{h_{a}}{a \cdot s(s-a)}\right)^{2}=\frac{1}{s^{2}} \cdot \sum \frac{1^{3}}{\left(\frac{a(s-a)}{h_{a}}\right)^{2}} \geq \\
\geq \frac{1}{s^{2}} \cdot \frac{(1+1+1)^{3}}{\left(\sum \frac{a(s-a)}{h_{a}}\right)^{2}}=\frac{27}{s^{2}} \cdot \frac{4 \Delta^{2}}{\left(s \sum a^{2}-\sum a^{3}\right)^{2}}= \\
=\frac{27}{s^{2}} \cdot 4 \Delta^{2} \cdot \frac{1}{4 s^{2}\left(s^{2}-4 R r-r^{2}-s^{2}+6 R r+3 r^{2}\right)^{2}} \\
=\frac{27 r^{2}}{s^{2}} \cdot \frac{1}{\left(2 R r+2 r^{2}\right)^{2}}=\frac{27 r^{2}}{s^{2}} \cdot \frac{1}{4 r^{2}(R+r)^{2}}= \\
=\frac{27}{4 s^{2}} \cdot \frac{1}{(R+r)^{2}} \geq \frac{1}{R^{2}} \cdot \frac{1}{(R+r)^{2}}=\frac{1}{R^{2}}\left(\frac{1}{R^{2}+2 R r+r^{2}}\right) \geq \frac{1}{R^{2}} \cdot \frac{1}{2 R^{2}+r^{2}} \\
\text { Now, RHS of (3)} \begin{array}{c}
\text { Gerretsen } \\
\leq 2 r^{2}\left(4 R^{2}+4 R r+3 r^{2}\right) \stackrel{?}{\leq}\left(2 R^{2}+r^{2}\right)(R+4 r)^{2} \\
\Leftrightarrow 2 t^{5}+16 t^{3}-15 t^{2}-40 t-20 \stackrel{?}{\geq} 0 \Leftrightarrow(t-2)\left(2 t^{3}+20 t^{2}+25 t+10\right) \stackrel{?}{\geq} 0
\end{array} \\
\quad \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \text { (Proved) }
\end{gathered}
$$

1072. In $\triangle A B C$ the following relationship holds:

$$
4 \sqrt{3} \leq \frac{b^{2}+c^{2}}{a r_{a}}+\frac{c^{2}+a^{2}}{b r_{b}}+\frac{a^{2}+b^{2}}{c r_{c}} \leq \frac{3 \sqrt{3}}{2}\left(\frac{R}{r}\right)^{3}-8 \sqrt{3}
$$

Proposed by Mehmet Sahin-Ankara-Turkey

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& 4 \sqrt{3} \stackrel{(a)}{\leq} \frac{b^{2}+c^{2}}{a r_{a}}+\frac{c^{2}+a^{2}}{b r_{b}}+\frac{a^{2}+b^{2}}{c r_{c}} \stackrel{(b)}{\leq} \frac{3 \sqrt{3}}{2}\left(\frac{R}{r}\right)^{3}-8 \sqrt{3} \\
& \frac{b^{2}+c^{2}}{a r_{a}}+\frac{c^{2}+a^{2}}{b r_{b}}+\frac{a^{2}+b^{2}}{c r_{c}} \\
& =\left(\sum a^{2}\right)\left(\sum \frac{1}{a r_{a}}\right)-\sum \frac{a}{r_{a}}=\left(\sum a^{2}\right)\left(\sum \frac{s-a}{a \Delta}\right)-\sum \frac{a(s-a)}{\Delta} \\
& =\frac{\sum a^{2}}{\Delta}\left(s \sum \frac{1}{a}-3\right)-\frac{s(2 s)-2\left(s^{2}-4 R r-r^{2}\right)}{\Delta} \\
& =\frac{\sum a^{2}}{\Delta}\left\{\frac{S\left(S^{2}+4 R r+r^{2}\right)}{4 R r s}-3\right\}-\frac{2\left(4 R r+r^{2}\right)}{\Delta} \\
& =\frac{\left(s^{2}-4 R r-r^{2}\right)\left(s^{2}-8 R r+r^{2}\right)}{2 R r \Delta}-\frac{2\left(4 R r+r^{2}\right)}{\Delta} \\
& =\frac{s^{4}-12 R r s^{2}+r^{2}(4 R+r)(8 R-r)-4 R(4 R+r) r^{2}}{2 R r \Delta} \\
& \stackrel{(c)}{=} \frac{s^{4}-12 R r s^{2}+r^{2}(4 R+r)(4 R-r)}{2 s R r^{2}} \\
& \underset{\leq}{\text { Mitrinovic }} \frac{S^{4}-12 R r s^{2}+r^{2}\left(16 R^{2}-r^{2}\right)}{2 s r^{2} \frac{2 S}{3 \sqrt{3}}} \stackrel{?}{\leq} \frac{3 \sqrt{3}}{2}\left(\frac{R}{r}\right)^{3}-8 \sqrt{3} \\
& \Leftrightarrow \frac{3\left\{S^{4}-2 R r s^{2}+r^{2}\left(16 R^{2}-r^{2}\right)\right\}}{4 S^{2} r^{2}} \stackrel{?}{\leq} \frac{3 R^{3}}{2 r^{3}}-8=\frac{3 R^{3}-16 r^{3}}{2 r^{3}} \\
& \Leftrightarrow 3 r\left\{S^{4}-12 R r s^{2}+r^{2}\left(16 R^{2}-r^{2}\right)\right\} \underset{(1)}{\stackrel{?}{<}} 2 S^{2}\left(3 R^{3}-16 r^{3}\right) \\
& \text { Now, LHS of (1) } \stackrel{\text { Gerretsen }}{\leq} 3 r\left\{S^{2}\left(4 R^{2}-8 R r+3 r^{2}\right)+r^{2}\left(16 R^{2}-r^{2}\right)\right\} \\
& \stackrel{?}{\leq} 2 S^{2}\left(3 R^{3}-16 r^{3}\right) \\
& \Leftrightarrow S^{2}\left(6 R^{3}-12 R^{2} r+24 R r^{2}-\frac{4}{r^{3}}\right) \underset{(2)}{\stackrel{?}{2}} 3 r^{3}\left(16 R^{2}-r^{2}\right) \because 6 R^{3}-12 R^{2} r+24 R r^{2}-\frac{4}{r^{3}} \\
& =(R-2 r)\left(6 R^{2}+24 r^{2}\right)+7 r^{\mathbf{3}}>0(\because R \stackrel{\text { Euler }}{\geq} 2 r)
\end{aligned}
$$

\therefore LHS of (2) $\stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)\left(6 R^{3}-12 R^{2} r+24 R r^{2}-\frac{4}{r^{3}}\right) \stackrel{?}{\geq} 3 r^{3}\left(16 R^{2}-r^{2}\right)$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\Leftrightarrow 48 t^{3}-111 t^{3}+198 t^{2}-388 t+104 \stackrel{?}{\geq} 0
$$

$\Leftrightarrow(t-2)\left\{(t-2)\left(48 t^{2}+81 t+330\right)+608\right\} \stackrel{?}{\geq} 0 \rightarrow$ true $\because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(b)$ is true
Also, using (c) \& $2 s \stackrel{\text { Mitrinovic }}{\leq} 3 \sqrt{3} R: \sum \frac{b^{2}+c^{2}}{a r_{a}} \geq \frac{s^{4}-12 R r s^{2}+r^{2}\left(16 R^{2}-r^{2}\right)}{3 \sqrt{3} R^{2} r^{2}} \stackrel{?}{\geq} 4 \sqrt{3}$
$\Leftrightarrow S^{4}-12 R r s^{2}+r^{2}\left(16 R^{2}-r^{2}\right) \stackrel{?}{\geq} 36 R^{2} r^{2} \Leftrightarrow S^{4}-12 R r s^{2} \underset{(3)}{\stackrel{?}{2}} r^{2}\left(20 R^{2}+r^{2}\right)$
Now, LHS of (3) $\stackrel{\text { Gerretsen }}{\geq} S^{2}\left(4 R r-5 r^{2}\right)$

$$
\begin{gathered}
\stackrel{\text { Gerretsen }}{\geq} r^{2}(16 R-5 r)(4 R-5 r) \stackrel{?}{\geq} r^{2}\left(20 R^{2}+r^{2}\right) \Leftrightarrow 11 R^{2}-25 R r+6 r^{2} \geq 0 \\
\Leftrightarrow(R-2 r)(11 R-2 r) \stackrel{?}{\geq} 0 \rightarrow \text { true } \Rightarrow \text { (a) is true (Done) } .
\end{gathered}
$$

1073. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a} h_{a}}{a}+\frac{r_{b} h_{b}}{b}+\frac{r_{c} h_{c}}{c} \leq \frac{3(a+b+c)}{4}
$$

Proposed by Bodgan Fustei - Romania

Solution 1 by Marian Ursărescu-Romania

$r_{a}=\frac{s}{s-a}, h_{a}=\frac{2 S}{a} \Rightarrow$ inequality becomes: $2 S^{2} \sum \frac{1}{a^{2}(s-a)} \leq \frac{3 \cdot 2 s}{4} \Leftrightarrow$

$$
\begin{equation*}
s^{2} r^{2} \sum \frac{1}{a^{2}(s-a)} \leq \frac{3 s}{4}(1) \tag{2}
\end{equation*}
$$

But $\sum \frac{1}{a^{2}(s-a)}=\frac{s^{4}-2 s^{2}\left(2 R r-r^{2}\right)+(4 R+r)^{3}}{16 R^{2} r^{2} s^{3}}$
From (1)+ (2) we must show: $s^{2} r^{2} \frac{s^{4}-2 s^{2}\left(2 R r-r^{2}\right)+r(4 R+r)^{3}}{16 R^{2} r^{2} s^{3}} \leq \frac{3 s}{4} \Leftrightarrow$

$$
\begin{align*}
& s^{4}-2 s^{2}\left(2 R r-r^{2}\right)+r(4 R+r)^{3} \leq 12 s^{2} R^{2} \Leftrightarrow \\
& s^{2}\left(12 R^{2}-s^{2}+4 R r-2 r^{2}\right) \geq r(4 R+r)^{3} \tag{3}
\end{align*}
$$

Now, from Doucet's inequality, we have: $s^{2} \geq 3 r(4 R+r)$ (4)
From (3)+ (4) we must show this:

$$
\begin{gathered}
3 r(4 R+r)\left(12 R^{2}-s^{2}+4 R r-2 r^{2}\right) \geq r(4 R+r)^{3} \Leftrightarrow \\
3\left(12 R^{2}-s^{2}+4 R r-2 r^{2}\right) \geq(4 R+r)^{2} \Leftrightarrow \\
36 R^{2}-3 s^{2}+12 R r-6 r^{2} \geq 16 R^{2}+8 R r+r^{2} \Leftrightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{equation*}
20 R^{2}+4 R r \geq 3 s^{2}+7 r^{2} \tag{5}
\end{equation*}
$$

Now, form Doucet's inequality we have:

$$
\begin{gather*}
3 s^{2} \leq(4 R+r)^{2} \quad(6) \Leftrightarrow 3 s^{2} \leq 16 R^{2}+8 R r+r^{2} \Rightarrow \\
3 s^{2}+7 r^{2} \leq 16 R^{2}+8 R r+8 r^{2} \tag{7}
\end{gather*}
$$

From (5)+(6) + (7) we must show this: $20 R^{2}+4 R r \geq 16 R^{2}+8 R r+8 r^{2} \Leftrightarrow$

$$
\begin{equation*}
4 R^{2} \geq 4 R r+8 r^{2} \Leftrightarrow R^{2} \geq r(R+2 r) \tag{8}
\end{equation*}
$$

But from Euler's inequality we have $R \geq 2 r \Rightarrow$

$$
R^{2} \geq 2 \operatorname{Rr}
$$

From (8)+ (9) we must show: $2 R \geq r(R+2 r) \Leftrightarrow 2 R \geq R+2 r \Leftrightarrow R \geq 2 r$ (true)
Observation: Relationship (2) it's from Viète and Newton relations from the equation with the roots a, b, c.
Solution 2 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{aligned}
& \sum \frac{r_{a} \cdot h_{a}}{a}=\frac{1}{2 \Delta} \cdot \sum \frac{2 \Delta}{a} r_{a} h_{a}=\frac{1}{2 \Delta} \cdot \sum r_{a} h_{a}^{2}= \\
& =\frac{1}{2 \Delta} \cdot \Delta \cdot \sum \frac{1}{s-a} \cdot h_{a}^{2}=\frac{1}{2} \cdot \sum \frac{s}{s(s-a)} \cdot h_{a}^{2} \leq \\
& \left(h_{a} \leq l_{a} \leq \sqrt{s(s-a)}\right) \\
& \leq \frac{1}{2} \sum \frac{s}{s(s-a)} \cdot s(s-a)=\frac{3}{4}(a+b+c) \\
& \left.\begin{array}{l}
s-a=x \\
s-b=y \\
s-c=z
\end{array}\right\} \\
& s-c=z \\
& r_{a}=\frac{\sqrt{(x+y+z) \cdot x y z}}{x}, \ldots, r_{b}, r_{c} ; h_{a}=\frac{2 \sqrt{(x+y+z) x y z}}{y+z}, \ldots, h_{b}, h_{c} \\
& a+b+c=2(x+y+z) \\
& \sum \frac{r_{a} h_{a}}{a}=\sum \frac{\sqrt{(x+y+z) \cdot x y z}}{x} \cdot \frac{2 \sqrt{(x+y+z) \cdot x y z}}{y+z} \cdot \frac{1}{\underbrace{y+z}_{a}}= \\
& =\sum \frac{2(x+y+z) x y z}{x(y+z)^{2}}=2(x+y+z) \sum \frac{y z}{(y+z)^{2}} \stackrel{A M \geq G M}{\leq} \\
& \leq 2(x+y+z) \sum \frac{y z}{4 y z}=2(x+y+z) \cdot \frac{3}{4}=\left(\frac{x+y+z}{2}\right) \cdot 3=(a+b+c) \cdot 3
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& L H S=\sum \frac{\Delta}{s-a} \cdot \frac{2 \Delta}{a} \cdot \frac{1}{a}=\frac{2 \Delta^{2}}{s} \sum \frac{s-a+a}{a^{2}(s-a)}=\frac{2 \Delta^{2}}{s} \sum \frac{1}{a^{2}}+\frac{2 \Delta^{2}}{s^{2}} \sum \frac{s-a+a}{a(s-a)} \\
& \underset{\leq}{\text { Goldstone }} \frac{2 r^{2} s^{2}}{s} \cdot \frac{1}{4 r^{2}}+\frac{2 r^{2} s^{2}}{s^{2}} \sum \frac{1}{a}+\frac{2 r^{2} s^{2}}{s^{2}} \sum \frac{1}{s-a} \\
& =\frac{s}{2}+\frac{2 r^{2}\left(\sum a b\right)}{4 R r s}+2 r^{2} \cdot \frac{\sum(s-b)(s-c)}{r^{2} s} \\
& =\frac{s}{2}+\frac{r\left(s^{2}+4 R r+r^{2}\right)}{2 R s}+\frac{2}{s}\left(3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}\right) \\
& =\frac{s}{2}+\frac{r\left(s^{2}+4 R r+r^{2}\right)}{2 R s}+\frac{2\left(4 R r+r^{2}\right)}{s} \stackrel{?}{\leq} \frac{3 \cdot 2 s}{4}=\frac{3 s}{2} \\
& \Leftrightarrow \frac{r\left(s^{2}+4 R r+r^{2}\right)+4 R\left(4 R r+r^{2}\right)}{2 R s} \stackrel{?}{\leq} s \Leftrightarrow(2 R-r) s^{2} \underset{(1)}{?} r(4 R+r)^{2} \\
& \text { LHS of (1) } \stackrel{\text { Gerretsen }}{\geq} r(2 R-r)(16 R-5 r) \stackrel{?}{\geq} r(4 R+r)^{2} \\
& \Leftrightarrow 8 R^{2}-17 R r+2 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow(R-2 r)(8 R-r) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2 r \text { (Proved). }
\end{aligned}
$$

1074. In $\triangle A B C$ the following relationship holds:

$$
\frac{2 m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}} \geq 1+\frac{r_{a}^{2}+r_{b}^{2}+r_{c}^{2}}{r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}}
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan
Solution 1 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
\text { LHS }=\frac{2 \Pi m_{a}}{\Pi h_{a}}+1 \geq 2+\frac{\sum r_{a}^{2}}{\sum r_{b} r_{c}}=R H S \\
\text { 1) LHS: } \frac{2 \Pi m_{a}}{\Pi h_{a}}+1 \geq \frac{2 \Pi\left(\frac{b+c}{2}\right) \cdot \cos \frac{A}{2}}{\Pi \frac{b c}{2 R}}+1= \\
=\frac{2 R^{2} \cdot \Pi(b+c) \cdot \sqrt{\frac{s(s-a)}{b c}}}{(a b c)^{2}}+1=\frac{\frac{2 R^{2} s \cdot \Delta}{a b c} \cdot \Pi(b+c)}{(a b c)^{2}}+1= \\
=\frac{2 R^{3} \cdot s \cdot \Delta}{(a b c)^{3}}\left(\sum a \sum a b-a b c\right)+1=\frac{2 R^{3} \cdot s \cdot \Delta \cdot 2 s\left(s^{2}+2 R r+r^{2}\right)}{64 R^{3} s^{3} r^{3}}+1=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
=\frac{1}{16 r^{2}}\left(s^{2}+2 R r+r^{2}\right)+1=\frac{s^{2}+2 R r+17 r^{2}}{16 r^{2}} \quad(*) \\
2) 2+\frac{\sum r_{a}^{2}}{\sum r_{b} r_{c}}=\frac{\sum r_{a}^{2}+2 \cdot \sum r_{b} r_{c}}{\sum r_{b} r_{c}}=\frac{\left(\sum r_{a}\right)^{2}}{\sum r_{b} r_{c}}= \\
=\frac{(4 R+r)^{2}}{\Delta^{2} \cdot \sum_{(s-b)(s-c)}}=\left(\frac{4 R+r}{s}\right)^{2}(* *) \\
\left({ }^{*}\right),\left(*^{* *}\right) \Rightarrow \frac{s^{2}+2 R r+17 r^{2}}{16 r^{2}} \geq \frac{(4 R+r)^{2}}{s^{2}}(\text { ASSURE }) \\
s^{2}\left(s^{2}+2 R r+17 r^{2}\right) \geq 16 r^{2}(4 R+r)^{2}\left(s^{2} \geq 16 R r-5 r\right)^{2} \\
\left(16 R r-5 r^{2}\right)\left(16 R r-5 r^{2}+2 R r+17 r^{2}\right) \geq 16 r^{2}(4 R+r)^{2} \\
2 r^{2}(16 R-5 r)(9 R+6 r) \geq 16 r^{2}(4 R+r)^{2} \\
(16 R-5 r)(9 R+6 r) \geq 8(4 R+r)^{2}\left(\frac{R}{r}=t\right) \\
(16 t-5)(9 t+6) \geq 8(4 t+1)^{2} \\
144 t^{2}-45 t+96 t-30 \geq 128 t^{2}+64 t+8 \\
16 t^{2}-13 t-38 \geq 0 ;(t-2)(16 t+19) \geq 0
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\because m_{a} \geq \sqrt{s(s-a)}, \text { etc } \therefore L H S \geq \frac{2 \sqrt{s(s-a) s(s-b) s(s-c)}}{\frac{16 R^{2} r^{2} s^{2}}{8 R^{3}}} \\
=\frac{16 R^{3} r s^{2}}{16 R^{2} r^{2} s^{2}}=\frac{R}{r} \therefore \text { it suffices to prove } \frac{R}{r} \geq 1+\frac{\sum r_{a}^{2}}{\sum r_{a} r_{b}} \\
\Leftrightarrow \frac{R-r}{r} \geq \frac{(4 R+r)^{2}-2 s^{2}}{s^{2}} \Leftrightarrow(R-r) s^{2}+2 r s^{2} \geq r(4 R+r)^{2} \\
\Leftrightarrow(R+r) s^{2} \stackrel{(1)}{\geq} r(4 R+r)^{2}
\end{gathered}
$$

Now, LHS of (1) $\stackrel{\text { Gerretsen }}{\geq}(R+r)\left(16 R r-5 r^{2}\right) \stackrel{?}{\geq} r(4 R+r)^{2}$

$$
\Leftrightarrow 16 R^{2}+11 R r-5 r^{2} \xrightarrow[\geq]{\geq} 16 R^{2}+8 R r+r^{2} \Leftrightarrow 3 R r \stackrel{?}{\geq} 6 r^{2} \rightarrow \text { true (Euler) (Done) }
$$

1075. In $\triangle A B C$ the following relationship holds:

$$
4\left(\sum_{c y c} \boldsymbol{m}_{a}\left(\boldsymbol{h}_{b}-\boldsymbol{h}_{c}\right)\right)^{2}<9\left(\sum_{c y c} \boldsymbol{a}^{2}\right)\left(\sum_{c y c} \boldsymbol{h}_{a}^{2}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Tran Hong-Vietnam

$$
\begin{gather*}
{\left[\sum \boldsymbol{m}_{a}\left(\boldsymbol{h}_{b}-\boldsymbol{h}_{c}\right)\right]^{2} \leq\left[\sum \boldsymbol{m}_{a}\left|\boldsymbol{h}_{b}-\boldsymbol{h}_{c}\right|\right]^{2} \stackrel{\text { BCS }}{\leq} \sum \boldsymbol{m}_{a}^{2} \cdot \sum\left(\boldsymbol{h}_{b}-\boldsymbol{h}_{c}\right)^{2}} \\
\left.=\frac{9}{4}\left(\sum \boldsymbol{a}^{2}\right) \sum\left(\boldsymbol{h}_{b}-\boldsymbol{h}_{c}\right)^{2}=\frac{3}{4}\left(\sum \boldsymbol{a}^{2}\right)\left\{\mathbf{2}\left(\sum \boldsymbol{h}_{a}^{2}-\sum \boldsymbol{h}_{a} \boldsymbol{h}_{b}\right)\right\} \mathbf{(}^{*}\right) \tag{*}
\end{gather*}
$$

We must show that: $2\left(\sum h_{a}^{2}-\sum h_{a} h_{b}\right)<3 \sum h_{a}^{2} \Leftrightarrow-2 \sum h_{a} h_{b}<\sum h_{a}^{2}$
(It is true because: $\left.h_{a}, h_{b}, h_{c}>0\right) \Rightarrow\left(^{*}\right)<\frac{9}{4}\left(\sum a^{2}\right) \sum h_{a}^{2}$

$$
\Rightarrow 4\left[\sum \boldsymbol{m}_{a}\left(\boldsymbol{h}_{b}-\boldsymbol{h}_{c}\right)\right]^{2}<9\left(\sum \boldsymbol{a}^{2}\right)\left(\sum \boldsymbol{h}_{a}^{2}\right)
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\because\left(\sum x\right)^{2} \leq 3 \sum x^{2}, \therefore \text { LHS; } m_{a}<\frac{b+c}{2} \text { etc } \\
\leq 12 \sum m_{a}^{2}\left(h_{b}-h_{c}\right)^{2} \leq \frac{12}{4} \sum(b+c)^{2}\left(h_{b}-h_{c}\right)^{2} \\
=3 \sum(b+c)^{2} \frac{(c a-a b)^{2}}{4 R^{2}} \stackrel{?}{<} 9\left(\sum a^{2}\right)\left(\frac{\sum b^{2} c^{2}}{4 R^{2}}\right) \\
\Leftrightarrow \sum a^{2}\left(b^{2}-c^{2}\right)^{2} \stackrel{?}{<} 3\left(\sum a^{2}\right)\left(\sum a^{2} b^{2}\right) \\
\Leftrightarrow
\end{gathered}
$$

1076. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \geq \frac{1}{2}\left(\frac{h_{b}+h_{c}}{h_{a}}+\frac{h_{c}+h_{a}}{h_{b}}+\frac{h_{a}+h_{b}}{h_{c}}\right)
$$

Proposed by Bogdan Fustei-Romania
Solution by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\sum \frac{m_{a}}{h_{a}} \geq \sum \frac{\frac{b^{2}+c^{2}}{4 R}}{\frac{b c}{2 R}}=\frac{1}{2} \sum \frac{b^{2}+c^{2}}{b c}=\frac{1}{2} \sum \frac{a b^{2}+a c^{2}}{a b c}=
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& =\frac{1}{2} \sum \frac{b c^{2}+c^{2} a}{a b c}=\frac{1}{2} \sum \frac{b c+c a}{a b}=\frac{1}{2} \sum \frac{\frac{b c}{2 R}+\frac{c a}{2 R}}{\frac{a b}{2 R}}=\frac{1}{2} \sum \frac{\boldsymbol{h}_{a}+\boldsymbol{h}_{b}}{\boldsymbol{h}_{\boldsymbol{c}}}
\end{aligned}
$$

1077. In acute $\triangle A B C$ the following relationship holds:

$$
a \cos A+b \cos B+c \cos C \leq \frac{3 \sqrt{3} R}{2}
$$

Proposed by Daniel Sitaru - Romania

Solution by Lahiru Samarakoon-Sri Lanka

$$
\begin{gathered}
\sum 2 R \sin A \sin B \leq \frac{3 \sqrt{3}}{2} R \\
R \sum \sin 2 A \leq \frac{3 \sqrt{3}}{2} R \Rightarrow 4 R \sin A \cos B \cos C \leq \frac{3 \sqrt{3}}{2} R
\end{gathered}
$$

We have to prove, $\sin A \cos B \cos C \leq \frac{3 \sqrt{3}}{8}$. But, $\frac{\sum \sin A}{3} \leq \boldsymbol{\operatorname { c o s }}\left(\frac{A+B+C}{3}\right)=\frac{\sqrt{3}}{2}$
GM \leq AM: $\frac{\sum \cos A}{3} \geq \sqrt[3]{\sin A \sin B \cos C}$. So, $\sin A \sin B \cos C \leq\left(\frac{\sqrt{3}}{2}\right)^{3}=\frac{3 \sqrt{3}}{8}$. So, it's true.
1078. In $\triangle A B C$ the following relationship holds:

$$
\frac{a m_{a}^{5}+b m_{b}^{5}+c m_{c}^{5}}{\left(a m_{a}+b m_{b}+c m_{c}\right)^{5}} \geq \frac{1}{729 R^{4}}
$$

Proposed by Daniel Sitaru - Romania

Solution by Tran Hong-Dong Thap-Vietnam
$\because f(x)=\boldsymbol{x}^{\mathbf{5}}(\boldsymbol{x}>0) \Rightarrow \boldsymbol{f}^{\prime \prime}(\boldsymbol{x})=\mathbf{2 0} \boldsymbol{x}^{\mathbf{3}}>0(x>0)$. Using Jensen's inequality:

$$
\sum a m_{a}^{5}=2 s \sum \frac{a}{2 s} m_{a}^{5} \geq 2 s \sum\left(\frac{a}{2 s} \cdot m_{a}\right)^{5}=\frac{1}{(2 s)^{4}} \sum\left(a m_{a}\right)^{5} \Leftrightarrow \frac{\sum a m_{a}^{5}}{\sum\left(a m_{a}\right)^{5}} \geq \frac{1}{16 s^{4}}
$$

Must show that: $\frac{1}{16 s^{4}} \geq \frac{1}{729 R^{4}} \Leftrightarrow 729 R^{4} \geq 16 s^{4}$. It is true because:

$$
\because s \leq \frac{3 \sqrt{3}}{2} R \Rightarrow s^{4} \leq \frac{729}{16} R^{4} \Leftrightarrow 729 R^{4} \geq 16 s^{4}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
1079. In acute $\triangle A B C$ with sides different in pairs, $A A_{1}, B B_{1}, C C_{1}$ - altitudes, $A A_{2}, B B_{2}, C C_{2}$-medians, $A A_{3}, B B_{3}, C C_{3}$ - symedians. Prove that:

$$
\frac{A_{2} A_{3}}{A_{2} A_{1}}+\frac{B_{2} B_{3}}{B_{2} B_{1}}+\frac{C_{2} C_{3}}{C_{2} C_{1}}>\frac{108 r^{2}}{a^{2}+b^{2}+c^{2}}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Soumava Chakraborty-Kolkata-India

Let $B A_{3}=m \& C A_{3}=n$. Then, $\frac{m}{n}=\frac{c^{2}}{b^{2}}(\& m+n=a) \therefore \frac{m+n}{n}=\frac{c^{2}+b^{2}}{b^{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{a}{n}=\frac{c^{2}+b^{2}}{b^{2}} \Rightarrow n=\frac{a b^{2}}{c^{2}+b^{2}} \Rightarrow m=\frac{c^{2}}{b^{2}} n=\frac{c^{2}}{b^{2}} \cdot \frac{a b^{2}}{b^{2}+c^{2}}=\frac{a c^{2}}{b^{2}+c^{2}} \\
& \Rightarrow B A_{3} \stackrel{(i)}{=} \frac{a i^{2}}{b^{2}+c^{2}} \therefore A_{2} A_{3}=B A_{1}-B A_{3} \\
& \stackrel{b y(i)}{=} \frac{a}{2}-\frac{a i^{2}}{b^{2}+c^{2}}=\frac{a\left(b^{2}+c^{2}\right)-2 a i^{2}}{2\left(b^{2}+c^{2}\right)} \stackrel{(1)}{=} \frac{a\left(b^{2}-c^{2}\right)}{2\left(b^{2}+c^{2}\right)}
\end{aligned}
$$

From $\triangle A B A, \frac{B A_{1}}{c}=\cos B \Rightarrow B A_{1}=c \cos B=\frac{c\left(c^{2}+a^{2}-b^{2}\right)}{2 c a} \stackrel{(i i)}{=} \frac{c^{2}+a^{2}-b^{2}}{2 a}$

$$
\therefore A_{2} A_{1}=B A_{2}-B A_{1} \stackrel{b y(i i)}{=} \frac{a}{2}-\frac{c^{2}+a^{2}-b^{2}}{2 a}=\frac{a^{2}-\left(c^{2}+a^{2}-b^{2}\right)}{2 a} \stackrel{(2)}{=} \frac{b^{2}-c^{2}}{2 a}
$$

(1), (2) $\Rightarrow \frac{A_{2} A_{3}}{A_{2} A_{1}} \stackrel{(a)}{=} \frac{a^{2}}{b^{2}+c^{2}}$. Similarly, $\frac{B_{2} B_{3}}{B_{2} B_{1}} \stackrel{(b)}{=} \frac{b^{2}}{c^{2}+a^{2}} \& \frac{c_{2} c_{3}}{c_{2} c_{1}} \stackrel{(c)}{=} \frac{c^{2}}{a^{2}+b^{2}}$
(a) $+(\mathrm{b})+(\mathrm{c}) \Rightarrow$ LHS $=\sum \frac{a^{2}}{b^{2}+c^{2}} \stackrel{\text { Nessitt }}{>} 3>\frac{?}{>} \frac{108 r^{2}}{\sum a^{2}} \Leftrightarrow \sum a^{2} \underset{(3)}{?} 36 r^{2}$

[^0]

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 2 by Tran Hong-Dong Thap-Vietnam
Let $S=[A B C] \Rightarrow\left[A B A_{2}\right]=\left[A C A_{2}\right]=\frac{S}{2} \because S_{1}=\left[A B A_{3}\right], S_{2}=\left[A C A_{3}\right]=S_{2}, S_{1}+S_{2}=S$;

$$
\begin{gathered}
\text { More: } \frac{S_{1}}{S_{2}}=\frac{c^{2}}{b^{2}} \stackrel{S_{1}+S_{2}=S}{\Rightarrow}\left\{\begin{array}{l}
S_{1}=\frac{c^{2}}{b^{2}+c^{2}} S \\
S_{2}=\frac{b^{2}}{b^{2}+c^{2}} S
\end{array}: \frac{A_{2} A_{3}}{A_{2} A_{1}}=\frac{\left(\frac{1}{2}\right) \cdot A_{2} A_{3} \cdot A A_{1}}{\left(\frac{1}{2}\right) A_{2} A_{1} \cdot A A_{1}}=\frac{\left[A A_{2} A_{3}\right]}{\left[A A_{1} A_{2}\right]}\right. \\
{\left[A A_{2} A_{3}\right]=S_{2}-\frac{S}{2}=\frac{b^{2}}{b^{2}+c^{2}} \cdot S-\frac{S}{2}=\frac{b^{2}-c^{2}}{b^{2}+c^{2}} \cdot \frac{S}{2} ;} \\
{\left[A A_{1} A_{2}\right]=\frac{S}{2}-\left[A B A_{1}\right]=\frac{S}{2}-\frac{c^{2}+a^{2}-b^{2}}{2 a^{2}} S=\frac{b^{2}-c^{2}}{a^{2}} \cdot \frac{S}{2}} \\
\text { Because: } \because\left[A B A_{1}\right]=\frac{1}{2} \cdot A A_{1} \cdot B A_{1}=\frac{c^{2}+a^{2}-b^{2}}{2 a^{2}} \cdot S
\end{gathered}
$$

$$
\text { With: } A A_{1}=\frac{2 S}{a}, \text { and } B A_{1}=\sqrt{c^{2}-\frac{4 S^{2}}{a^{2}}}=\sqrt{\frac{a^{2} c^{2}-4 S^{2}}{a^{2}}}=\sqrt{\frac{a^{2} c^{2}-\frac{1}{4}\left\{2 \sum a^{2} b^{2}-\sum a^{4}\right\}}{a^{2}}}
$$

$$
=\sqrt{\frac{\left(a^{2}+c^{2}-b^{2}\right)^{2}}{4 a^{2}}}=\frac{a^{2}+c^{2}-b^{2}}{2 a} \text {. Hence, } \frac{A_{2} A_{3}}{A_{2} A_{1}}=\frac{\left[A A_{2} A_{3}\right]}{\left[A A_{2} A_{1}\right]}=\frac{a^{2}}{b^{2}+c^{2}} ; \text { (etc) }
$$

$$
\Rightarrow \text { LHS }=2 \sum \frac{a^{2}}{b^{2}+\boldsymbol{c}^{2}} \stackrel{(\text { Schwarz })}{>} \frac{(a+b+c)^{2}}{\sum a^{2}} . \text { Must show that: }(a+b+\boldsymbol{c})^{2}>108 \boldsymbol{r}^{2}
$$

$$
\Leftrightarrow 4 s^{2}>108 \boldsymbol{r}^{2} \Leftrightarrow \boldsymbol{s}^{2}>27 \boldsymbol{r}^{2} \Leftrightarrow s>3 \sqrt{3} \boldsymbol{r} \text { (true) Proved. }
$$

1080. If in $\triangle A B C, a \leq b \leq c$ then:

$$
h_{a}^{20}-h_{b}^{20}+h_{c}^{20} \geq\left(h_{a}-h_{b}+h_{c}\right)^{20}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\left(h_{a}-h_{b}+h_{c}\right)^{20} \leq h_{a}^{20}-h_{b}^{20}+h_{c}^{20} \quad\left(^{*}\right) \\
a \leq b \leq c \Rightarrow h_{a} \geq h_{b} \geq h_{c} . \text { Let } h_{a}=k h_{c} ; h_{b}=m h_{c}(k \geq m \geq 1) \\
\left.\mathbf{(}^{*}\right) \Leftrightarrow(k-m+1)^{20} \leq k^{20}-m^{20}+1 . \text { Let } f(x)=k^{20}-m^{20}+1-(k-m+1)^{20} \\
(\text { with } k \geq m \geq 1) \Rightarrow f^{\prime}(k)=20 k^{19}-20(k-m+1)^{19} \\
k^{19} \geq(k-m+1)^{19} \Leftrightarrow k \geq k-m+1 \Leftrightarrow m \geq 1 \text { (true) } \\
\Rightarrow f^{\prime}(k) \geq 0 \Rightarrow f(k) \nearrow[1 ;+\infty)
\end{gathered}
$$

Then: $k \geq m \geq 1 \Rightarrow f(k) \geq f(m)=m^{20}-m^{20}+1-(m-m+1)^{20}=0 \Rightarrow(*)$ true.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
h_{a}^{20}-h_{b}^{20}+h_{c}^{20} \stackrel{(1)}{\geq}\left(h_{a}-h_{b}+h_{c}\right)^{20} \\
(1) \Leftrightarrow h_{a}^{20}-h_{b}^{20} \geq\left(h_{a}-h_{b}+h_{c}\right)^{20}-h_{c}^{20} \\
\geq\left(h_{a}-h_{b}\right)\left[\begin{array}{c}
\left(h_{a}-h_{b}\right)\left(h_{a}^{19}+h_{a}^{18} h_{b}+h_{a}^{17} h_{b}^{2}+\cdots+h_{a}^{2} h_{b}^{17}+h_{a} h_{b}^{18}+\left(h_{a}-h_{b}^{19}\right)\right. \\
+\left(h_{a}-h_{b}+h_{c}\right)^{18} h_{c}+\left(h_{a}-h_{b}+h_{c}\right)^{17} h_{c}^{2}+\cdots+ \\
\left.h_{a}-h_{b}+h_{c}\right)^{18}+h_{c}^{19}
\end{array}\right] \\
\Leftrightarrow\left(h_{a}-h_{b}\right)\left[\begin{array}{c}
\left.\left\{h_{a}^{19}-\left(h_{a}-h_{b}+h_{c}\right)\right)^{19}\right\}+\left\{h_{a}^{18} h_{b}-\left(h_{a}-h_{b}+h_{c}\right)^{18} h_{c}\right\}+ \\
+\cdots+\left\{h_{a} h_{b}^{18}-\left(h_{a}-h_{b}+h_{c}\right) h_{c}^{18}\right\}+\left\{h_{b}^{19}-h_{c}^{19}\right\}
\end{array}\right] \geq 0 \\
\Leftrightarrow\left(h_{a}-h_{b}\right) \stackrel{(2)}{\geq} \mathbf{0} \text { (say). Now, } h_{a}-h_{b}=\frac{b c-c a}{2 R}=\frac{c(b-a)}{2 R} \stackrel{(i)}{\geq} 0(\because b \geq a)
\end{gathered}
$$

Also, $h_{a} \geq h_{a}-h_{b}+h_{c} \Leftrightarrow h_{b} \geq h_{c} \Leftrightarrow c a \geq a b \Leftrightarrow c \geq b \rightarrow$ true $\Rightarrow h_{a} \stackrel{(i i)}{\geq} h_{a}-h_{b}+h_{c}$

$$
\text { Also, } \because c a \geq a b, \therefore \boldsymbol{h}_{b} \stackrel{(i i i)}{\geq} \boldsymbol{h}_{\boldsymbol{c}}
$$

(ii), (iii) $\Rightarrow \boldsymbol{h}_{a}^{18} \boldsymbol{h}_{b} \geq\left(\boldsymbol{h}_{a}-\boldsymbol{h}_{b}+\boldsymbol{h}_{\boldsymbol{c}}\right)^{18} \boldsymbol{h}_{\boldsymbol{c}} \Rightarrow \boldsymbol{h}_{a}^{18} \boldsymbol{h}_{b}-\left(\boldsymbol{h}_{a}-\boldsymbol{h}_{b}+\boldsymbol{h}_{\boldsymbol{c}}\right)^{18} \boldsymbol{h}_{c} \stackrel{(a)}{\geq} \mathbf{0}$

$$
\begin{array}{r}
\text { Similarly, } \boldsymbol{h}_{a} h_{b}^{18} \geq\left(h_{a}-h_{b}+h_{c}\right) h_{c}^{18} \quad \text { (by (ii), (iii)) } \\
\Rightarrow \boldsymbol{h}_{a} h_{b}^{18}-\left(h_{a}-h_{b}+h_{c}\right) \boldsymbol{h}_{c}^{18} \stackrel{(b)}{\geq} \mathbf{0}
\end{array}
$$

Similarly, for the other terms. Also, $h_{a} \underset{(i)}{\text { by(ii) }}\left(h_{a}-h_{b}+h_{c}\right)^{19} \& h_{b}^{19} \underset{(\bar{d})}{\stackrel{b y}{(i i i)}} h_{c}^{19}$
(a),(b),(c),(d), etc $\Rightarrow Q \stackrel{(i v)}{\geq} 0$; (iv).(i) $\Rightarrow(2) \Rightarrow(1)$ is true (Proved)
1081. In $\triangle A B C$ the following relationship holds:

$$
\sqrt[5]{\frac{2(s-a)}{c}}+\sqrt[5]{\frac{2(s-b)}{a}}+\sqrt[5]{\frac{2(s-c)}{b}} \leq 3
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\text { Let } f(t)=\sqrt[5]{t}(t>0) \Rightarrow f^{\prime \prime}(t)=-\frac{4}{25} t^{-\frac{9}{5}}<0(t>0) \text {; }
$$

Using Jensen's inequality, we have:

ROMANIAN MATHEMATICAL MAGAZINE

$$
L H S \leq 3 \sqrt[5]{\frac{2\left(\frac{s-a}{c}+\frac{s-b}{a}+\frac{s-c}{b}\right)}{3}}=\Phi
$$

WLOG, suppose: $\boldsymbol{a} \geq \boldsymbol{b} \geq \boldsymbol{c}$. We must show that: $\Phi \leq 3 \Leftrightarrow \frac{s-a}{c}+\frac{s-b}{a}+\frac{s-c}{b} \leq \frac{3}{2}$

$$
\begin{aligned}
& \Leftrightarrow \frac{b+c-a}{2 c}+\frac{a+c-b}{2 a}+\frac{a+b-c}{2 b} \leq \frac{3}{2} \Leftrightarrow \frac{b-a}{c}+\frac{c-b}{a}+\frac{a-c}{b} \leq 0 \\
& \Leftrightarrow \frac{a}{b}-\frac{b}{a}+\frac{b}{c}-\frac{c}{b}+\frac{c}{a}-\frac{a}{c} \leq 0 \Leftrightarrow \frac{a^{2}-b^{2}}{a b}+\frac{b^{2}-c^{2}}{c b}+\frac{c^{2}-a^{2}}{a c} \leq 0 \\
& \Leftrightarrow c\left(a^{2}-b^{2}\right)+a\left(b^{2}-c^{2}\right)+b\left(c^{2}-a^{2}\right) \leq 0 \\
& \Leftrightarrow c a^{2}-c b^{2}+a b^{2}-a c^{2}+b c^{2}-b a^{2} \leq 0 \Leftrightarrow(a-c)[b(b-a)-c(b-a)] \leq 0 \\
& \Leftrightarrow(a-c)(b-c)(b-a) \leq 0 \text { (True: } a-c \geq 0 ; b-c \geq 0, b-a \leq 0) \text { Proved. }
\end{aligned}
$$

Solution 2 by Boris Colakovic-Belgrade-Serbie

Yet another approach WLOG $b \geq a \geq c$

$$
\begin{align*}
& \sqrt[5]{\frac{2(s-a)}{c}}=\sqrt[5]{\frac{2(s-a) c^{4}}{c^{5}}}=\frac{1}{c} \sqrt[5]{2(s-a) c^{4}} \leq \frac{1}{c} \cdot \frac{4 c+2(s-a)}{5}=\frac{4}{5}+\frac{2(s-a)}{5 c} \\
& \text { Similarly, } \sqrt[5]{\frac{2(s-b)}{a}} \leq \frac{4}{5}+\frac{2(s-b)}{5 a}, \sqrt[5]{\frac{2(s-c)}{b}}=\frac{4}{5}+\frac{2(s-c)}{5 b} \\
& \text { LHS } \leq \frac{12}{5}+\frac{2(s-a)}{5 c}+\frac{2(s-b)}{5 a}+\frac{2(s-c)}{5 b} \leq 3 \Rightarrow \frac{2(s-a)}{5 c}+\frac{2(s-b)}{5 a}+\frac{2(s-c)}{5 b} \leq \frac{3}{5} \Leftrightarrow \\
& \Leftrightarrow \frac{2(s-a)}{c}+\frac{2(s-b)}{a}+\frac{2(s-c)}{b} \leq 3 \tag{1}\\
& \begin{array}{l}
\left.\begin{array}{l}
a=x+y \\
b=y+z \\
c=z+x
\end{array}\right\} \Rightarrow x=\frac{a+c-b}{2} ; y=\frac{a+b-c}{2} ; z=\frac{c+b-a}{2}, ~(x)
\end{array} \tag{2}\\
& 2 s=a+b+c=2(x+y+z) \\
& \text { From (1) } \Rightarrow \frac{2 z}{z+x}+\frac{2 x}{x+y}+\frac{2 y}{y+z} \leq 3 \Leftrightarrow \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x} \leq \frac{3}{2} \Leftrightarrow \\
& \Leftrightarrow x^{2} y+y^{2} z+z^{2} x-x y^{2}-y z^{2}-z x^{2} \leq 0 \Leftrightarrow \frac{(x-y)^{3}+(y-z)^{3}+(z-x)^{3}}{3} \leq 0 \Leftrightarrow \\
& \Leftrightarrow(x-y)^{3}+(y-z)^{3}+(z-x)^{3} \leq 0 \Leftrightarrow(x-y)(y-z)(z-x) \leq 0 \Rightarrow
\end{align*}
$$

$$
\begin{aligned}
& y \geq x \quad y \geq z \quad z \geq x \\
& y \geq z \geq x \Rightarrow \text { From (2) } b \geq a \geq c
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

1082. In $\triangle A B C$ the following relationship holds:

$$
\frac{b^{2}+c^{2}-a^{2}}{\sqrt{r_{b} r_{c}}}+\frac{c^{2}+a^{2}-b^{2}}{\sqrt{r_{c} r_{a}}}+\frac{a^{2}+b^{2}-c^{2}}{\sqrt{r_{a} r_{b}}} \leq 4(R+r)
$$

Proposed by Daniel Sitaru - Romania

Solution by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\frac{b^{2}+c^{2}-a^{2}}{\sqrt{r_{b} r_{c}}}=\frac{b^{2}+c^{2}-a^{2}}{\sqrt{\frac{S}{s-b} \cdot \frac{S}{s-c}}}=\frac{\left(b^{2}+c^{2}-a^{2}\right) \sqrt{(s-b)(s-c)}}{S} \\
\stackrel{A M-G M}{\leq} \frac{\left(b^{2}+c^{2}-a^{2}\right)}{S} \cdot \frac{s-b+s-c}{2}=\frac{\left(b^{2}+c^{2}-a^{2}\right) a}{2 S}=\frac{2 a b c \cos A}{2 S}=\frac{a b c \cos A}{S} \\
\text { Similarly: } \frac{c^{2}+a^{2}-b^{2}}{\sqrt{r_{c} r_{a}}} \leq \frac{a b c \cos B}{S} \text { and } \frac{a^{2}+b^{2}-c^{2}}{\sqrt{r_{a} r_{b}}} \leq \frac{a b c \cos C}{S} \\
\Rightarrow L H S \leq \frac{a b c(\cos A+\cos B+\cos C)}{S}=\frac{4 R S}{S}\left(1+\frac{r}{R}\right)=4 R\left(1+\frac{r}{R}\right)=4(R+r) .(\text { Proved }) .
\end{gathered}
$$

1083. In $\triangle A B C$ the following relationship holds:

$$
\frac{2 r}{h_{a}}\left(\frac{1}{h_{a}^{2}}+\frac{1}{h_{c}^{2}}\right) \leq\left(\frac{R}{S}\right)^{2}
$$

Proposed by George Apostolopoulos-M essolonghi-Greece
Solution 1 by Marian Ursărescu-Romania

$$
\begin{gather*}
h_{a}=\frac{2 s}{a} \Rightarrow \text { inequality } \Leftrightarrow \frac{\frac{2 S}{s}}{\frac{2 s}{a}}\left(\frac{b^{2}+c^{2}}{4 s^{2}}\right) \leq \frac{R^{2}}{s^{2}} \Leftrightarrow r=\frac{s}{s}, s=a+b+c \\
\frac{a}{s}\left(\frac{b^{2}+c^{2}}{4}\right) \leq R^{2} \Leftrightarrow a\left(b^{2}+c^{2}\right) \leq 4 s R^{2} \text { (1) } \tag{1}
\end{gather*}
$$

But in any $\triangle A B C$ we have: $\frac{b}{c}+\frac{c}{b} \leq \frac{R}{r}$ (2) \Leftrightarrow

$$
\begin{equation*}
\Leftrightarrow \boldsymbol{b}^{2}+\boldsymbol{c}^{2} \leq \frac{R}{r} b \boldsymbol{c} \Rightarrow \boldsymbol{a}\left(\boldsymbol{b}^{2}+\boldsymbol{c}^{2}\right) \leq \frac{R}{r} \cdot \boldsymbol{a b c} \tag{3}
\end{equation*}
$$

But in any $\triangle A B C$ we have $a b c=4 s R r$ (4)
From (3)+(4) $\Rightarrow a\left(b^{2}+c^{2}\right)=4 s R^{2} \Rightarrow(1)$ is true.
Observation: For relationship (2) we use Ravi substitution

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gather*}
\text { (2) } \Leftrightarrow \frac{(x+y)(y+z)(z+x)}{4 x y z} \geq \frac{x+z}{x+y}+\frac{x+y}{x+z} \Rightarrow \\
\frac{y+z}{4 x y z} \geq \frac{1}{(x+y)^{2}}+\frac{1}{(x+z)^{2}} \tag{5}
\end{gather*}
$$

$$
\text { But } \frac{1}{(x+y)^{2}} \leq \frac{1}{4 x y}(6) \Leftrightarrow(x-y)^{2} \geq 0 ; \frac{1}{(x+z)^{2}} \leq \frac{1}{4 x z} \Leftrightarrow(7)(x-z)^{2} \geq 0
$$

From (6) $+(7) \Rightarrow(5)$ it is true.

Solution 2 by Lahiru-Samarakoon-Sri Lanka

For $\triangle A B C, \frac{2 r}{h_{a}}\left(\frac{1}{h_{b}^{2}}+\frac{1}{h_{c}^{2}}\right) \leq\left(\frac{R}{s}\right)^{2} ; L H S=\frac{2 r}{h_{a}}\left(\frac{b^{2}}{4 S^{2}}+\frac{c^{2}}{4 S^{2}}\right)=\frac{2 R}{4 S^{2} h_{a}}\left(b^{2}+c^{2}\right)$
But, $m_{a} \geq \frac{\left(b^{2}+c^{2}\right)}{4 R} \leq \frac{2 r}{4 S^{2} H_{a}} 4 R m_{a}=\frac{2 r R}{s^{2}} \times\left(\frac{m_{a}}{h_{a}}\right)$. So, then $\frac{m_{a}}{h_{a}} \leq \frac{R}{2 r}$ therefore

$$
=\frac{2 r R}{S^{2}} \times \frac{R}{2 r}=\left(\frac{R}{S}\right)^{2} \text { (proved) }
$$

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\frac{2 r}{h_{a}}\left(\frac{1}{h_{b}^{2}}+\frac{1}{h_{c}^{2}}\right) \stackrel{?}{\leq}\left(\frac{R}{S}\right)^{2} \\
(1) \Leftrightarrow \frac{2 r}{\frac{2 r s}{a}}\left(\frac{b^{2}+c^{2}}{4 S^{2}}\right) \leq \frac{R^{2}}{s^{2}} \Leftrightarrow \frac{a}{s}\left(\frac{b^{2}+c^{2}}{4}\right) \leq \frac{a^{2} b^{2} c^{2}}{16 s(s-a)(s-b)(s-c)} \\
\Leftrightarrow a b^{2} c^{2} \stackrel{(2)}{\geq} 4\left(b^{2}+c^{2}\right)(s-a)(s-b)(s-c)
\end{gathered}
$$

Let $s-a=x, s-b=y, s-c=z$ of course, $x, y, z>0$
Then $a=y+z, b=z+x, c=x+y$
Using above substitution, (2) \Leftrightarrow

$$
\begin{gathered}
(y+z)(z+x)^{2}(x+y)^{2}-4 x y z\left\{(z+x)^{2}+(x+y)^{2}\right\} \geq 0 \\
\Leftrightarrow x^{4} y+x^{4} z+2 x^{3} y^{2}+2 x^{3} z^{2}+x^{2} y^{3}+x^{2} z^{3}+4 x y^{2} z^{2}+y^{3} z^{2}+y^{2} z^{3} \stackrel{(3)}{\geq} \\
\geq 4 x^{3} y z+3 x^{2} y^{2} z+3 x^{2} y z^{2}+2 x y^{3} z+2 x y z^{3} \\
\text { Now, } x^{3} y+x^{4} z+x y^{2} z^{2} \stackrel{A-G}{\geq} 3 x^{3} y z \quad \text { (a) } \\
\text { Also, } \frac{x^{3} y^{2}+x^{3} z^{2}}{2} \stackrel{A-G}{\geq} x^{3} y z \text { (b) }
\end{gathered}
$$

(a), (b) \Rightarrow in order to prove (3), it suffices to prove:

$$
3 x^{3} y^{2}+3 x^{3} z^{2}+2 x^{2} y^{3}+2 x^{2} z^{3}+6 x y^{2} z^{2}+2 y^{3} z^{2}+2 y^{2} z^{3} \stackrel{(4)}{\geq} 6 x^{2} y^{2} z+6 x^{2} y z^{2}+
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
+4 x y^{3} z+4 x y z^{3}
$$

Now, $3 x^{3} y^{2}+3 x y^{2} z^{2} \stackrel{A-G}{\geq} 6 x^{2} y^{2} z \quad$ (i)

$$
\begin{equation*}
\text { Also, } 3 x^{3} z^{2}+3 x y^{2} z^{2} \stackrel{A-G}{\geq} 6 x^{2} y z^{2} \tag{ii}
\end{equation*}
$$

$$
\text { Again, } 2 x^{2} y^{3}+2 y^{3} z^{2} \stackrel{A-G}{\geq} 4 x y^{3} z \text { (iii) }
$$

$$
\begin{equation*}
2 x^{2} z^{3}+2 y^{2} z^{3} \stackrel{A-G}{\geq} 4 x y z^{3} \tag{iv}
\end{equation*}
$$

(i) + (ii) + (iii) $+(\mathrm{iv}) \Rightarrow(4)$ is true (proved)

Solution 4 by Bogdan Fustei-Romania

$$
\begin{gathered}
h_{a}=\frac{2 S}{a} \quad \text { (and the analogs) } \Rightarrow \frac{\frac{2 S}{\frac{s}{2 S}}}{\frac{2 S}{a}}\left(\frac{b^{2}+c^{2}}{4 S^{2}}\right) \leq\left(\frac{R}{s}\right)^{2} \\
r=\frac{S}{s} ; s=\frac{a+b+c}{2} \Rightarrow \frac{a}{s} \frac{\left(b^{2}+c^{2}\right)}{4} \leq R^{2} \\
a\left(b^{2}+c^{2}\right) \leq 4 R^{2} s=R \cdot 4 R s \\
a b c=4 R S=4 R r s \\
\frac{b}{c}+\frac{c}{b} \leq \frac{R}{r} \quad \text { (and the analogs) }
\end{gathered}
$$

We will prove that $\frac{b}{c}+\frac{c}{b} \leq \frac{R}{r}$ (and the analogs)
Method I: $l_{a}^{2} \leq s(s-a)$ (and the analogs)

$$
\boldsymbol{h}_{a} \leq \boldsymbol{l}_{\boldsymbol{a}} \text { (and the analogs) }
$$

$$
l_{b}^{2}+l_{c}^{2} \leq s(s-b)+s(s-c)=s(2 s-b-c)=a s
$$

$$
h_{b}^{2}+h_{c}^{2} \leq l_{b}^{2}+l_{c}^{2} \Rightarrow h_{b}^{2}+h_{c}^{2} \leq a s \text { (and the analogs) }
$$

$$
\left.\begin{array}{l}
h_{b}=\frac{2 S}{b} \\
h_{c}=\frac{2 S}{c}
\end{array}\right\} \left.\Rightarrow \frac{4 S^{2}}{b^{2}}+\frac{4 S^{2}}{c^{2}} \leq a s \Leftrightarrow 4 S^{2}\left(\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \leq a S \right\rvert\, \cdot \frac{b c}{S}
$$

$$
4 S b c\left(\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \leq \frac{a b c}{S} \cdot s=\frac{4 R S}{S} \cdot s=4 R s
$$

$$
r\left(\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \leq 4 R s \Rightarrow b c\left(\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \leq \frac{R}{r}
$$

$$
\frac{b c}{b^{2}}+\frac{b c}{c^{2}} \leq \frac{R}{r} \Rightarrow \frac{c}{b}+\frac{b}{c} \leq \frac{R}{r} \text { (and the analogs) }
$$

$$
\text { Method II: } \frac{m_{a}}{s_{a}}=\frac{b^{2}+c^{2}}{2 b c} \text { (and the analogs) }
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$\frac{m_{a}}{s_{a}}=\frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right)$ (and analogs). From $h_{a} \leq s_{a}$ (and the analogs)

$$
\frac{m_{a}}{s_{a}} \leq \frac{m_{a}}{h_{a}} \leq \frac{R}{2 r} \Rightarrow \frac{1}{2}\left(\frac{b}{c}+\frac{c}{b}\right) \leq \frac{R}{2 r} \Rightarrow \frac{c}{b}+\frac{b}{c} \leq \frac{R}{r}
$$

1084. In $\triangle A B C$ the following relationship holds:

$$
\frac{\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}}{\cot A+\cot B+\cot C} \leq 3
$$

Proposed by Mustafa Tarek-Cairo-Egypt
Solution 1 by Marian Ursărescu-Romania

$$
\begin{align*}
& \text { In any } \triangle A B C \text {, we have: } \boldsymbol{\operatorname { c o t }} \frac{A}{2}+\cot \frac{B}{2}+\boldsymbol{\operatorname { c o t }} \frac{C}{2}=\frac{s}{r} \tag{1}\\
& \text { and } \cot A+\cot B+\cot C=\frac{s^{2}-r(4 R+r)}{2 s r} \quad \text { (2) } s=\frac{a+b+c}{2}
\end{align*}
$$

From (1)+ (2), we must show: $\frac{2 s^{2}}{s^{2}-r(4 R+r)} \leq 3 \Leftrightarrow 2 s^{2} \leq 3 s^{2}-3 r(4 R+r) \Leftrightarrow$

$$
\begin{equation*}
12 R r+3 r^{2} \leq s^{2} \tag{3}
\end{equation*}
$$

From Gerretsen's inequality, we have: $s^{2} \geq 16 R r-5 r^{2}$ (4). From (3) + (4) we must show: $16 R r-5 r^{2} \geq 12 R r+3 r^{2} \Leftrightarrow 4 R r \geq 8 r^{2} \Leftrightarrow R \geq 2 r$ true
Solution 2 by Tran Hong-Dong Thap-Vietnam
We have: $\boldsymbol{\operatorname { c o t }} \frac{A}{2}+\boldsymbol{\operatorname { c o t }} \frac{B}{2}+\boldsymbol{\operatorname { c o t }} \frac{C}{2}=\boldsymbol{\operatorname { c o t }} \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}=\frac{s}{r} ; \boldsymbol{\operatorname { c o t }} A+\boldsymbol{\operatorname { c o t }} B+\boldsymbol{\operatorname { c o t }} C=\frac{s^{2}-r^{2}-4 R r}{2 s r}$
We have shown that: $\frac{\frac{s}{r}}{\frac{s^{2}-r^{2}-4 R r}{2 s r}}=\frac{2 s^{2}}{s^{2}-r^{2}-4 R r} \leq 3 \Leftrightarrow 2 s^{2} \leq 3 s^{2}-3 r^{2}-12 R r$

$$
\begin{gathered}
\Leftrightarrow 3 r^{2}+12 R r \leq s^{2} \quad \text { (*) }^{*} \text {. But } s^{2} \geq 16 R r-5 r^{2} \text {. Must show that: } \\
16 R r-5 r^{2} \geq 12 R r+3 r^{2} \Leftrightarrow 4 R r \geq 8 r^{2} \Leftrightarrow R \geq 2 r \text { (Euler) (Proved) }
\end{gathered}
$$

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
\sum \cot \frac{A}{2}=\sum \sqrt{\frac{s(s-a)}{(s-b)(s-c)}} & =\sum \sqrt{\frac{s(s-a)^{2}}{(s-a)(s-b)(s-c)}}=\sqrt{\frac{s}{r^{2} s}} \sum(s-a) \\
& =\frac{3 s-2 s}{r} \stackrel{(1)}{=} \frac{s}{r}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
Also, $\sum \cot A \stackrel{(2)}{=} \frac{\sum a^{2}}{4 r s}$
(1), (2) \Rightarrow given inequality $\Leftrightarrow \frac{3 \sum a^{2}}{4 r s} \geq \frac{s}{r} \Leftrightarrow 3 \sum \boldsymbol{a}^{2} \geq\left(\sum \boldsymbol{a}\right)^{2} \rightarrow$ true (Proved)
1085. In $\triangle A B C$ the following relationship holds:

$$
\frac{\csc \frac{A}{2}}{b^{2}}+\frac{\csc \frac{B}{2}}{c^{2}}+\frac{\csc \frac{C}{2}}{a^{2}} \geq \frac{1}{R r}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Marian Ursărescu-Romania

$$
\begin{align*}
& \text { We must show: } \frac{1}{\sin \frac{A}{2} b^{2}}+\frac{1}{\sin \frac{B}{2} c^{2}}+\frac{1}{\sin \frac{C}{2} a^{2}} \geq \frac{1}{R r} \tag{1}\\
& \text { But } \frac{1}{\sin \frac{A}{2} b^{2}}+\frac{1}{\sin \frac{B}{2} c^{2}}+\frac{1}{\sin \frac{C}{2} a^{2}} \geq 3^{3} \sqrt{\frac{1}{(a b c)^{2} \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}} \tag{2}
\end{align*}
$$

From (1)+(2) we must show: $\frac{27}{(a b c)^{2} \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}} \geq \frac{1}{R^{3} r^{3}}$

$$
\begin{equation*}
\text { But } a b c=4 s R r \text { and } \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{r}{4 R} \tag{3}
\end{equation*}
$$

From (3)+ (4) we must show: $\frac{27}{16 s^{2} R^{2} r^{2} \cdot \frac{r}{4 R}} \geq \frac{1}{R^{3} r^{3}} \Leftrightarrow \frac{27}{4 s^{2} R r^{3}} \geq \frac{1}{R^{3} r^{3}} \Leftrightarrow$ $27 R^{2} \geq \mathbf{4 s} s^{\mathbf{2}}$ (true, because it it's Mitrinovic inequality)
Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\begin{aligned}
& \quad \frac{\csc \frac{A}{2}}{b^{2}}+\frac{\csc \frac{B}{2}}{c^{2}}+\frac{\csc \frac{C}{2}}{a^{2}}=\frac{1}{b \sin \frac{A}{2}}+\frac{1}{c^{2} \sin \frac{B}{2}}+\frac{1}{a^{2} \sin \frac{C}{2}} \\
& =\sum \frac{1}{(2 R \sin B)^{2} \sin \frac{A}{2}}=\frac{1}{16 R^{2}} \sum \frac{1}{\sin ^{2} \frac{B}{2} \cos ^{2} \frac{B}{2} \sin \frac{A}{2}}
\end{aligned}
$$

$$
r=4 R \Pi \sin \frac{A}{2} \Rightarrow \frac{1}{R r}=\frac{1}{4 R^{2} \Pi \sin _{\frac{A}{2}}} \text {. We need to prove: } \sum \frac{1}{\sin ^{2} \frac{B}{2} \cos ^{2} \frac{B}{2} \sin _{2}^{A}} \geq \frac{4}{\Pi \sin ^{\frac{A}{2}}}
$$

By AM-GMwe have: $\sum \frac{1}{\sin ^{2} \frac{B}{2} \cos ^{2} \frac{B}{2} \sin ^{\frac{A}{2}}} \geq \frac{3}{\left(\Pi \sin \frac{A}{2}\right)\left(\sqrt[3]{\Pi \cos ^{2} \frac{B}{2}}\right)}$. We must show that:

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$\frac{3}{\sqrt[3]{\Pi \cos ^{2} \frac{B}{2}}} \geq 4 \Leftrightarrow \Pi \cos ^{2} \frac{B}{2} \leq \frac{27}{64}$. It is true because:

$$
\prod \cos ^{2} \frac{B}{2} \leq\left(\frac{\sin A+\sin B+\sin C}{4}\right)^{2} \leq \frac{\left(\frac{3 \sqrt{3}}{2}\right)^{2}}{16}=\frac{27}{64}
$$

Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\frac{\csc \frac{A}{2}}{b^{2}}+\frac{\csc \frac{B}{2}}{c^{2}}+\frac{\csc \frac{C}{2}}{a^{2}} \geq \frac{1}{R r} \\
\text { LHS }=\frac{\left(\frac{1}{b}\right)^{2}}{\sin \frac{A}{2}}+\frac{\left(\frac{1}{c}\right)^{2}}{\sin \frac{B}{2}}+\frac{\left(\frac{1}{a}\right)^{2}}{\sin \frac{C}{2}} \stackrel{\text { Bergstrom }}{\geq} \frac{\left(\sum\left(\frac{1}{a}\right)\right)^{2}}{\sum \sin \frac{A}{2}} \stackrel{\text { ensen }}{\geq} \frac{\left(\sum a b\right)^{2}}{\left(\frac{3}{2}\right) 16 R^{2} r^{2} s^{2}} \\
\left(\because f(x)=\sin \frac{x}{2} \text { is concave } \forall x \in(0, \pi)\right)=\frac{\left(s^{2}+4 R r+r^{2}\right)^{2}}{24 R^{2} r^{2} s^{2}} \geq \frac{1}{R r} \\
\Leftrightarrow s^{4}+r^{2}(4 R+r)^{2}+2 s^{2}\left(4 R r+r^{2}\right) \stackrel{?}{\geq} 24 R r s^{2} \Leftrightarrow s^{4}+r^{2}(4 R+r)^{2} \sum_{(1)}^{2} s^{2}\left(16 R r-2 r^{2}\right) \\
\text { Now,LHS of (1) } \stackrel{\text { erretsen }}{\geq} s^{2}\left(16 R r-5 r^{2}\right)+r^{2}(4 R+r)^{2} \geq s^{2}\left(16 R r-2 r^{2}\right) \\
\Leftrightarrow r^{2}(4 R+r)^{2} \geq 3 r^{2} s^{2} \Leftrightarrow 4 R+r \geq \sqrt{3} s \rightarrow \text { true (Trucht) } \Rightarrow(1) \text { is true (proved) }
\end{gathered}
$$

1086. In scalene $\triangle A B C$ the following relationship holds:

$$
\frac{\left(\boldsymbol{r}_{\boldsymbol{a}}+\boldsymbol{r}_{\boldsymbol{b}}\right)\left(\boldsymbol{r}_{\boldsymbol{b}}+\boldsymbol{r}_{c}\right)\left(\boldsymbol{r}_{\boldsymbol{c}}+\boldsymbol{r}_{\boldsymbol{a}}\right)}{\left(\boldsymbol{r}_{\boldsymbol{a}}-\boldsymbol{r}\right)\left(\boldsymbol{r}_{\boldsymbol{b}}-\boldsymbol{r}\right)\left(\boldsymbol{r}_{\boldsymbol{c}}-\boldsymbol{r}\right)}>25
$$

Proposed by Mustafa Tarek-Cairo-Egypt
Solution 1 by Daniel Sitaru - Romania

$$
\begin{gathered}
\prod_{c y c}\left(\frac{r_{a}+r_{b}}{r_{a}-r}\right)=\prod_{c y c}\left(\frac{\frac{s}{s-a}+\frac{s}{s-b}}{\frac{\boldsymbol{s}}{s-a}-\frac{S}{s}}\right)=\prod_{c y c}\left(\frac{\frac{s-b+\boldsymbol{s}-\boldsymbol{a}}{(\boldsymbol{s}-\boldsymbol{a})(\boldsymbol{s}-\boldsymbol{b})}}{\frac{s-\boldsymbol{s}+\boldsymbol{a}}{s(\boldsymbol{s}-\boldsymbol{a})}}\right)= \\
=\prod_{c y c}\left(\frac{c}{s-\boldsymbol{b}} \cdot \frac{\boldsymbol{s}}{\boldsymbol{a}}\right)=\frac{s^{3}}{(\boldsymbol{s}-\boldsymbol{a})(\boldsymbol{s}-\boldsymbol{b})(\boldsymbol{s}-\boldsymbol{c})}=
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
=\frac{8 s^{3}}{(b+c-a)(c+a-b)(a+b-c)} \stackrel{P A D O A}{>} \frac{8 s^{3}}{a b c}=\frac{8 s^{3}}{4 R r s}=\frac{2 s^{2}}{R r}>
$$

$\underset{>}{\text { GERRETSEN }} \frac{2\left(16 R r-5 r^{2}\right)}{R r}=\frac{32 R-5 r}{R}=32-\frac{5 r^{\text {EULER }}}{R} \stackrel{\text { min }}{>} 32-\frac{5}{2}=29.5>25$
Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\left(r_{a}+r_{b}\right)\left(r_{b}+r_{c}\right)\left(r_{c}+r_{a}\right)=4 s^{2} R \\
\left(r_{a}-r\right)\left(r_{b}-r\right)\left(r_{c}-r\right)=\left(4 R \sin ^{2} \frac{B}{2}\right)\left(4 R \sin ^{2} \frac{C}{2}\right) \\
=64 R^{3}\left(\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right)^{2}=64 R^{3}\left(\frac{r}{4 R}\right)^{2}=4 R r^{2} \\
\text { Must show that: } 4 s^{2} R>25 \cdot 4 \cdot R r^{2} \Leftrightarrow s^{2}>25 r^{2} \\
\therefore s^{2} \geq 16 R r-5 r^{2} \Rightarrow 16 R r-5 r^{2}>25 r^{2} \Leftrightarrow 16 R r>30 r^{2} \Leftrightarrow 8 R>15 r \Leftrightarrow R>\frac{15}{8} r \\
\text { It is true, because: } R \geq 2 r>\frac{15}{8} r
\end{gathered}
$$

1087. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{\sqrt{b}}+\frac{m_{b}}{\sqrt{c}}+\frac{m_{c}}{\sqrt{a}} \geq \frac{h_{a}}{\sqrt[4]{b c}}+\frac{h_{b}}{\sqrt[4]{c a}}+\frac{h_{c}}{\sqrt[4]{a b}}
$$

Proposed by Daniel Sitaru - Romania
Solution by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\sum \frac{h_{a}}{\sqrt[4]{b c}}=\frac{2 S}{a \sqrt[4]{b c}}+\frac{2 S}{b \sqrt[4]{c a}}+\frac{2 S}{c \sqrt[4]{a b}}=2 S\left(\frac{b c \sqrt[4]{a^{2} b c}+a c \sqrt[4]{b^{2} c a}+a b \sqrt[4]{a b c^{2}}}{a b c \sqrt{a b c}}\right) \\
\sum \frac{m_{a}}{\sqrt{b}} \geq \sum \frac{h_{a}}{\sqrt{b}}=2 S \sum \frac{1}{a \sqrt{b}}=2 S\left(\frac{b c \sqrt{a c}+a c \sqrt{a b}+a b \sqrt{b c}}{a b c \sqrt{a b c}}\right)
\end{gathered}
$$

We must show that:

$$
\begin{equation*}
b c \sqrt{a c}+a c \sqrt{a b}+a b \sqrt{b c} \geq b c \sqrt[4]{a^{2} b c}+a c \sqrt[4]{b^{2} c a}+a b \sqrt[4]{a b c^{2}} \tag{*}
\end{equation*}
$$

(Let $x=\sqrt[4]{\boldsymbol{a}^{2} b c} ; y=\sqrt[4]{b^{2} c a} ; z=\sqrt[4]{a b c^{2}} \Rightarrow x^{4}=a^{2} b c ; y^{4}=b^{2} \boldsymbol{c} a ; z^{4}=a b c^{2}$

$$
\Rightarrow(x y z)^{4}=(a b c)^{4} \Rightarrow x y z=a b c ; a=\frac{x^{3}}{y z} ; b=\frac{y^{3}}{x z} ; c=\frac{z^{3}}{x y}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Suppose: $a \leq b \leq c \Rightarrow x \leq y \leq z)$.

$$
\begin{gather*}
(*) \Leftrightarrow\left(\frac{y z}{x}\right)^{2} \cdot \frac{x z}{y}+\left(\frac{x z}{y}\right)^{2} \cdot \frac{x y}{z}+\left(\frac{x y}{z}\right)^{2} \cdot \frac{y z}{x} \geq\left(\frac{y z}{x}\right)^{2} x+\left(\frac{x z}{y}\right)^{2} y+\left(\frac{x y}{z}\right)^{2} z \\
\Leftrightarrow \frac{z^{3} y}{x}+\frac{x^{3} z}{y}+\frac{y^{3} x}{z} \geq \frac{(y z)^{2}}{x}+\frac{(x z)^{2}}{y}+\frac{(x y)^{2}}{z} \\
\Leftrightarrow y^{2} z^{4}+z^{2} x^{4}+x^{2} y^{4} \geq(y z)^{3}+(x z)^{3}+(x y)^{3} \\
y^{2} z^{4}+z^{2} y^{4} \geq 2(y z)^{3} \tag{2}\\
z^{2} x^{4}+x^{2} z^{4} \geq 2(x z)^{3} \tag{3}\\
x^{2} y^{4}+y^{2} x^{4} \geq 2(x y)^{3} \tag{4}
\end{gather*}
$$

$$
\stackrel{(2)+(3)+(4)}{\Rightarrow}\left(y^{2} z^{4}+z^{2} x^{4}+x^{2} y^{4}\right)+\left(y^{4} z^{2}+z^{4} x^{2}+x^{4} z^{2}\right) \geq 2\left[(y z)^{3}+(x z)^{3}+(x y)^{3}\right]
$$

But: $y^{4} z^{2}+z^{4} x^{2}+x^{4} y^{2} \leq x^{2} y^{4}+y^{2} z^{4}+z^{2} x^{4}$
$\Leftrightarrow\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right)\left(x^{2}-z^{2}\right) \leq 0$ (true because: $\left.x \leq y \leq z\right)$
So, $2\left[(y z)^{3}+(z x)^{3}+(x y)^{3}\right] \leq 2\left[x^{2} y^{4}+y^{2} z^{4}+z^{2} x^{4}\right] \Rightarrow$ (1) true. Proved.
1088. In $\triangle A B C, K$ - Lemoines' point, the following relationship holds:

$$
\frac{m_{b} m_{c}}{h_{a}}+\frac{m_{c} m_{a}}{h_{b}}+\frac{m_{a} m_{b}}{h_{c}} \geq \sqrt{3}(\sin A \cdot A K+\sin B \cdot B K+\sin C \cdot C K)
$$

Proposed by Mustafa Tarek-Cairo-Egypt

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\text { We have: } A K=m_{a} \cdot \tan \omega \cdot \csc A=m_{a} \cdot \tan \omega \cdot \frac{1}{\sin A}
$$

(with w : Brocard angle: $\omega \leq \frac{\pi}{6} \Rightarrow \tan \omega \leq \frac{\sqrt{3}}{3}$) $\Rightarrow A K \leq \boldsymbol{m}_{a} \cdot \frac{\sqrt{3}}{3} \cdot \frac{1}{\sin A}$; similarly:

$$
\begin{gathered}
B K \leq m_{b} \cdot \frac{\sqrt{3}}{3} \cdot \frac{1}{\sin B} ; C K \leq m_{c} \cdot \frac{\sqrt{3}}{3} \cdot \frac{1}{\sin C} \Rightarrow R H S \leq m_{a}+m_{b}+m_{c} \\
L H S \geq \frac{m_{b} m_{c}}{m_{a}}+\frac{m_{c} m_{a}}{m_{b}}+\frac{m_{a} m_{b}}{m_{c}} \quad\left(\because \text { Because: } h_{a} \leq m_{a} \Rightarrow \frac{1}{h_{a}} \geq \frac{1}{m_{a}}\right. \text { (etc)) }
\end{gathered}
$$

We must show that: $\frac{y z}{x}+\frac{x z}{y}+\frac{x y}{z} \geq x+y+z \quad\left(x=m_{a} ; y=m_{b} ; z=m_{c}\right)$ $\Leftrightarrow(y z)^{2}+(x z)^{2}+(x y)^{2} \geq x y z(x+y+z)$. It is true because we are using the inequality: $X^{2}+Y^{2}+Z^{2} \geq X Y+Y Z+Z X$ with $X=y z ; Y=x z ; Z=x y$

Proved.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\Delta A B C, \sum \frac{m_{b} m_{c}}{h_{a}} \geq \sqrt{3}(A K \sin A+B K \sin B+C K \sin C)
$$

We shall first prove: $\left(\sum a^{2}\right)\left(\sum b c m_{a}\right) \stackrel{(1)}{\geq} 16 \sqrt{3} r^{2} s^{3}$

$$
\begin{gathered}
\text { LHS of (1) } \stackrel{m_{a} \geq h_{a} \text { etc }}{\geq}\left(\sum a^{2}\right)\left(\sum b c h_{a}\right) \stackrel{\text { Ionescu-Weitzenbock }}{\geq} 4 \sqrt{3} r s\left(\sum b c h_{a}\right) \stackrel{?}{\geq} 16 \sqrt{3} r^{2} s^{3} \\
\Leftrightarrow \sum b c h_{a} \xrightarrow{\geq} 4 r s^{2} \Leftrightarrow \sum b^{2} c^{2} \sum_{(2)}^{?} 8 R s^{2}
\end{gathered}
$$

But, $\sum b^{2} c^{2} \geq a b c\left(\sum a\right)=4 R r s \cdot 2 s=8 \operatorname{Rrs}^{2} \Rightarrow(2) \Rightarrow(1)$ is true.

$$
\Rightarrow \frac{4}{3}\left(\sum m_{a}^{2}\right)\left(\sum b c m_{a}\right) \geq 16 \sqrt{3} s \Delta^{2} \Rightarrow\left(\sum m_{a}^{2}\right)\left(\sum b c m_{a}\right) \stackrel{(3)}{\geq} 12 \sqrt{3} s \Delta^{2}
$$

Applying (3) on a triangle with sides $\frac{2}{3} m_{a}, \frac{2}{3} m_{b}, \frac{2}{3} m_{c}$ whose medians are obviously

$$
\frac{a}{2}, \frac{b}{2}, \frac{c}{2} \text { respectively and area of course }=\frac{\Delta}{3}, \text { we get: }
$$

$$
\begin{gathered}
\left(\sum\left(\frac{1}{4} a^{2}\right)\right)\left(\sum\left(\frac{4}{9} \cdot \frac{1}{2}\right) m_{b} m_{c} a\right) \geq 12 \sqrt{3}\left(\left(\frac{1}{2} \cdot \frac{2}{3}\right) \sum m_{a}\right) \frac{\Delta^{2}}{9} \\
\Rightarrow\left(\sum a^{2}\right) \sum m_{b} m_{c} a \geq 8 \sqrt{3} r^{2} s^{2}\left(\sum m_{a}\right) \Rightarrow \sum m_{b} m_{c} \frac{a}{2 r s} \geq \frac{4 \sqrt{3} R r s}{R}\left(\sum \frac{m_{a}}{\sum a^{2}}\right) \\
\Rightarrow \sum \frac{m_{b} m_{c}}{h_{a}} \geq \sqrt{3} \sum\left(\frac{a b c m_{a}}{R \sum a^{2}}\right)=\sqrt{3} \sum\left(\frac{a}{2 R} \cdot \frac{2 b c}{\sum a^{2}} m_{a}\right)=\sqrt{3} \sum(\sin A \cdot A K) \\
\Rightarrow \sum \frac{m_{b} m_{c}}{h_{a}} \geq \sqrt{3}(A K \sin A+B K \sin B+C K \sin C) \text { (proved) }
\end{gathered}
$$

1089. In $\triangle A B C, n_{a}, n_{b}, n_{c}$ - Nagel's cevians, g_{a}, g_{b}, g_{c} - Gergonne's cevians.

Find: $\min \Omega$

$$
\Omega=\frac{n_{a}^{2}+n_{b}^{2}+n_{c}^{2}}{a g_{a}+b g_{b}+c g_{c}}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Tran Hong-Dong Thap-Vietnam
We know: $n_{a} \geq m_{a} \geq g_{a}\left(n_{a} \geq m_{a}-\right.$ Tarek Lemma)

Solution 2 by Soumava Chakraborty-Kolkata-India

Let g_{a} intersect $B C$ at D. Then $B D=s-b, C D=s-c$
By Stewarts' theorem, $b^{2}(s-b)+c^{2}(s-c)=a g_{a}^{2}+a(s-b)(s-c)$
$\Rightarrow a g_{a}^{2}=b^{2}(s-b)+c^{2}(s-c)-a(s-b)(s-c) \leq a s(s-a)$
$\Leftrightarrow a(b+c-a)(b+c+a)+a(c+a-b)(a+b-c)-2 b^{2}(c+a-b)-$

$$
-2 c^{2}(a+b-c) \geq 0
$$

$\Leftrightarrow b^{3}+c^{3}-b c(b+c) \geq a\left(b^{2}+c^{2}-2 b c\right) \Leftrightarrow(b+c)(b-c)^{2}-a(b-c)^{2} \geq 0$

$$
\Leftrightarrow(b+c-a)(b-c)^{2} \geq 0 \rightarrow \operatorname{true} \therefore a g_{a}^{2} \leq a s(s-a) \Rightarrow g_{a} \stackrel{(a)}{\leq} \sqrt{s(s-a)}
$$

$$
\text { Similarly, } g_{b} \stackrel{(b)}{\leq} \sqrt{s(s-b)} \text { and, } g_{c} \stackrel{(c)}{\leq} \sqrt{s(s-c)}
$$

Also, by Mustafa Tarek, $n_{a} \geq m_{a}$, etc $\Rightarrow \sum n_{a}^{2} \stackrel{(1)}{\geq} \sum m_{a}^{2}=\frac{3}{4} \sum a^{2}$
Again, by (a), (b), (c):

$$
\begin{aligned}
& \sum a g_{a} \leq \sum a \sqrt{s(s-a)}=\sqrt{s} \sum \sqrt{a(s-a)} \sqrt{a} \stackrel{C B S}{\leq} \sqrt{s} \sqrt{2 s} \sqrt{\sum a(s-a)} \\
= & \sqrt{2} s \sqrt{s(2 s)-2\left(s^{2}-4 R r-r^{2}\right)}=2 s \sqrt{4 R r+r^{2}} \Rightarrow \frac{1}{\sum a g_{a}} \stackrel{(2)}{\geq} \frac{1}{2 s \sqrt{4 R r+r^{2}}}
\end{aligned}
$$

$$
\text { (1), (2) } \Rightarrow \frac{\sum n_{a}^{2}}{\sum a g_{a}} \stackrel{(3)}{\geq} \frac{6\left(s^{2}-4 R r-r^{2}\right)}{8 s \sqrt{4 R r+r^{2}}}=\frac{3}{4} \cdot \frac{s}{\sqrt{4 R r+r^{2}}}-\frac{3}{4 s} \sqrt{4 R r+r^{2}}
$$

Now, $s^{2} \geq 12 R r+3 r^{2} \Leftrightarrow s^{2}-16 R r+5 r^{2}+4 r(R-2 r) \geq 0 \rightarrow$ true

$$
\because s^{2}-16 R r+5 r^{2} \stackrel{\text { Gerretsen }}{\geq} 0
$$

and, $R-2 r \stackrel{\text { Euler }}{\geq} 0 \Rightarrow s \geq \sqrt{3} \sqrt{4 R r+r^{2}} \Rightarrow \frac{s}{\sqrt{4 R r+r^{2}}} \stackrel{(i)}{\geq} \sqrt{3}:-\frac{3}{4 s} \sqrt{4 R r+r^{2}} \xrightarrow[(4)]{\text { by (i) }}-\frac{3}{4 \sqrt{3}}$
(4), (i), (3) $\Rightarrow \frac{\sum n_{a}^{2}}{\sum a g_{a}} \geq \frac{3}{4} \sqrt{3}-\frac{3}{4 \sqrt{3}}=\frac{6}{4 \sqrt{3}}=\frac{\sqrt{3}}{2} \Rightarrow \Omega \geq \frac{\sqrt{3}}{2} \Rightarrow \Omega_{\text {min }}=\frac{\sqrt{3}}{2}$ (answer)

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& n_{a}^{2}+n_{b}^{2}+n_{c}^{2} \geq m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right) \\
& a g_{a}+b g_{b}+c g_{c} \leq a m_{a}+b m_{b}+c m_{c} \stackrel{B C S}{\leq} \\
& \sqrt{\left(a^{2}+b^{2}+c^{2}\right)} \cdot \sqrt{\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)}=\frac{\sqrt{3}}{2}\left(a^{2}+b^{2}+c^{2}\right) \\
& \Rightarrow \boldsymbol{\Omega} \geq \frac{3}{4}\left(\boldsymbol{a}^{2}+\boldsymbol{b}^{2}+\boldsymbol{c}^{2}\right) \cdot \frac{2}{\sqrt{3}} \cdot \frac{1}{a^{2}+b^{2}+\boldsymbol{c}^{2}}=\frac{\sqrt{3}}{2} \Rightarrow \boldsymbol{\Omega}_{\mathrm{min}}=\frac{\sqrt{3}}{2} \Leftrightarrow \boldsymbol{a}=\boldsymbol{b}=\boldsymbol{c} .
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

1090. In $\triangle A B C$ the following relationship holds:

$$
3+\cos (A-B)+\cos (B-C)+\cos (C-A) \geq \frac{6 h_{a} h_{b} h_{c}}{m_{a} m_{b} m_{c}}
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\cos (A-B)=\frac{2 \sin (A+B) \cos (A-B)}{2 \sin C}=\frac{\sin 2 A+\sin 2 B}{2 \sin C}=\frac{\sum \sin 2 A-\sin 2 C}{2 \sin C} \\
\stackrel{(1)}{=} \frac{\left(\sum \sin 2 A\right)}{2}\left(\frac{1}{\sin C}\right)-\cos C
\end{gathered}
$$

Similarly, $\boldsymbol{\operatorname { c o s }}(B-C) \stackrel{(1)}{=} \frac{\sum \sin 2 A}{2}\left(\frac{1}{\sin A}\right)-\cos A \& \cos (C-A) \stackrel{(3)}{=} \frac{\sum \sin 2 A}{2}\left(\frac{1}{\sin B}\right)-\cos B$

$$
\begin{aligned}
& \text { (1) }+\mathbf{(2)}+\mathbf{(3)} \Rightarrow \boldsymbol{L H S}=3+\frac{\sum \sin 2 A}{2}\left(\sum \frac{1}{\sin A}\right)-\sum \cos A \\
& =3-1-\frac{r}{R}+\frac{4 \sin A \sin B \sin C}{2}\left(\sum \frac{2 R}{a}\right)=\frac{2 R-r}{R}+4 R\left(\frac{a b c}{8 R^{3}}\right)\left(\frac{\sum a b}{a b c}\right) \\
& =\frac{2 R-r}{R}+\frac{\sum a b}{2 R^{2}}=\frac{4 R^{2}-2 R r+s^{2}+4 R r+r^{2}}{2 R^{2}} \stackrel{(a)}{=} \frac{s^{2}+4 R^{2}+2 R r+r^{2}}{2 R^{2}} \\
& \text { Also, } \frac{\prod m_{a}}{\Pi h_{a}} \underset{(\bar{b})}{m_{a} \geq \sqrt{s(s-a)}} \frac{s \cdot r s}{\frac{a^{2} b^{2} c^{2}}{b R^{3}}}=\frac{r s^{2} \cdot 8 R^{3}}{16 R^{2} r^{2} s^{2}}=\frac{R}{2 r} \\
& \text { (a), (b) } \Rightarrow \text { it suffices to prove: } \\
& \frac{s^{2}+4 R^{2}+2 R r+r^{2}}{2 R^{2}} \cdot \frac{R}{2 r} \geq 6 \Leftrightarrow s^{2}+4 R^{2}+2 R r+r^{2} \stackrel{(4)}{\geq} 24 R r \\
& \text { Now, LHS of (4) } \stackrel{\text { Gerretsen }}{\geq} 4 R^{2}+18 R r-4 r^{2} \stackrel{?}{\geq} 24 R r \\
& \Leftrightarrow 2 R^{2}-3 R r-2 r^{2} \xrightarrow[\geq]{\geq} 0 \Leftrightarrow(R-2 r)(2 R+r) \xrightarrow{\geq} 0 \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2 r \text { (Done) }
\end{aligned}
$$

1091. If in $\triangle A B C, r_{a}=2, r_{b}=3, r_{c}=4$ then:

$$
2 r^{2} s<\frac{4 a}{3}+\frac{8 b}{9}+\frac{2 c}{3}<r s R
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\sqrt{\sum r_{a} r_{b}}=s=\sqrt{2 \cdot 3+3 \cdot 4+2 \cdot 4}=\sqrt{26} \\
\frac{1}{r}=\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}=\frac{13}{12} \Rightarrow r=\frac{12}{13} \Rightarrow R=\frac{\sum r_{a}-r}{4}=\frac{105}{52}
\end{gathered}
$$

Hence, we must show that: $\frac{288}{169} \sqrt{26}<\frac{4 a}{3}+\frac{8 b}{9}+\frac{2 c}{3}<\frac{315 \sqrt{26}}{169}$.
Now: $r_{1} r_{a}=r_{2} r_{b}=r_{3} r_{c}=\Delta=\frac{12}{13} \sqrt{26} \Rightarrow r_{1}=\frac{6 \sqrt{26}}{13} ; r_{2}=\frac{4 \sqrt{26}}{13} ; r_{3}=\frac{3 \sqrt{26}}{13}$

$$
\begin{aligned}
& \Rightarrow a=r_{2}+r_{3}=\frac{7 \sqrt{26}}{13} ; b=r_{1}+r_{3}=\frac{9 \sqrt{26}}{13} ; c=r_{2}+r_{1}=\frac{10 \sqrt{26}}{13} \\
& \Rightarrow \Omega=\frac{4 a}{3}+\frac{8 b}{9}+\frac{2 c}{3}=\left(\frac{28}{39}+\frac{72}{117}+\frac{20}{39}\right) \sqrt{26}=\frac{24}{13} \sqrt{26} \\
& \Rightarrow \frac{288}{169} \sqrt{26}<\frac{24}{13} \sqrt{26}<\frac{315 \sqrt{26}}{169} . \text { Proved. }
\end{aligned}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
r_{a}=s \tan \frac{A}{2}, \text { etc } \therefore \frac{4 a}{3}+\frac{8 b}{9}+\frac{2 c}{3}=\frac{4}{3 s}\left(4 R \cos ^{2} \frac{A}{2}\right)\left(s \tan \frac{A}{2}\right)+ \\
+\frac{8}{3 s}\left(4 R \cos ^{2} \frac{B}{2}\right)\left(s \tan \frac{B}{2}\right)+\frac{2}{3 s}\left(4 R \cos ^{2} \frac{C}{2}\right)\left(s \tan \frac{C}{2}\right) \\
=\frac{4}{3 s}\left(\frac{4 R \cos ^{2} A}{2}\right)(2)+\frac{8}{3 s}\left(4 R \cos ^{2} \frac{B}{2}\right) 3+\frac{2}{3 s}\left(4 R \cos ^{2} \frac{C}{2}\right)(4) \\
=\frac{16 R}{3 s} \sum\left(2 \cos ^{2} \frac{A}{2}\right)=\frac{16 R}{3 s} \sum(1+\cos A)=\frac{16 R(4 R+r)}{3 s R}=\frac{16(4 R+r)}{3 s} \\
\therefore \frac{4 a}{3}+\frac{8 b}{9}+\frac{2 c}{3} \stackrel{(1)}{=} \frac{16(4 R+r)}{3 s}<r s R \Leftrightarrow 3 R\left(r s^{2}\right)>64 R+16 r \\
\Leftrightarrow 3 R(2 \cdot 3 \cdot 4)>64 R+16 r \Leftrightarrow 8 R>16 r \rightarrow \text { true (Euler) }
\end{gathered}
$$

$(\because \triangle A B C$ is non-equilateral, $\therefore R$ strictly $>2 r) \Rightarrow \frac{4 a}{3}+\frac{8 b}{9}+\frac{2 c}{3}<r s R$

$$
\begin{gathered}
\text { Again, } \frac{4 a}{3}+\frac{8 b}{9}+\frac{2 c}{3}>2 r^{2} s \stackrel{b y(1)}{\Leftrightarrow} \frac{16(4 R+r)}{3 s}>2 r^{2} s \Leftrightarrow 16(4 R+r)>6 r\left(r s^{2}\right) \\
\Leftrightarrow 16(4 R+r)>6 r(2 \cdot 3 \cdot 4) \Leftrightarrow 64 R>128 r \rightarrow \text { true (Euler) }
\end{gathered}
$$

$(\because \triangle A B C$ is non-equilateral, $\therefore R$ strictly $>2 r) \Rightarrow 2 r^{2} s<\frac{4 a}{3}+\frac{8 b}{9}+\frac{2 c}{3}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

1092. Let triangle $A B C$ circumscribed to circle $C(I, r)$; let three tangent line at this circle which are parallel with the sides of triangle. In this way are forming other three triangles inside of triangle $A B C$; if r_{1}, r_{2}, r_{3} are the rays of the inscribed circles of these three triangles, and $m \in R_{+}$then prove that:

$$
\frac{1}{r_{1}^{m}}+\frac{1}{r_{2}^{m}}+\frac{1}{r_{3}^{m}} \geq \frac{3^{m+1}}{r^{m}}
$$

Proposed by D. M. Batinetu Giurgiu, Neculai Stanciu-Romania Solution 1 by Omran Kouba-Damascus-Syria

Triangles $A B C$ and $A K L$ are similar.
If $h_{a}=A D$ is the hight form A in $A B C$, then $h_{a}-2 r=A M$ is the hight from A in $A K L$.
Thus $\frac{r}{r_{a}}=\frac{h_{a}}{h_{a}-2 r}=\frac{a h_{a}}{a h_{a}-2 r a}=\frac{2 s r}{2 s r-2 a r}=\frac{s}{s-a}$ where s is the semiperimer of $A B C$.
Multiplying similar relations for r_{a}, r_{b} and r_{c} we get:
$\frac{r}{r_{a}} \cdot \frac{r}{r_{b}} \cdot \frac{r}{r_{c}}=\frac{s^{4}}{s(s-a)(s-b)(s-c)}=\frac{s^{4}}{s^{2} r^{2}}=\frac{s^{2}}{r^{2}} \geq 27$
Finally, the AM-GM inequality shows that:

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\frac{r^{m}}{r_{a}^{m}}+\frac{r^{m}}{r_{b}^{m}}+\frac{r^{m}}{r_{c}^{m}} \geq 3\left(\sqrt[3]{\frac{r^{3}}{r_{a} r_{b} r_{c}}}\right)^{m}=3^{m+1}
$$

Solution 2 by Marian Ursărescu-Romania

$$
\begin{equation*}
A B^{\prime} C^{\prime} \sim A B C \Rightarrow \frac{s_{A B^{\prime} C^{\prime}}}{s_{A B C}}=\frac{s_{1}}{s}=\left(\frac{h_{a}-2 r}{h_{a}}\right)^{2} . \text { Similarly, } \frac{s_{2}}{s}=\left(\frac{h_{b}-2 r}{h_{b}}\right)^{2}, \frac{s_{4}}{s}=\left(\frac{h_{c}-2 r}{h_{c}}\right)^{2} \tag{1}
\end{equation*}
$$

Let $s=$ semiperimeter of $A B C, s_{1}=$ semiperimeter of $A B^{\prime} C^{\prime} ; s_{2}$ of S_{2}, s_{3} of $S_{3} \Rightarrow$

$$
\frac{s_{1}}{s}+\frac{s_{2}}{s}+\frac{s_{3}}{s}=\frac{h_{a}-2 r}{h_{a}}+\frac{h_{b}-2 r}{h_{b}}+\frac{h_{c}-2 r}{h_{c}}=3-2\left(\frac{r}{h_{a}}+\frac{r}{h_{b}}+\frac{r}{h_{c}}\right)=3-2 r\left(\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}\right)
$$

$$
\begin{equation*}
\text { But } \frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}=\frac{1}{r} \tag{3}
\end{equation*}
$$

From (2)+ (3) $\Rightarrow \frac{s_{1}}{s}+\frac{s_{2}}{s}+\frac{s_{3}}{s}=1$
From (1)+(4) $\Rightarrow \frac{r_{1}}{r}+\frac{r_{2}}{r}+\frac{r_{3}}{r}=\frac{s_{1}}{s_{1}} \cdot \frac{s}{s}+\frac{s_{2}}{s_{2}} \cdot \frac{s}{s}+\frac{s_{3}}{s_{3}} \cdot \frac{s}{s}=\frac{s_{1}}{s} \cdot \frac{s}{s_{1}}+\frac{s_{2}}{s} \cdot \frac{s}{s_{2}}+\frac{s_{3}}{s} \cdot \frac{s}{s_{3}}=$

$$
\begin{equation*}
=\frac{s_{1}}{s}+\frac{s_{2}}{s}+\frac{s_{3}}{s}=1 \Rightarrow r_{1}+r_{2}+r_{3}=r \tag{5}
\end{equation*}
$$

$$
\frac{1}{r_{1}^{m}}+\frac{1}{r_{2}^{m}}+\frac{1}{r_{3}^{m}} \geq 3 \sqrt[3]{\frac{1}{\left(r_{1} r_{2} r_{3}\right)^{m}}}
$$

We must show this: $3 \sqrt[3]{\frac{1}{\left(r_{1} r_{2} r_{3}\right)^{m}}} \geq \frac{3^{m+1}}{r^{m}} \Leftrightarrow \sqrt[3]{\frac{1}{\left(r_{1} r_{2} r_{3}\right)^{m}}} \geq \frac{3^{m}}{r^{m}} \Leftrightarrow \frac{1}{\sqrt[3]{r_{1} r_{2} r_{3}}} \geq \frac{3}{r} \Leftrightarrow$

$$
\Leftrightarrow \sqrt[3]{r_{1} r_{2} r_{3}} \leq \frac{r}{3} \Leftrightarrow \sqrt[3]{r_{1} r_{2} r_{3}} \leq \frac{r_{1}+r_{2}+r_{3}}{3}(\text { from } 5) \text { it is true. }
$$

1093. In $\triangle A B C$ the following relationship holds:

$$
\frac{2 R s^{2}}{(R+r)^{2}} \leq \frac{a^{2}}{h_{b}}+\frac{b^{2}}{h_{c}}+\frac{c^{2}}{h_{a}} \leq \frac{3 R^{2}}{2 S} \sqrt{91 R^{2}-256 r^{2}}
$$

Proposed by Mehmet Sahin-Ankara-Turkey

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
a^{3}+a^{3}+b^{3} \stackrel{A-G}{\geq} 3 a^{2} b, b^{3}+b^{3}+c^{3} \stackrel{A-G}{\geq} 3 b^{2} c, c^{3}+c^{3}+a^{3} \stackrel{A-G}{\geq} 3 c^{2} a \\
\text { Adding the last three, } 3 \sum a^{3} \geq 3 \sum a^{2} b \Rightarrow \sum a^{2} b \stackrel{(1)}{\leq} \sum a^{3} \\
\therefore \sum \frac{a^{2}}{h_{b}}=\sum \frac{a^{2} b}{2 S}=\frac{\sum a^{2} b}{2 S} \stackrel{b y(1)}{\leq} \frac{\sum a^{3}}{2 S}=\frac{2 s\left(s^{2}-6 R r-3 r^{2}\right)}{2 S} \stackrel{\text { Mitrinovic }}{\leq} \\
\leq \frac{3 \sqrt{3} R\left(s^{2}-6 R r-3 r^{2}\right)}{2 S} \stackrel{?}{\leq} \frac{3 R^{2}}{2 S} \sqrt{91 R^{2}-256 r^{2}} \Leftrightarrow \\
\Leftrightarrow 3\left(s^{2}-6 R r-3 r^{2}\right)^{2} \stackrel{?}{\leq} R^{2}\left(91 R^{2}-256 r^{2}\right) \\
\Leftrightarrow 3 s^{4}-6 s^{2}\left(6 R r+3 r^{2}\right)+3 r^{2}(6 R+3 r)^{2} \stackrel{?}{(a)} R^{2}\left(91 R^{2}-256 r^{2}\right)
\end{gathered}
$$

Now, LHS of (a) $\stackrel{\text { Gerrtesen }}{\leq} 3 s^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)-6 s^{2}\left(6 R r+3 r^{2}\right)+3 r^{2}(6 R+3 r)^{2}$

$$
\begin{gathered}
=s^{2}\left(12 R^{2}-24 R r-9 r^{2}\right)+3 r^{2}(6 R+3 r)^{2} \stackrel{?}{\leq} R^{2}\left(91 R^{2}-256 r^{2}\right) \\
\Leftrightarrow s^{2}\left(12 R^{2}-24 R r\right)+3 r^{2}(6 R+3 r)^{2} \underset{(b)}{\stackrel{?}{<}} R^{2}\left(91 R^{2}-256 r^{2}\right)+9 r^{2} s^{2}
\end{gathered}
$$

Now, LHS of (b) $\underset{(\bar{i})}{\substack{\text { Gerretsen }}}\left(4 R^{2}+4 R r+3 r^{2}\right)\left(12 R^{2}-24 R r\right)+3 r^{2}(6 R+3 r)^{2} \&$
RHS of (b) $\underset{(i i)}{\stackrel{?}{2}} R^{2}\left(91 R^{2}-256 r^{2}\right)+9 r^{2}\left(16 R r-5 r^{2}\right)$
(i),(ii) \Rightarrow in order to prove (b), it suffices to prove:
$R^{2}\left(91 R^{2}-256 r^{2}\right)+9 r^{2}\left(16 R r-5 r^{2}\right) \geq\left(4 R^{2}+4 R r+3 r^{2}\right)\left(12 R^{2}-24 R r\right)+$ $+3 r^{2}(6 R+3 r)^{2} \Leftrightarrow 43 t^{4}+48 t^{3}-304 t^{2}+108 t-72 \geq 0 \quad\left(t=\frac{R}{r}\right)$
$\Leftrightarrow(t-2)\left(43 t^{3}+116 t^{2}+18 t(t-2)+36\right) \geq 0 \rightarrow$ true $\because t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(b) \Rightarrow(a)$ is true

$$
\Rightarrow \sum \frac{a^{2}}{h_{b}} \leq \frac{3 R^{2}}{2 S} \sqrt{91 R^{2}-256 r^{2}}
$$

Again, $\sum \frac{a^{a^{2}}}{h_{b}} \stackrel{\text { Bergstrom }}{\geq} \frac{4 s^{2}}{\sum h_{a}}=\frac{8 R s^{2}}{\sum a b} \stackrel{?}{\geq} \frac{2 R s^{2}}{(R+r)^{2}} \Leftrightarrow s^{2}+4 R r+r^{2} \stackrel{?}{\leq} 4(R+r)^{2}$
$\Leftrightarrow s^{2} \stackrel{?}{\leq} 4 R^{2}+4 R r+3 r^{2} \rightarrow$ true (Gerretsen) $\Rightarrow \frac{2 R s^{2}}{(R+r)^{2}} \leq \sum \frac{a^{2}}{h_{b}}$ (proof completed)

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\sum \frac{a^{2}}{h_{b}} \stackrel{(\text { schwarz })}{\gtrless} \frac{(a+b+c)^{2}}{\sum h_{b}}=\frac{4 s^{2}}{\frac{s^{2}+r^{2}+4 R r}{2 R}}=\frac{8 s^{2} R}{s^{2}+r^{2}+4 R r}
$$

Must show that: $\frac{8 s^{2} R}{s^{2}+r^{2}+4 R r} \geq \frac{2 R s^{2}}{(R+r)^{2}} \Leftrightarrow 4(R+r)^{2} \geq s^{2}+r^{2}+4 R r$

$$
\begin{gathered}
\Leftrightarrow s^{2} \leq 4 R^{2}+3 r^{2}+4 R r \text { (true) } \\
\sum \frac{a^{2}}{h_{b}}=\sum \frac{a^{2} b}{b h_{b}}=\frac{\sum a^{2} b}{2 S} \leq \frac{\sum a^{3}}{2 S}=\frac{2 s\left(s^{2}-6 R r-3 r^{2}\right)}{2 S}
\end{gathered}
$$

$\stackrel{(\text { Lebniz })}{\leq} \frac{3 \sqrt{3} R\left(s^{2}-6 R r-3 r^{2}\right)}{2 S}$. Must show that: $\frac{3 \sqrt{3} R\left(s^{2}-6 R r-3 r^{2}\right)}{2 S} \leq \frac{3 R^{2}}{2 S} \sqrt{\mathbf{9 1 R}}{ }^{2}-256 r^{2}$

$$
\Leftrightarrow 3\left(s^{2}-6 R r-3 r^{2}\right)^{2} \leq R^{2}\left(91 R^{2}-256 r^{2}\right) \therefore s^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$

Must show that: $3\left(4 R^{2}-2 R r\right)^{2} \leq R^{2}\left(91 R^{2}-256 r^{2}\right)$
$\Leftrightarrow 12(2 R-r)^{2} \leq 91 R^{2}-256 r^{2} \Leftrightarrow 48 R^{2}-48 R r+12 r^{2} \leq 91 R^{2}-256 r^{2}$

$$
\Leftrightarrow 268 r^{2} \stackrel{(1)}{\leq} 43 R^{2}+48 R r
$$

$\because(1)$ true because: $R \geq 2 r \Rightarrow 43 R^{2}+48 R r \geq 43 \cdot 4 r^{2}+48 \cdot 2 r^{2}=268 r^{2}$ Proved.
1094. In $\triangle A B C$ the following relationship holds:

$$
\begin{gathered}
\max \left(\Omega_{1}, \Omega_{2}\right) \leq(s+3 R)^{2} \\
\Omega_{1}=\left(a+w_{a}\right)^{2}+\left(b+w_{b}\right)^{2}+\left(c+w_{c}\right)^{2} \\
\Omega_{2}=\left(a+h_{a}\right)^{2}+\left(b+h_{b}\right)^{2}+\left(c+h_{c}\right)^{2}
\end{gathered}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution 1 by Marian Ursărescu-Romania

$$
\begin{gathered}
\text { Because } h_{a} \leq w_{a} \Rightarrow \max \left(\Omega_{1}, \Omega_{2}\right)=\Omega_{1} \Rightarrow \\
\left(a+w_{a}\right)^{2}+\left(b+w_{b}\right)^{2}+\left(c+w_{c}\right)^{2} \leq(s+3 R)^{2}
\end{gathered}
$$

But $w_{a} \leq \sqrt{s(s-a)} \Rightarrow$ we must show: $\sum(a+\sqrt{s(s-a)})^{2} \leq(s+3 R)^{2} \Leftrightarrow$

$$
\begin{gathered}
\sum a^{2}+2 \sum a \sqrt{s(s-a)}+s^{2} \leq s^{2}+6 s R+9 R^{2} \Leftrightarrow \\
\sum a^{2}+2 \sum a \sqrt{s(s-a)} \leq 6 s R+9 R^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

But $\sum a^{2} \leq 9 R^{2} \Rightarrow$ we must show: $\sum a \sqrt{s(s-a)} \leq 3 s R \Leftrightarrow \sum a \sqrt{(s-a)} \leq 3 \sqrt{s} R$

$$
\begin{equation*}
\text { From Cauchy } \Rightarrow\left(\sum a \sqrt{s-a}\right)^{2} \leq 3 \sum a^{2}(s-a) \tag{1}
\end{equation*}
$$

From (1)+(2) we must show: $3 \sum a^{2}(s-a) \leq 9 s R \Leftrightarrow \sum a^{2}(s-a)=3 s R^{2}$

$$
\begin{equation*}
\text { But } \sum a^{2}(s-a)=4 r s(R+r) \tag{3}
\end{equation*}
$$

From (3)+ (4) we must show: $4 r s(R+r) \leq 3 s R^{2} \Leftrightarrow 4 R r+4 r^{2} \leq 3 R^{2}$

$$
\left.\begin{array}{c}
\text { But } R^{2} \geq 4 r^{2} \\
2 R^{2} \geq 4 R r
\end{array}\right\} \Rightarrow 3 R^{2} \geq 4 r^{2}+4 R r
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\max \left(\Omega_{1}, \Omega_{2}\right) \stackrel{(1)}{\leq}(s+3 R)^{2} \\
\because w_{a} \geq h_{a}, \text { etc } \therefore \sum\left(a+w_{a}\right)^{2} \geq \sum\left(a+h_{a}\right)^{2} \Rightarrow \max \left(\Omega_{1}, \Omega_{2}\right)=\Omega_{1} \\
\therefore(1) \Leftrightarrow \sum a^{2}+2 \sum a w_{a}+\sum w_{a}^{2} \stackrel{(2)}{\leq}(s+3 R)^{2}
\end{gathered}
$$

$$
\text { WLOG, we may assume } a \geq b \geq c \text {. Then } w_{a} \leq w_{b} \leq w_{c}
$$

$$
\begin{gathered}
\therefore 2 \sum a w_{a} \stackrel{\text { Chebyshev }}{\leq} \frac{2}{3}\left(\sum a\right)\left(\sum w_{a}\right) \leq \frac{2}{3}(2 s)\left(\sum m_{a}\right) \\
\quad \begin{array}{l}
\text { (i) } \\
\leq \frac{2}{3}(2 s)(4 R+r)=\frac{4 s(4 R+r)}{3}
\end{array}, l
\end{gathered}
$$

Also, $\sum w_{a}^{2} \stackrel{(i i)}{\leq} \sum s(s-a)=s^{2} \& \sum a^{2} \underset{(\overline{i i i})}{\stackrel{\text { Leibnitz }}{\leq}} 9 \boldsymbol{R}^{2}$
(i) + (ii) + (iii) \Rightarrow LHS of (2) $\leq 9 R^{2}+s^{2}+\frac{4 s(4 R+r)}{3}$
$\stackrel{?}{\leq}(s+3 R)^{2}=s^{2}+9 R^{2}+6 s R \Leftrightarrow 18 s R \stackrel{?}{\geq} 4 s(4 R+r) \Leftrightarrow 2 s R \stackrel{?}{\geq} 4 s r$ $\Leftrightarrow R \stackrel{?}{\geq} 2 r \rightarrow$ true (Euler) (Proved)
1095. In acute $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}^{2}}{r_{b}^{2}+r_{c}^{2}}+\frac{m_{b}^{2}}{r_{c}^{2}+r_{a}^{2}}+\frac{m_{c}^{2}}{r_{a}^{2}+r_{b}^{2}} \leq \frac{3}{2}
$$

Proposed by Mehmet Sahin-Ankara-Turkey

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India
For acute-angled $\triangle A B C, m_{a} \leq R(1+\cos A) \Rightarrow m_{a} \leq 2 R \cos ^{2} \frac{A}{2} \Rightarrow m_{a}^{2} \stackrel{(1)}{\leq} 4 R^{2} \cos ^{4} \frac{A}{2}$

$$
\begin{gathered}
\text { Also, } r_{b}^{2}+r_{c}^{2} \geq \frac{1}{2}\left(r_{b}+r_{c}\right)^{2}=\frac{1}{2} s^{2}\left(\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}+\frac{\sin \frac{C}{2}}{\cos \frac{C}{2}}\right)^{2} \\
=\frac{s^{2}}{2}\left(\frac{\cos \frac{A}{2}}{\cos \frac{B}{2} \cos \frac{C}{2}}\right)^{2}=\frac{s^{2}}{2}\left(\frac{\cos ^{2} \frac{A}{2}}{\frac{s}{4 R}}\right)^{2}=\frac{s^{2}}{2} \cdot \frac{16 R^{2} \cos ^{4}\left(\frac{A}{2}\right)}{s^{2}}=8 R^{2} \cos ^{4} \frac{A}{2} \\
\Rightarrow \frac{1}{r_{b}^{2}+r_{c}^{2}} \stackrel{(2)}{\leq} \frac{1}{8 R^{2} \cos ^{4} \frac{A}{2}} \\
\text { (1).(2) } \Rightarrow \frac{m_{a}^{2}}{r_{b}^{2}+r_{c}^{2}} \stackrel{(a)}{\leq} \frac{1}{2} \text {. Similarly, } \frac{m_{b}^{2}}{r_{c}^{2}+r_{a}^{2}} \stackrel{(b)}{\leq} \frac{1}{2} \& \frac{m_{c}^{2}}{r_{a}^{2}+r_{b}^{2}} \stackrel{(c)}{\leq} \frac{1}{2} \\
\text { (a) }+\left(\text { (b) }+ \text { (c) } \Rightarrow L H S \leq \frac{3}{2}\right. \text { (Proved) }
\end{gathered}
$$

1096. In $\triangle A B C$ the following relationship holds:

$$
s^{3} \geq \frac{3 \sqrt{3} r^{2}(4 R+r)^{3}}{(2 R-r)(2 R+5 r)}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\because s \geq 3 \sqrt{3} r, \therefore \text { it suffices to prove: } s^{2} \stackrel{(1)}{\geq} \frac{r(4 R+r)^{3}}{(2 R-r)(2 R+5 r)} \\
\text { Now, LHS of (1) } \stackrel{\text { Gerretsen }}{\geq} 16 R r-5 r^{2} \stackrel{?}{\geq} \frac{r(4 R+r)^{3}}{(2 R-r)(2 R+5 r)} \\
\Leftrightarrow(16 R-5 r)(2 R-r)(2 R+5 r)-(4 R+r)^{3} \xrightarrow[?]{\geq} 0 \\
\Leftrightarrow 5 R^{2}-11 R r+2 r^{2} \xrightarrow[\geq]{\geq} 0 \Leftrightarrow(5 R-r)(R-2 r) \stackrel{?}{\geq} 0 \rightarrow \text { true } \\
\because R \stackrel{\text { Euler }}{\geq} 2 r \Rightarrow(1) \text { is true (Proved) }
\end{gathered}
$$

Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
s^{3} \geq \frac{3 \sqrt{3} r^{2}(4 R+r)^{3}}{(2 R-r)(2 R+5 r)} \because s \geq 3 \sqrt{3} r \text { and } s^{2} \geq 16 R r-5 r^{2}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
& \Rightarrow s^{3} \geq 3 \sqrt{3} r^{2}(16 R-5 r) \stackrel{(1)}{\geq} \frac{3 \sqrt{3} r^{2}(4 R+r)^{3}}{(2 R-r)(2 R+5 r)} \\
& \text { (1) } \Leftrightarrow(16 R-5 r)(2 R-r)(2 R+5 r) \geq(4 R+r)^{3}
\end{aligned}
$$

$\Leftrightarrow 5 R^{2}-11 R+2 r^{2} \geq 0 \Leftrightarrow 5\left(R-\frac{r}{5}\right)(R-2 r) \geq 0(\because R \geq 2 r)$. True. Proved.
1097. If $x, y, z \geq 0$ then in $\triangle A B C$ the following relationship holds:

$$
\frac{x}{2} \csc \frac{A}{2}+\frac{y}{2} \csc \frac{B}{2}+\frac{z}{2} \csc \frac{C}{2} \geq \sqrt{x y}+\sqrt{y z}+\sqrt{z x}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Marian Ursărescu-Romania

We must show: $\frac{x}{\sin \frac{A}{2}}+\frac{y}{\sin \frac{B}{2}}+\frac{z}{\sin \frac{C}{2}} \geq 2(\sqrt{x y}+\sqrt{y z}+\sqrt{x z})$
From Cauchy's inequality \Rightarrow

$$
\begin{gather*}
\left(\frac{x}{\sin \frac{A}{2}}+\frac{y}{\sin \frac{B}{2}}+\frac{z}{\sin \frac{C}{2}}\right)\left(\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}\right) \geq(\sqrt{x}+\sqrt{y}+\sqrt{z})^{2} \Rightarrow \\
\frac{x}{\sin _{\frac{A}{2}}}+\frac{y}{\sin _{\frac{B}{2}}}+\frac{z}{\sin ^{\frac{C}{2}} \geq \frac{(\sqrt{x}+\sqrt{y}+\sqrt{z})^{2}}{\sin _{2}^{A}+\sin _{2}^{B}+\sin ^{C}} \text { (2) }} \tag{2}
\end{gather*}
$$

But in any $\triangle A B C$ we have: $\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2} \leq \frac{3}{2}$

$$
\begin{equation*}
\frac{(\sqrt{x}+\sqrt{y}+\sqrt{z})^{2}}{\sin _{2}^{A}+\sin _{2}^{3}+\sin _{\frac{c}{2}}} \geq \frac{2}{3}(\sqrt{x}+\sqrt{y}+\sqrt{z})^{2} \tag{4}
\end{equation*}
$$

From (3)+ (4) we must show: $\frac{2}{3}(\sqrt{x}+\sqrt{y}+\sqrt{z})^{2} \geq 2(\sqrt{x y}+\sqrt{y z}+\sqrt{x z}) \Leftrightarrow$

$$
\begin{gathered}
\Leftrightarrow(\sqrt{x}+\sqrt{y}+\sqrt{z})^{2} \geq 3(\sqrt{x y}+\sqrt{y z}+\sqrt{x z}) \\
\Leftrightarrow x+y+z \geq \sqrt{x y}+\sqrt{y z}+\sqrt{x z} \text { (true) }
\end{gathered}
$$

Solution 2 by Tran Hong-Dong Thap-Vietnam
Suppose: $x=\max \{x ; y ; z\}$. We have:

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
$\Rightarrow \sin \frac{A}{2} \leq \sin \frac{B}{2} \leq \sin \frac{C}{2} \Rightarrow \frac{1}{\sin \frac{A}{2}} \geq \frac{1}{\sin \frac{B}{2}} \geq \frac{1}{\sin \frac{C}{2}}$
By Chebyshev's inequality, we have:

$$
\begin{aligned}
& \quad \frac{1}{2}\left(x \cdot \frac{1}{\sin \frac{A}{2}}+y \cdot \frac{1}{\sin \frac{B}{2}}+z \cdot \frac{1}{\sin \frac{C}{2}}\right) \geq \frac{1}{2} \cdot \frac{1}{3}(x+y+z)\left(\sum \frac{1}{\sin \frac{A}{2}}\right) \\
& \stackrel{\text { (Jensen) }}{\geq} \frac{1}{2} \cdot \frac{1}{3} \cdot(x+y+z) \cdot \frac{3}{\sin \left(\frac{A+B+C}{6}\right)}=\frac{1}{2} \cdot \frac{1}{3} \cdot(x+y+z) \cdot \frac{3}{\sin \left(\frac{\pi}{6}\right)}=x+y+z
\end{aligned}
$$

But: $\boldsymbol{x}+\boldsymbol{y}+\mathrm{z} \stackrel{(B C S)}{\geq} \sqrt{\boldsymbol{x y}}+\sqrt{\boldsymbol{y z}}+\sqrt{\boldsymbol{z x}} \Rightarrow$ LHS \geq RHS
Case: $x \geq z \geq y$. Then we suppose: $A \leq C \leq B$

$$
\Rightarrow \sin \frac{A}{2} \leq \sin \frac{C}{2} \leq \sin \frac{B}{2} \Rightarrow \frac{1}{\sin \frac{A}{2}} \geq \frac{1}{\sin \frac{C}{2}} \geq \frac{1}{\sin \frac{B}{2}}
$$

By Chebyshev's inequality, we have:

$$
\begin{gathered}
\frac{1}{2}\left(x \cdot \frac{1}{\sin \frac{A}{2}}+z \cdot \frac{1}{\sin \frac{C}{2}}+y \cdot \frac{1}{\sin \frac{B}{2}}\right) \geq \frac{1}{2} \cdot \frac{1}{3} \cdot(x+z+y)\left(\sum \frac{1}{\sin \frac{A}{2}}\right) \\
\quad(\text { Jensen }) \\
\geq \frac{1}{2} \cdot \frac{1}{3}(x+y+z) \cdot \frac{3}{\sin \left(\frac{A+B+C}{6}\right)}=x+y+z
\end{gathered}
$$

But: $x+y+z \stackrel{B C S}{\geq} \sqrt{x y}+\sqrt{x z}+\sqrt{y z} \Rightarrow$ LHS \geq RHS

1098. MARIAN URSĂRESCU's REFINEMENT OF EULER'S INEQUALITY

In $\triangle A B C, I_{a}, I_{b}, I_{c}$ - excenters. Prove that:

$$
R \geq \frac{4}{9}\left(\frac{\left[I_{a} B C\right]}{a}+\frac{\left[I_{b} C A\right]}{b}+\frac{\left[I_{c} A B\right]}{c}\right) \geq 2 r
$$

Proposed by M arian Ursărescu-Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
R \stackrel{(i)}{\geq} \frac{4}{9}\left(\frac{\left[I_{a} B C\right]}{a}+\frac{\left[I_{b} C A\right]}{b}+\frac{\left[I_{c} A B\right]}{c}\right) \stackrel{(i i)}{\geq} 2 r
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

From $\Delta I_{a} C X, \sin \left(90^{\circ}-\frac{C}{2}\right)=\frac{r_{a}}{I_{a} C} \Rightarrow I_{a} C \stackrel{(1)}{=} \frac{r_{a}}{\cos _{\frac{C}{C}}^{C}}$
From $\Delta I_{a} B Y, \sin \left(90^{\circ}-\frac{B}{2}\right)=\frac{r_{a}}{I_{a} B} \Rightarrow I_{a} B \stackrel{(2)}{=} \frac{r_{a}}{\cos \frac{B}{2}}$
Using (1), (2), $\left[I_{a} B C\right]=\frac{1}{2} \cdot \frac{r_{a}^{2}}{\cos \frac{B}{2} \cos \frac{C}{2}} \sin \left(\frac{B+C}{2}\right)=\frac{r_{a}^{2} \cos ^{2} \frac{A}{2}}{2\left(\frac{s}{4 R}\right)}=\frac{2 R}{s} s^{2} \tan ^{2} \frac{A}{2} \cos ^{2} \frac{A}{2}$

$$
\begin{gathered}
=2 R s\left(\sin ^{2} \frac{A}{2}\right)=\frac{2 R s(s-b)(s-c)}{b c} \\
\therefore \frac{\left[I_{a} B C\right]}{a}=\frac{2 R s(s-a)(s-c)}{4 R r s} \stackrel{(a)}{=} \frac{(s-b)(s-c)}{2 r}
\end{gathered}
$$

Similarly, $\frac{\left[I_{b} C A\right]}{b} \stackrel{(b)}{=} \frac{(s-c)(s-a)}{2 r} \& \frac{\left[I_{c} A B\right]}{c} \stackrel{(c)}{=} \frac{(s-a)(s-b)}{2 r}$
(a) $+(\mathbf{b})+(\mathbf{c}) \Rightarrow \frac{4}{9}\left(\frac{\left[I_{a} B C\right]}{a}+\frac{\left[I_{b} C A\right]}{b}+\frac{\left[I_{c} A B\right]}{c}\right)=\frac{4}{9 \cdot 2 r}\left\{\sum(s-b)(s-c)\right\}$ $=\frac{2}{9 r}\left(3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}\right)=\frac{2}{9 r}\left(4 R r+r^{2}\right) \stackrel{(d)}{=} \frac{2(4 R+r)}{9} \stackrel{\text { Euler }}{\geq} \frac{2 \cdot 2 r}{9}=2 r$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

\therefore (ii) is true.
Also, (d) $\Rightarrow \frac{4}{9} \sum \frac{\left[I_{a} B C\right]}{a} \stackrel{\text { Euler }}{\leq} \frac{8 R+r}{9}=R \Rightarrow$ (i) is true (Proved)
1099. In $\triangle A B C$ the following relationship holds:

$$
\frac{a}{b+h_{c}}+\frac{b}{c+h_{a}}+\frac{c}{a+h_{b}} \geq \frac{64 r-5 R}{9 R+3 s}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution 1 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
\sum \frac{a}{b+h_{c}} \geq \frac{64 r-5 R}{9 R+3 s} \\
\geq 3 \sqrt[3]{\frac{a}{b+h_{c}}+\frac{b}{c+h_{a}}+\frac{c}{a+h_{b}}} \stackrel{M a \geq M g}{\geq} \\
=3 \cdot \frac{a b c}{\sqrt[3]{\left(\frac{a+h_{b}}{a}\right) \cdot\left(\frac{b+h_{c}}{b}\right) \cdot\left(\frac{c+h_{a}}{c}\right)}}= \\
=3 \cdot \frac{1}{\sqrt[3]{\left(1+\frac{h_{b}}{a}\right)\left(1+\frac{h_{c}}{b}\right)\left(1+\frac{h_{a}}{c}\right)}} \stackrel{M a \geq M g}{\geq} \frac{9}{3+\sum \frac{h_{a}}{a}}= \\
=\frac{9}{3+\sum \frac{b c}{2 R \cdot c}}=\frac{9}{3+\frac{a+b+c}{2 R}}=\frac{9}{3+\frac{s}{R}}= \\
=\frac{9 R+r}{3 R+\frac{27 R}{9 R+3 s}}=\frac{32 R-5 r}{9 R+3 s}
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& L H S=\frac{a^{2}}{a b+a h_{c}}+\frac{b^{2}}{b c+b h_{a}}+\frac{c^{2}}{a c+c h_{b}} \stackrel{\text { Bergstrom }}{\geq} \frac{4 s^{2}}{\sum a b+\frac{\sum a^{2} b}{2 R}} \\
& \stackrel{\text { CBS }}{\geq} \frac{4 s^{2}}{\sum a b+\frac{\sqrt{\sum a^{2}} \sqrt{\sum a^{2} b^{2}}}{2 R}} \stackrel{\substack{\text { Goibnitz } \\
\text { Goldse }}}{\geq} \frac{4 s^{2}}{\sum a b+\frac{3 R \cdot 2 R s}{2 R}} \stackrel{3 \sum a b \leq\left(\sum a\right)^{2}}{\geq} \frac{4 s^{2}}{\frac{4 s^{2}}{3}+3 R s} \\
& \\
& =\frac{12 s}{9 R+4 s} \stackrel{? 64 r-5 R}{9 R+3 s} \Leftrightarrow \frac{12 s}{9 R+4 s}+\frac{5 R-64 r}{9 R+3 s} \geq 0
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{aligned}
& \Leftrightarrow 12 s(9 R+3 s)+(5 R-64 r)(9 R+4 s) \stackrel{?}{\geq} 0 \\
& \Leftrightarrow 128 R s+36 s^{2}+45 R^{2} \underset{(1)}{?} 256 r s+576 R r
\end{aligned}
$$

$$
\text { Now, 128Rs } \underset{(a)}{\text { Euler }} 256 \mathrm{rs}
$$

Again, $36 s^{2}+45 R^{2} \stackrel{\text { Gerretsen }}{\geq} 36\left(16 R r-5 r^{2}\right)+45 R^{2}=576 R r+45 R^{2}-180 r^{2}$

$$
\begin{gathered}
=576 R r+45(R+2 r)(R-2 r) \stackrel{\text { Euler }}{\geq} 576 R r \Rightarrow 36 s^{2}+45 R^{2} \stackrel{(b)}{\geq} 576 R r \\
\text { (a) }+(b) \Rightarrow(1) \text { is true (Proved) }
\end{gathered}
$$

1100. In $\triangle A B C$ the following relationship holds:

$$
\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2} \leq \frac{1}{4}\left(\frac{h_{b}+h_{c}}{w_{a}}+\frac{h_{c}+h_{a}}{w_{b}}+\frac{h_{a}+h_{b}}{w_{c}}\right)
$$

Proposed by Bogdan Fustei-Romania
Solution 1 by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
\sum \sin \frac{A}{2} \cdot 1 \stackrel{A M \geq G M}{\leq} \sum \sin \frac{A}{2} \cdot \frac{\left(\frac{b+c}{2}\right)^{2}}{b c}=\sum \frac{b c \cdot \sin A}{8} \cdot \frac{1}{\cos \frac{A}{2}} \cdot\left(\frac{b+c}{b c}\right)^{2}= \\
=\frac{\Delta}{4} \cdot \sum\left(\frac{b+c}{b c}\right)^{2} \cdot \cos \frac{A}{2}=\frac{\Delta}{2} \cdot \sum \frac{b+c}{b c} \cdot \frac{1}{\frac{2 b c \cdot \cos \frac{A}{2}}{b+c}} \\
=\frac{\Delta}{2} \cdot \sum\left(\frac{1}{b}+\frac{1}{c}\right) \cdot \frac{1}{w_{a}}=\frac{1}{4} \sum \frac{h_{b}+h_{c}}{w_{a}}
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \frac{1}{4} \sum\left(\frac{h_{b}+h_{c}}{w_{a}}\right)=\frac{1}{4} \sum\left(\frac{\frac{c a+a b}{2 R}}{\frac{2 b c}{b+c} \cos \frac{A}{2}}\right)=\sum\left(\frac{a(b+c)^{2}}{16 R b c \cos \frac{A}{2}}\right) \\
& =\sum\left(\frac{4 R \sin \frac{A}{2} \cos \frac{A}{2}(b+c)^{2}}{16 R b c \cos \frac{A}{2}}\right)=\sum\left(\frac{\sin _{\frac{A}{2}(b+c)^{2}}^{4 b c}}{4}\right) \stackrel{A-G}{\geq} \sum \sin \frac{A}{2} \text { (Proved) }
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

It's nice to be important but more important it's to be nice. At this paper works a TEAM.

This is RM M TEAM .
To be continued!

[^0]: Ionescu-
 But $\sum a^{2} \xrightarrow{\text { Weitzenbock }} 4 \sqrt{3} r s \xrightarrow{\text { Mitrinovic }} 4 \sqrt{3} r(3 \sqrt{3} r)=36 r^{2} \Rightarrow(3)$ is true (Proved)

