RMM - Triangle Auratubon 1001-1100

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

RMM TRIANGLE MARATHON 1001-1100

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Proposed by

Daniel Sitaru - Romania,Alpaslan Ceran-Turkey

M ustafa Tarek-Cairo-Egypt,M ehmet Sahin-Ankara-Turkey
Bogdan Fustei-Romania,Thanasis Gakopoulos-Athens-Greece
Marian Ursărescu-Romania,Nguyen Van Nho-Nghe An-Vietnam
Adil Abdullayev-Baku-Azerbaijan,Titu Zvonaru-Romania
Neculai Stanciu-Romania, George Apostolopoulos-M essolonghi-
Greece, D. M. Batinețu Giurgiu-Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro Solutions by

Daniel Sitaru - Romania, Avishek Mitra-West Bengal-India Nelson Javier Villahererra Lopez-El Salvador

Thanasis Gakopoulos-Athens-Greece, Soumava Chakraborty-Kolkata-India Lahiru-Samarakoon-Sri Lanka, Shafiqur Rahman-Bangladesh Marian Ursărescu-Romania, Tran Hong-Vietnam

Adil Abdullayev-Baku-Azerbaijan, M ansur M ansurov-Azerbaijan
Soumitra Mandal-Chandar Nagore-India, Mehmet Sahin-Ankara-Turkey
Ravi Prakash-New Delhi-India, M yagmarsuren Yadamsuren-DarkhanMongolia,Sagar Kumar-Patna Bihar-India, Serban George Florin-Romania Sanong Huayrerai-Nakon Pathom-Thailand,Ertan Yildirim-Turkey, Vo Thanh Long-Vietnam, Boris Colakovic-Belgrade-Serbie, M ustafa Tarek-Cairo-Egypt

Bogdan Fustei-Romania, Omran Kouba-Damascus-Syria

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro
1001. Prove that:

$$
\frac{\tan 36^{\circ}+\tan 72^{\circ}}{4 \cos 54^{\circ}}=\varphi
$$

Proposed by Alpaslan Ceran-Turkey
Solution 1 by Avishek Mitra-West Bengal-India

$$
\begin{aligned}
& \text { Let } x=\frac{\pi}{10} \Rightarrow 5 x=\frac{\pi}{2} \Rightarrow 2 x=\frac{\pi}{2}-3 x \Rightarrow \sin 2 x=\sin \left(\frac{\pi}{2}-3 x\right) \\
& \Rightarrow \sin 2 x=\cos 3 x \Rightarrow 2 \sin x \cos x=4 \cos ^{3} x-3 \cos x \\
& \Rightarrow 2 \sin x-4 \cos ^{2} x+3=0 \Rightarrow 4 \sin ^{2} x+2 \sin x-1=0 \\
& \quad \Rightarrow \sin x=\frac{-2 \pm \sqrt{20}}{8}=\frac{-1 \pm \sqrt{5}}{4}, \sin 18=\frac{\sqrt{5}-1}{4}=\cos 72
\end{aligned}
$$

$$
\cos 18=\sqrt{1-\sin ^{2} 18}=\frac{1}{4} \sqrt{20+2 \sqrt{5}}=\sin 72, \tan 72=\frac{\sqrt{10+2 \sqrt{5}}}{\sqrt{5-1}}
$$

$$
\text { Now, } \cos 36=1-2 \sin ^{2} 18=\frac{\sqrt{5}+1}{4}, \sin 36=\sqrt{1-\cos ^{2} 36}=\frac{\sqrt{10-2 \sqrt{5}}}{4}
$$

$$
\tan 36=\frac{\sqrt{10-2 \sqrt{5}}}{\sqrt{5}+1}, \cos 54=\sin 36=\frac{1}{4} \sqrt{10-2 \sqrt{5}}
$$

$$
\text { Hence }=\frac{\tan 36+\tan 72}{4 \cos 54}=\frac{\frac{\sqrt{10-2 \sqrt{5}}}{\frac{\sqrt{10+2 \sqrt{5}}}{\sqrt{5-1}}}}{\sqrt{10-2 \sqrt{5}}}=\frac{1}{\sqrt{5}+1}+\frac{1}{\sqrt{5}-1} \sqrt{\frac{10+2 \sqrt{5}}{10-2 \sqrt{5}}}
$$

$$
=\frac{1}{\sqrt{5}+1}+\frac{1}{\sqrt{5}-1} \cdot \frac{10+2 \sqrt{5}}{4 \sqrt{5}}=\frac{4 \sqrt{5}(\sqrt{5}-1)+(10+2 \sqrt{5})(\sqrt{5}+1)}{4 \sqrt{5} \cdot 4}
$$

$$
=\frac{40+8 \sqrt{5}}{16 \sqrt{5}}=\frac{5+\sqrt{5}}{2 \sqrt{5}}=\frac{5 \sqrt{5}+5}{10}=\frac{\sqrt{5}+1}{2}=\phi \quad(\text { proved })
$$

Solution 2 by Nelson Javier Villahererra Lopez-El Salvador

$$
\begin{aligned}
& \frac{\tan \left(36^{\circ}\right)+\tan \left(72^{\circ}\right)}{4 \cos \left(54^{\circ}\right)}=\frac{\sin \left(36^{\circ}\right) \cos \left(72^{\circ}\right)+\cos \left(36^{\circ}\right) \sin \left(72^{\circ}\right)}{4 \sin \left(36^{\circ}\right) \cos \left(36^{\circ}\right) \cos \left(72^{\circ}\right)}= \\
= & \frac{\sin \left(108^{\circ}\right)}{2 \sin \left(72^{\circ}\right) \cos \left(72^{\circ}\right)}=\frac{\sin \left(108^{\circ}\right)}{\sin \left(144^{\circ}\right)}=\frac{\cos \left(18^{\circ}\right)}{\cos \left(54^{\circ}\right)}=\frac{\cos \left(18^{\circ}\right)}{\sin \left(36^{\circ}\right)}=\frac{1}{2 \sin \left(18^{\circ}\right)} \\
= & \frac{1}{\sqrt{2-2 \cos \left(36^{\circ}\right)}}=\frac{1}{\sqrt{2-\frac{(\sqrt{5}+1)}{2}}}=\sqrt{\frac{3+\sqrt{5}}{2}}=\sqrt{\frac{6+2 \sqrt{5}}{4}}=
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
=\sqrt{\left(\frac{\sqrt{5}+1}{2}\right)^{2}}=\frac{\sqrt{5}+1}{2}=\varphi
$$

1002. In $\triangle A B C, M$ - Mittenpunkt, I_{a}, I_{b}, I_{c} - excenters. Prove that:

$$
\frac{\left[I_{b} M I_{c}\right]}{\cos ^{2} \frac{A}{2}}=\frac{\left[I_{c} M I_{a}\right]}{\cos ^{2} \frac{B}{2}}=\frac{\left[I_{a} M I_{b}\right]}{\cos ^{2} \frac{C}{2}}
$$

Proposed by M ustafa Tarek-Cairo-Egypt
Solution by Thanasis Gakopoulos-Athens-Greece
PLAGIOGONAL system: $B C \rightarrow B x, B A \rightarrow B y$

$$
\begin{aligned}
& \text { Let } k=2 a b+2 b c+2 a c-a^{2}-b^{2}-c^{2}, m_{1}=\frac{a c(a+b-c)}{k}, m_{2}=\frac{a c(-a+b+c)}{k} \\
& I_{a}\left(i a_{1}, i a_{2}\right), i a_{1}=\frac{a c}{-a+b+c}, i a_{2}=-\frac{a c}{-a+b+c} \\
& I_{b}\left(i_{b}, i_{b}\right), i_{b}=\frac{a c}{a-b+c} \\
& I_{c}\left(i c_{1}, i c_{2}\right), i c_{1}=-\frac{a c}{a+b-c}, i c_{2}=\frac{a c}{a+b-c} \\
& \left\{\begin{array}{c}
{[I a M I c]=\frac{\sin B}{2}\left\|\begin{array}{ccc}
1 & 1 & 1 \\
i c_{1} & i a_{1} & m_{1} \\
i c_{2} & i a_{2} & m_{2}
\end{array}\right\|=\frac{\sin B}{2} \frac{4 a^{2} b^{2} c^{2}}{k(-a+b+c)(a+b-c)}} \\
\cos ^{2} \frac{B}{2}=\frac{(a+b+c)(a-b+c)}{4 a c}, S o \frac{[I a M I c]}{\cos ^{2} \frac{B}{2}}=\frac{a^{3} b^{2} c^{3}}{k \cdot S^{2}} \cdot \frac{\sin B}{2}
\end{array}\right\} \\
& \left\{\begin{array}{c}
{[I a M I b]=\frac{\sin B}{2}\left\|\begin{array}{ccc}
1 & 1 & 1 \\
i a_{1} & m_{1} & i b \\
i a_{2} & m_{2} & i b
\end{array}\right\|=\frac{\sin B}{2} \cdot \frac{4 a^{2} b c^{3}}{k(a-b+c)(-a+b+c)}} \\
\cos ^{2} \frac{C}{2}=\frac{(a+b+c)(a+b-c)}{4 a b}, s o, \frac{[I a M I c]}{\cos ^{2} \frac{C}{2}}=\frac{a^{3} b^{2} c^{3}}{k S^{2}} \cdot \frac{\sin B}{2}
\end{array}\right\}
\end{aligned}
$$

1003. $\triangle D E F$ pedal triangle of I incentre in $\triangle A B C, R_{a}, R_{b}, R_{c}$ - circumradii of $\triangle A E F, \triangle B F D, \triangle C D E, \varphi_{a}, \varphi_{b}, \varphi_{c}$ - circumradii in $\triangle B I C, \triangle C I A, \triangle A I B$.

Prove that:

$$
\frac{R_{a} \cdot R_{b} \cdot R_{c}}{\varphi_{a} \cdot \varphi_{b} \cdot \varphi_{c}}=\sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Soumava Chakraborty-Kolkata-India

From $\Delta B I C, \frac{1}{2} B I \cdot C I \cdot \sin \angle B I C=\frac{B I \cdot C I \cdot B C}{4 \varphi_{a}} \Rightarrow \frac{r^{2} \sin \left(90^{0}+\frac{A}{2}\right)}{2 \sin \frac{B}{2} \sin \frac{C}{2}}=\frac{r^{2} a}{4 \varphi_{a} \sin \frac{B}{2} \sin \frac{C}{2}} \Rightarrow$

$$
\Rightarrow \varphi_{a} \stackrel{(1)}{=} 2 R \sin \frac{A}{2} . \text { Similarly, } \varphi_{b} \stackrel{(2)}{=} 2 R \sin \frac{B}{2} \& \varphi_{c} \stackrel{(3)}{=} 2 R \sin \frac{C}{2}
$$

Now, from $\Delta A I F, \cos \frac{A}{2}=\frac{A F}{\frac{r}{\sin \frac{A}{2}}} \Rightarrow A F \stackrel{(a)}{=} r \cot \frac{A}{2}$
Also, from $\triangle A I E, \cos \frac{A}{2}=\frac{A E}{\frac{r}{\sin _{2}^{A}}} \Rightarrow A E \stackrel{(b)}{=} r \cot \frac{A}{2}$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \left\{\begin{array}{c}
{[I b M I c]=\frac{\sin B}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
I c_{1} & m_{1} & i b \\
I c_{2} & m_{2} & i_{b}
\end{array}\right|=\frac{\sin B}{2} \cdot \frac{4 a^{3} b c^{2}}{k(a-b+c)(a+b-c)}} \\
\cos ^{2} \frac{A}{2}=\frac{(a+b+c)(-a+b+c)}{4 b c}, s o, \frac{[I b M I c]}{\cos ^{2} \frac{A}{2}}=\frac{a^{3} b^{2} c^{3}}{k S^{2}} \cdot \frac{\sin B}{2}
\end{array}\right\}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
From $\triangle F I E, F E^{2}=2 r^{2}-2 r^{2} \cos \left(180^{\circ}-A\right)=4 r^{2} \cos ^{2} \frac{A}{2} \Rightarrow F E \stackrel{(c)}{=} 2 r \cos \frac{A}{2}$
Using (a), (b), (c), from $\triangle A F E$, we get, $\frac{1}{2}\left(r \cot \frac{A}{2}\right)^{2} \sin A=\frac{\left(r \cot \frac{A}{2}\right)^{2} \cdot 2 r \cos \frac{A}{2}}{4 R_{a}}$
$\Rightarrow 2 \sin \frac{A}{2} \cos \frac{A}{2}=\frac{r \cos \frac{A}{2}}{R_{a}} \Rightarrow \boldsymbol{R}_{a} \stackrel{(i)}{=} \frac{r}{2 \sin _{\frac{A}{2}}} . \operatorname{Similarly}, \boldsymbol{R}_{b} \stackrel{(i i)}{=} \frac{r}{2 \sin _{\frac{B}{2}}} \& \boldsymbol{R}_{c} \stackrel{(\text { iii) }}{=} \frac{r}{2 \sin _{\frac{C}{2}}}$
(1),(2),(3),(i),(ii),(iii) \Rightarrow
$\prod\left(\frac{R_{a}}{\varphi_{a}}\right)=\prod\left(\frac{r}{4 R} \cdot \frac{1}{\sin ^{2} \frac{A}{2}}\right)=\left\{\left(\frac{r}{4 R}\right)\right\}^{3} \frac{1}{\left(\Pi \sin \frac{A}{2}\right)^{2}}=\frac{\left(\Pi \sin \frac{A}{2}\right)^{3}}{\left(\Pi \sin \frac{A}{2}\right)^{2}}=\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
1004. In $\triangle \mathrm{ABC}$ the following relationship holds:

$$
\sqrt{\frac{h_{b} h_{c}}{r r_{a}}}+\sqrt{\frac{h_{c} h_{a}}{r r_{b}}}+\sqrt{\frac{h_{a} h_{b}}{r r_{c}}}=\frac{w_{b}+w_{c}}{a}+\frac{w_{c}+w_{a}}{b}+\frac{w_{a}+w_{b}}{c}
$$

Proposed by Bogdan Fustei-Romania
Solution by Daniel Sitaru-Romania

$$
\begin{gathered}
\sum_{c y c} \sqrt{\frac{h_{b} h_{c}}{r r_{a}}}=\sum_{c y c} \sqrt{\frac{2 S}{\frac{2 S}{b} \cdot \frac{2 S}{c}}}=2 \sum_{c y c} \sqrt{\frac{s(s-a)}{b c}}= \\
=2 \sum_{c y c} \cos \frac{A}{2}=2 \sum_{c y c}^{s-a}\left(\frac{2 b c}{b+c} \cos \frac{A}{2} \cdot \frac{b+c}{2 b c}\right)= \\
=\sum_{c y c}\left(w_{a} \cdot \frac{b+c}{b c}\right)=\sum_{c y c}\left(w_{a}\left(\frac{1}{b}+\frac{1}{c}\right)\right)=\sum_{c y c}\left(\frac{w_{a}}{b}+\frac{w_{a}}{c}\right)=\sum_{c y c} \frac{w_{b}+w_{c}}{a}
\end{gathered}
$$

1005. In $\triangle A B C$ the following relationship holds:

$$
r_{a} r_{b}\left(r_{a}+r_{b}\right)+r_{b} r_{c}\left(r_{b}+r_{c}\right)+r_{c} r_{a}\left(r_{c}+r_{a}\right)=2 s^{2}(2 R-r)
$$

Proposed by Bogdan Fustei-Romania
Solution by Daniel Sitaru-Romania

$$
\sum_{c y c} r_{a} r_{b}\left(r_{a}+r_{b}\right)=\sum_{c y c} \frac{s}{s-b} \cdot \frac{s}{s-c}\left(\frac{s}{s-b}+\frac{s}{s-c}\right)=
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
=s^{3} \sum_{c y c} \frac{1}{(s-b)(s-c)} \cdot \frac{s-c+s-b}{(s-b)(s-c)}=s^{3} \sum_{c y c} \frac{a}{(s-b)^{2}(s-c)^{2}}= \\
=s^{3} \sum_{c y c} \frac{a s^{2}(s-a)^{2}}{s^{4}}=\frac{s^{2}}{s} \sum_{c y c} a(s-a)^{2}=\frac{s^{2}}{r s} \sum_{c y c}\left(a s^{2}-2 s a^{2}+a^{3}\right)= \\
=\frac{s}{r}\left(2 s^{3}-2 s \sum_{c y c} a^{2}+\sum_{c y c} a^{3}\right)=\frac{s}{r}\left(2 s^{3}-4 s\left(s^{2}-r^{2}-4 R r\right)+\sum_{c y c} a^{3}\right)= \\
=\frac{s}{r}\left(4 s r^{2}+16 R r s-2 s^{3}+2 s\left(s^{2}-3 r^{2}-6 R r\right)\right)=\frac{s}{r}\left(4 R r s-2 s r^{2}\right)=2 s^{2}(2 R-r)
\end{gathered}
$$

1006. In $\triangle A B C, \triangle D E F$ - is pedal triangle of I - incenter, I_{a}, I_{b}, I_{c} - excenters If $I M \perp F E, I K \perp D F, I L \perp D E, M \in(E F), K \in(D F), L \in(D E)$ then:

$$
\frac{1}{I M^{2} \cdot h_{a}^{2}}+\frac{1}{I K^{2} \cdot h_{b}^{2}}+\frac{1}{I L^{2} \cdot h_{c}^{2}}=\frac{\left[I_{a} I_{b} I_{c}\right]}{[A B C]^{3}} \cdot \frac{r_{a}+r_{b}+r_{c}}{r}
$$

Proposed by Mehmet Sahin-Ankara-Turkey

Solution 1 by Lahiru-Samarakoon-Sri Lanka

$$
\Delta=A B C, \text { From } I M F A, I M=r \sin \frac{A}{2} . \text { Similarly, } I K=r \sin \frac{B}{2}, I L=r \sin \frac{C}{2}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$\therefore \frac{1}{I M^{2} h_{a}^{2}}=\frac{1}{r^{2} \sin ^{2} \frac{A}{2}} \times \frac{a^{2}}{4 \Delta^{2}}=\frac{4 R^{2} \times 4 \sin ^{2} \frac{A}{2} \cos ^{2} \frac{A}{2}}{r^{2} \sin ^{2} \frac{A}{2} \times 4 \Delta^{2}}=\frac{4 R^{2}}{r^{2} \Delta^{2}} \cos ^{2} \frac{A}{2}$
LHS $=\sum \frac{4 R^{2}}{r^{2} \Delta^{2}} \cos ^{2} \frac{A}{2}=\frac{4 R^{2}}{r^{2} \Delta^{2}} \times \frac{1}{2}\left(3+\sum \cos A\right)$
$=\frac{2 R^{2}}{r^{2} \Delta^{2}} \times\left(3+1+\frac{r}{R}\right)\left(\because \sum \cos A=1+\frac{r}{R}\right)=\frac{2 R}{r} \cdot \frac{1}{\Delta^{2}} \cdot \frac{(4 R+r)}{r}$
But, know that, $I_{a} I_{b} I_{c}=2 S R$. So, LHS $=\frac{I_{a} I_{b} I_{c}}{S} \cdot \frac{1}{r} \cdot \frac{1}{\Delta^{2}} \cdot \frac{\sum r_{a}}{r}$

$$
\begin{gathered}
\left(\because \sum r_{a}=4 R+r\right) \\
=\frac{I_{a} I_{b} I_{c}}{[A B C]^{3}} \times \frac{\left(r_{a}+r_{b}+r_{c}\right)}{r}(\because s r=\Delta)
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

A, B, I_{a}, I_{b} are concyclic as $\angle I_{a} A I_{b}=\angle I_{a} B I_{b}=90^{\circ}$
$\therefore \angle B I_{b} I_{a}=\angle B A I_{a}=\frac{A}{2} \& \angle I_{b} I_{a} A=\angle I_{b} B A=\frac{B}{2}$
using $\Delta A B I_{b}, \angle A I_{b} B=\frac{c}{2}$ \& using $\Delta A B I_{a}, \angle A I_{a} B=\frac{c}{2}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

From $\Delta C I_{b} Y, \sin \left(90^{\circ}-\frac{C}{2}\right)=\frac{I_{b} Y}{C I_{b}} \Rightarrow \cos \frac{C}{2}=\frac{r_{b}}{c I_{b}} \Rightarrow C I_{b} \stackrel{(1)}{=} \frac{r_{b}}{\cos \frac{C}{2}}$
From $\Delta C I_{a} X, \sin \left(90^{\circ}-\frac{C}{2}\right)=\frac{I_{a} X}{C I_{a}} \Rightarrow \cos \frac{C}{2}=\frac{r_{a}}{c I_{a}} \Rightarrow C I_{a} \stackrel{(2)}{=} \frac{r_{a}}{\cos \frac{C}{2}}$

$$
(1)+(2) \Rightarrow I_{a} I_{b}=\frac{r_{a}+r_{b}}{\cos \frac{C}{2}}=\frac{s\left(\frac{\sin \frac{A}{2}+\sin \frac{B}{2}}{\cos \frac{A}{2}}+\frac{\cos \frac{B}{2}}{\cos }\right)}{\cos \frac{C}{2}}=\frac{s \sin \left(\frac{A+B}{2}\right)}{\left(\Pi \cos \frac{A}{2}\right)}=\frac{s \cos \frac{C}{2}}{\frac{S}{4 R}} \Rightarrow I_{a} I_{b} \stackrel{(a)}{=} 4 R \cos \frac{C}{2}
$$

Similarly, $I_{b} I_{c} \stackrel{(b)}{=} 4 R \cos \frac{A}{2} \& I_{c} I_{a} \stackrel{(c)}{=} 4 R \cos \frac{B}{2}$
$\therefore\left[I_{a} I_{b} I_{c}\right]=\frac{\mathbf{1}}{\mathbf{2}}\left(I_{a} I_{b}\right)\left(I_{b} I_{c}\right)\left(\sin \angle \boldsymbol{I}_{c} \boldsymbol{I}_{b} I_{a}\right)$
$=8 R^{2} \cos \frac{C}{2} \cos \frac{A}{2} \sin \left(\frac{A+C}{2}\right)$ (using (a), (b)) $=8 R^{2}\left(\Pi \cos \frac{A}{2}\right)=8 R^{2}\left(\frac{S}{4 R}\right)=2 R s$

$$
\begin{aligned}
& \Rightarrow\left[I_{a} I_{b} I_{c}\right] \stackrel{(i)}{=} 2 R s \\
& I D=I E=I F=r
\end{aligned}
$$

(\because in radius \perp each side of $\triangle A B C$) $\therefore r$ is the circumradius of $\triangle D E F \therefore \angle F D E=\frac{1}{2} \angle F I E$

$$
\begin{gathered}
\left(\because \angle \text { at circumference }=\frac{1}{2} \angle \text { at center }\right) \\
=\frac{1}{2}\left(180^{\circ}-A\right)=90^{\circ}-\frac{A}{2} \therefore F E=2 r \sin \left(90^{\circ}-\frac{A}{2}\right) \Rightarrow F E \stackrel{(x)}{=} 2 r \cos \frac{A}{2} \\
\text { Now, } \frac{1}{2} I F \cdot I E \cdot \sin \left(180^{\circ}-A\right)=\frac{1}{2} F E \cdot I M(=\operatorname{arc}(\Delta F I E)) \\
\Rightarrow \frac{r^{2} 2 \sin _{2} \frac{A}{2} \cos \frac{A}{2}}{2}=\frac{1}{2} 2 r \cos \frac{A}{2} I M \quad(\text { using (x)) } \\
\Rightarrow I M \stackrel{(d)}{=} r \sin \frac{A}{2} \cdot \operatorname{Similarly}, I K \stackrel{(e)}{=} r \sin \frac{B}{2} \& I L \stackrel{(f)}{=} r \sin \frac{C}{2}
\end{gathered}
$$

Using (i), RHS $=\frac{2 R S}{r^{3} s^{3}} \cdot \frac{(4 R+r)}{r}=\frac{2 R(4 R+r)}{r^{4} s^{2}} \stackrel{b y(i i)}{=} L H S$ (Hence proved)

Solution 3 by Thanasis Gakopoulos-Athens-Greece

$$
\left.\begin{array}{c}
\underbrace{\frac{1}{I M^{2} \cdot h_{a}^{2}}+\frac{1}{I K^{2} \cdot h_{b}^{2}}+\frac{1}{I L^{2} \cdot h_{c}^{2}}}_{A}=\underbrace{\frac{\left(I_{a} I_{b} I_{c}\right)}{S^{3}} \cdot \frac{r_{a}+r_{b}+r_{c}}{r}}_{A} \\
K I=r \cdot \sin \frac{B}{2} \rightarrow 2 K_{1}^{2}=r^{2}(1-\cos B) \rightarrow \frac{1}{I K^{2}}=\frac{4 a c}{r^{2}(-a+b+c)(a+b-c)} \\
\frac{1}{h_{b}^{2}}=\frac{b^{2}}{4 S^{2}} \\
\rightarrow \frac{1}{I K^{2} h_{b}^{2}}=\frac{a b c \cdot b}{r^{2} S^{2}(-a+b+c)(a+b-c)}
\end{array}\right\} \rightarrow
$$

Cyclically $\frac{1}{I M^{2} \cdot h_{a}^{2}}=\frac{a b c}{r^{2} S^{2}} \cdot \frac{a}{(a-b+c)(a+b-c)}, \frac{1}{I L^{2} h_{c}^{2}}=\frac{a b c \cdot c}{(-a+b+c)(a-b+c)}$

$$
\begin{gathered}
A=\frac{a b c}{r^{2} s^{2}}\left[\frac{a}{(a-b+c)(a+b-c)}+\frac{b}{(-a+b+c)(a+b-c)}+\frac{c}{(-a+b+c)(a-b+c)}\right] \rightarrow \\
A=\frac{a b c}{r^{2} s^{2}} \cdot \frac{a^{2}+b^{2}+c^{2}-2 a b-2 b c-2 c a}{(a-b-c)(a+b-c)(a-b+c)}
\end{gathered}
$$

$$
\left(I_{a} I_{b} I_{c}\right)=\frac{(a+b+c) a b c}{4 S} r_{a}=\frac{2 S}{-a+b+c}, r_{b}=\frac{2 S}{a-b+c}, r_{c}=\frac{2 S}{a+b-c}
$$

$$
B=\frac{a b c(a+b+c)}{4 S S^{2}} \frac{1}{r} 2 S\left(\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}\right)=
$$

$$
=\frac{a b c \cdot 2 S}{S^{3} 2 S \cdot r} \cdot \frac{a+b+c}{2} \frac{a^{2}+b^{2}+c^{2}-2 a b-2 b c-2 c a}{(a-b-c)(a+b-c)(a-b+c)}=
$$

$$
\begin{equation*}
=\frac{a b c}{s^{3} r} \cdot \frac{s}{r} \cdot \frac{a^{2}+b^{2}+c^{2}-2 a b-2 b c-2 c a}{(a-b-c)(a+b-c)(a-b+c)} \tag{2}
\end{equation*}
$$

(1), (2) $\rightarrow A=B \rightarrow \frac{1}{I M^{2} h_{a}^{2}}+\frac{1}{I K^{2} h_{b}^{2}}=\frac{\left[I_{a} I_{b} I_{c}\right]}{[A B C]^{3}} \cdot \frac{r_{a}+r_{b}+r_{c}}{r}$

> ROMANIAN MATHEMATICAL MAGAZINE
> www.ssmrmh.ro
> (d), (e), (f) $\Rightarrow \sum \frac{1}{I M^{2} h_{a}^{2}}=\sum\left(\frac{1}{r^{2} \sin ^{2} \frac{A}{2}} \cdot \frac{16 R^{2} \sin ^{2} \frac{A}{2} \cos ^{2} \frac{A}{2}}{4 r^{2} s^{2}}\right)$
> $=\frac{4 R^{2}}{r^{4} s^{2}} \sum \cos ^{2} \frac{A}{2}=\frac{2 R^{2}}{r^{4} s^{2}} \sum(1+\cos A)=\frac{2 R^{2}}{r^{4} s^{2}}\left(3+1+\frac{r}{R}\right)=\frac{2 R(4 R+r)}{r^{4} s^{2}}$
> $\therefore L H S \stackrel{(i i)}{=} \frac{2 R(4 R+r)}{r^{4} s^{2}}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

1007.

$\triangle A B C$ equilateral, $\triangle B Q P$ isosceles, $\triangle C R S$ isosceles

$$
B C=a, B P=b, C R=c, G_{1}, G_{2}, G_{3} \text { centroids }
$$

$$
3 a(a-b-c)=b c . \text { Calculate } m(\Varangle F)
$$

Proposed by Thanasis Gakopoulos-Athens-Greece
Solution by Soumava Chakraborty-Kolkata-India

$\angle P B Q=120^{\circ} \Rightarrow \angle P=\angle Q=30^{\circ} ; \frac{B X}{B P}=\sin 30^{\circ} \Rightarrow B X=\frac{b}{2} \Rightarrow B G_{1}=\frac{2}{3} B X \stackrel{(1)}{=} \frac{b}{3}$
Also, $\angle S C R=120^{\circ} \Rightarrow \angle S=\angle R=30^{\circ} ; \frac{C Y}{C R}=\sin 30^{\circ} \Rightarrow C Y=\frac{c}{2} \Rightarrow C G_{3}=\frac{2}{3} C Y \stackrel{(2)}{=} \frac{c}{3}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{align*}
\frac{A Z}{A B}= & \sin 60^{\circ} \Rightarrow A Z=\frac{\sqrt{3}}{2} a \Rightarrow B G_{2}=C G_{2}=A G_{2}=\frac{2}{3} A Z \stackrel{(3)}{=} \frac{a}{\sqrt{3}} \\
& \because G_{2} \text { is also incenter of } \triangle A B C \therefore \angle A B G_{2}=30^{\circ} \text { (i) } \tag{i}
\end{align*}
$$

Again $\angle Q B X=\frac{1}{2} \angle P B Q \stackrel{(\text { ii) }}{=} \mathbf{6 0} 0^{\circ} \therefore \angle G_{1} B G_{2}=90^{\circ}$ (by (i) + (ii))

$$
\tan \theta=\frac{B G_{1}}{B G_{2}}=\frac{b}{3} \times \frac{\sqrt{3}}{a}\left(\text { from (1), (3)) } \stackrel{(a)}{=} \frac{b}{\sqrt{3} a}\right.
$$

Similarly, $\angle G_{2} C G_{3}=90^{\circ} \&$ so, $\tan \phi=\frac{C G_{3}}{C G_{2}}=\frac{c}{3} \times \frac{\sqrt{3}}{a}$ (from (2), (3)) $\stackrel{(b)}{=} \frac{c}{\sqrt{3} a}$

$$
\text { Now, } \angle B G_{2} C=180^{\circ}-\left(30^{\circ}+30^{\circ}\right)=120^{\circ}
$$

$$
\tan \angle G_{1} G_{2} G_{3}=\tan \left(\theta+\phi+120^{\circ}\right)=\frac{-\sqrt{3}+\tan \theta+\tan \phi+\sqrt{3} \tan \theta \tan \phi}{1+\sqrt{3} \tan \theta+\sqrt{3} \tan \phi-\tan \theta \tan \phi}
$$

$$
=\frac{-\sqrt{3}+\frac{b}{\sqrt{3} a}+\frac{c}{\sqrt{3} a}+\sqrt{3} \frac{b}{\sqrt{3} a} \cdot \frac{c}{\sqrt{3} a}}{1+\sqrt{3} \frac{b}{\sqrt{3} a}+\sqrt{3} \frac{c}{\sqrt{3} a}-\frac{b c}{3 a^{2}}} \text { (using (a), (b))=- } \sqrt{3} \frac{\left(3 a^{2}-a b-a c-b c\right)}{\left(3 a^{2}+3 a b+3 a c-b c\right)}
$$

$$
=-\sqrt{3} \frac{\left(3 a^{2}-3 a b-3 a c-b c\right)+2(a b+a c)}{\left(3 a^{2}-3 a b-3 a c-b c\right)+6(a b+a c)}=-\frac{1}{\sqrt{3}}\left(\because 3 a^{2}-3 a b-3 a c-b c=0\right)
$$

$$
\Rightarrow \angle G_{1} G_{2} G_{3}=150^{\circ} \text { (Answer) }
$$

1008. If $\triangle D E F$ is pedal triangle of I - incenter in $\triangle A B C$ and
R_{a}, R_{b}, R_{c} are the circumradii of $\triangle A F E, \triangle B D F, \triangle C D E$ then:

$$
R_{a}^{2}+R_{b}^{2}+R_{c}^{2}=\frac{s^{2}+r^{2}-8 R r}{4}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Lahiru Samarakoon-Sri Lanka

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& D F=2 r \cos \frac{B}{2}, E F=2 r \cos \frac{A}{2}, D E=2 r \cos \frac{C}{2} \\
& \therefore \triangle A F E \Rightarrow 2 R_{a}=\frac{E F}{\sin A} \Rightarrow 2 R_{a}=\frac{2 r \cos \frac{A}{2}}{\sin A} ; R_{a}=\frac{r}{2 \sin \frac{A}{2}} \\
& \text { Similarly, } \boldsymbol{R}_{b}=\frac{r}{2 \sin \frac{B}{2}}, R_{c}=\frac{r}{2 \sin \frac{C}{2}} \\
& \sum R_{a}^{2}=\frac{r^{2}}{4}\left[\sum \frac{1}{\sin ^{2} \frac{A}{2}}\right]=\frac{r^{2}}{4}\left[\sum \frac{b c}{(s-a)(s-b)}\right]=\frac{R^{2}}{4} \frac{\left[s \sum(b c)-3 a b c\right]}{s r^{2}} \\
& =\frac{r^{2}}{4 s r^{2}}\left[s \times\left(s^{2}+r^{2}+4 R r\right)-3 \times 4 s r R\right]=\frac{\left(s^{2}+r^{2}-8 R r\right)}{4}
\end{aligned}
$$

1009. In $\triangle A B C, R_{k}$ is the circumradii of pedal triangle of Lemoine's point.

Prove that:

$$
R_{k}=\frac{m_{a} m_{b} m_{c}}{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution 1 by Shafiqur Rahman-Bangladesh

$$
\begin{gathered}
\frac{L L_{A}}{a}=\frac{L L_{B}}{b}=\frac{a L L_{A}+b L L_{B}+c L L_{C}}{a^{2}+b^{2}+c^{2}}=\frac{2 S}{a^{2}+b^{2}+c^{2}}=\frac{3 S}{2\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)}=K \Rightarrow \\
\Rightarrow L L_{A}=\frac{3 a S}{2\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)}, L L_{B}=\frac{3 b S}{2\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)} \text { and } L L_{C}=\frac{3 c S}{2\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)}
\end{gathered}
$$

Where L_{A}, L_{B}, L_{C} are the feet of perpendiculars from the Lemoine point L to the sides

$$
B C, C A \text { and } A B
$$

$$
\begin{gathered}
\text { Now, } L_{B} L_{C}=\sqrt{\left(L L_{B}\right)^{2}+\left(L L_{C}\right)^{2}-2 L L_{B} \cdot L L_{C} \cdot \cos (\pi-A)}= \\
=K \sqrt{b^{2}+c^{2}+2 b c \frac{b^{2}+c^{2}-a^{2}}{2 b c}}=K \sqrt{2 b^{2}+2 c^{2}-a^{2}}=2 K m_{a} . \text { Similarly }, \\
L_{C} L_{A}=2 K m_{b} \text { and } L_{A} L_{B}=2 K m_{c}
\end{gathered}
$$

\therefore Area of $\Delta L_{A} L_{B} L_{C}=(2 K)^{2} \times$ Area of triangle with sides of length m_{a}, m_{b} and

$$
m_{c}=4 K^{2} \times\left(\frac{3}{2}\right)^{2} \times \text { Area of } \Delta B C G=9 K^{2} \times \frac{s}{3}=\frac{27 s^{3}}{4\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{2}}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Thus $R_{k}=\frac{L_{A} L_{B} \times L_{B} L_{C} \times L_{C} L_{A}}{4 \times \text { Area of } \Delta L_{A} L_{B} L_{C}}=\frac{8\left(\frac{3 S}{2\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)}\right)^{3} m_{a} m_{b} m_{c}}{4 \times \frac{27 S^{3}}{4\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right)^{2}}} \therefore R_{k}=\frac{m_{a} m_{b} m_{c}}{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}$

Solution 2 by Soumava Chakraborty-Kolkata-India

Let K be the Lemoine's point \& $D E F$ be the pedal Δ of K.
We have: $K D \stackrel{(1)}{=} \frac{2 a S}{\sum a^{2}}, K E \stackrel{(2)}{=} \frac{2 b S}{\sum a^{2}}, K F \stackrel{(3)}{=} \frac{2 c S}{\sum a^{2}} ; F E \stackrel{(4)}{=} \frac{4 m_{a} S}{\sum a^{2}}, D F \stackrel{(5)}{=} \frac{4 m_{b} S}{\sum a^{2}} \& D E \stackrel{(6)}{=} \frac{4 m_{a} S}{\sum a^{2}}$
From quad. $B D K F, \angle D K F \stackrel{(7)}{=} 180^{\circ}-B$
Similarly, $\angle D K E \stackrel{(8)}{=} 180^{\circ}-C \& \angle F K E \stackrel{(9)}{=} 180^{\circ}-A$
$\therefore \operatorname{Area}(\triangle D E F)=\operatorname{Area}(\triangle F K E)+\operatorname{Area}(\triangle D K F)+\operatorname{Area}(\triangle D K E)$

$$
=\frac{1}{2}(F K \cdot K E \sin A+D K \cdot F K \sin B+D K \cdot K E \sin C)
$$

$$
\left(\text { using (7), (8), (9)): }=\frac{1}{2}\left[\frac{4 b c S^{2}}{\left(\sum a^{2}\right)^{2}} \cdot \frac{a}{2 R}+\frac{4 c a S^{2}}{\left(\Sigma a^{2}\right)^{2}} \cdot \frac{b}{2 R}+\frac{4 a b S^{2}}{\left(\sum a^{2}\right)^{2}} \cdot \frac{c}{2 R}\right]\right.
$$

(using (1), (2), (3))
$=\frac{a b c S^{2}}{R} \cdot \frac{3}{\left(\sum a^{2}\right)^{2}}=\frac{4 R S^{3} \cdot 3}{R\left(\sum a^{2}\right)^{2}}=\frac{12 S^{3}}{\left(\sum a^{2}\right)^{2}} \therefore[D E F] \stackrel{(10)}{=} \frac{12 S^{3}}{\left(\sum a^{2}\right)^{2}}$
Now, $R_{k}=\frac{F E \cdot D F \cdot D E}{4[D E F]}=\frac{64 m_{a} m_{b} m_{c} S^{3}}{\left(\sum a^{2}\right)^{3} 4 \cdot \frac{12 S^{3}}{\left(\sum a^{2}\right)^{2}}}$ (using (4), (5), (6), (10))

$$
=\frac{4}{3} \cdot \frac{m_{a} m_{b} m_{c}}{\sum a^{2}}=\frac{m_{a} m_{b} m_{c}}{\sum m_{a}^{2}}\left(\because \frac{\sum m_{a}^{2}=3}{4} \sum a^{2}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

1010. In $\triangle A B C, \triangle D E F$ - is pedal triangle of I - incenter

If $I M \perp F E, I K \perp D F, I L \perp D E, M \in(E F), K \in(D F), L \in(D E)$ then:

$$
I M^{2}+I K^{2}+I L^{2}=r^{2}\left(1-\frac{r}{2 R}\right)
$$

Proposed by Mehmet Sahin-Ankara-Turkey

Solution 1 by Lahiru Samarakoon-Sri Lanka

$$
\begin{gathered}
\text { From } \Delta F M I, I M=r \sin \frac{A}{2} . \text { Similarly, } I K=r \sin \frac{B}{2}, I L=r \sin \frac{C}{2} \\
\therefore L H S=I M^{2}+I K^{2}+I L^{2}=r^{2}\left(\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}\right)=r^{2}\left(1-2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right) \\
\text { But, } r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=r^{2}\left(1-2 \times \frac{r}{4 R}\right)=r^{2}\left(1-\frac{r}{2 R}\right)
\end{gathered}
$$

Solution 2 by Thanasis Gakopoulos-Athens-Greece

$$
\Delta K I D: \cos \left(\frac{\widehat{F I D}}{2}\right)=\frac{K I}{r} \rightarrow K I^{2}=r^{2} \cos ^{2}\left(90-\frac{\widehat{B}}{2}\right) \rightarrow
$$

$$
\begin{align*}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& 2 K I^{2}=r^{2} \cdot 2 \sin ^{2} \frac{\widehat{B}}{2}=r^{2}(1-\cos B)=r^{2}\left(1-\frac{a^{2}+c^{2}-b^{2}}{2 a c}\right) \rightarrow \\
& I K^{2}=\frac{r^{2}}{4 a c}(-a+b+c)(a+b-c) \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\text { Cyclically: } I M^{2}=\frac{r^{2}}{4 b c}(a-b+c)(a+b-c) \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
I L^{2}=\frac{r^{2}}{4 a b}(-a+b+c)(a-b+c) \\
I M^{2}+I K^{2}+I L^{2} \underset{(2),(3)}{\stackrel{(1)}{=}} r^{2}\left[1-\frac{(-a+b+c)(a-b+c)(a+b-c)}{4 a b c}\right] \tag{4}\\
r^{2}\left(1-\frac{r}{2 R}\right)=r^{2}\left(1-\frac{\frac{S}{S}}{\frac{a b c}{2 S}}\right)=r^{2}\left(1-\frac{2 S^{2}}{s \cdot a b c}\right) \rightarrow \\
\rightarrow r^{2}\left(1-\frac{r}{2 R}\right)=r^{2}\left[1-\frac{(-a+b+c)(a-b+c)(a+b-c)}{4 a b c}\right] \tag{5}\\
(4),(5) \rightarrow I M^{2}+I K^{2}+I L^{2}=r^{2}\left(1-\frac{r}{2 R}\right)
\end{gather*}
$$

1011. In $\triangle A B C$ the following relationship holds:

$$
\frac{b c}{\boldsymbol{h}_{a}^{2}}+\frac{c a}{\boldsymbol{h}_{b}^{2}}+\frac{a b}{\boldsymbol{h}_{c}^{2}}=\frac{r+r_{a}}{h_{a}}+\frac{r+r_{b}}{h_{b}}+\frac{r+r_{c}}{h_{c}}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution 1 by Marian Ursărescu-Romania

$$
\begin{equation*}
\frac{b c}{h_{a}^{2}}+\frac{a c}{h_{b}^{2}}+\frac{a b}{h_{c}^{2}}=\frac{a^{2} b c}{4 S^{2}}+\frac{a b^{2} c}{4 S^{2}}+\frac{a b c^{2}}{4 S^{2}}=\frac{a b c}{4 S^{2}}(a+b+c)=\frac{a b c}{4 S^{2}} \cdot s=\frac{s a b c}{2 S^{2}} \tag{1}
\end{equation*}
$$

But $a b c=4 R S$ and $S=s r$ (2) From (1) $+(2) \Rightarrow \frac{b c}{h_{a}^{2}}+\frac{a c}{h_{b}^{2}}+\frac{a b}{h_{c}^{2}}=\frac{2 R}{r}$

$$
\begin{equation*}
\frac{r+r_{a}}{h_{a}}+\frac{r+r_{b}}{h_{b}}+\frac{r+r_{c}}{h_{c}}=r\left(\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}\right)+\frac{r_{a}}{h_{a}}+\frac{r_{b}}{h_{b}}+\frac{r_{c}}{h_{c}} \tag{3}
\end{equation*}
$$

But $\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}=\frac{1}{r}$

$$
\begin{align*}
\frac{r_{a}}{h_{a}}+\frac{r_{b}}{h_{b}}+\frac{r_{c}}{h_{c}} & =\frac{\frac{S}{s-a}}{\frac{2 S}{a}}+\frac{\frac{S}{s-b}}{\frac{2 S}{b}}+\frac{\frac{S}{s-c}}{\frac{2 S}{c}}=\frac{1}{2} \sum \frac{a}{s-a}= \tag{5}\\
& =\frac{1}{2} \cdot \frac{2(2 R-r)}{r}=\frac{2 R-r}{r}=\frac{2 R}{r}-1 \text { (6) } \tag{6}
\end{align*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{equation*}
\text { Form (4)+(5)+(6) } \Rightarrow \frac{r+r_{a}}{h_{a}}+\frac{r+r_{b}}{h_{b}}+\frac{r+r_{c}}{h_{c}}=1+\frac{2 R}{r}-1=\frac{2 R}{r} \tag{7}
\end{equation*}
$$

From (3)+(7) the relationship is true.
Solution 2 by Thanasis Gakopoulos-Thessaloniki-Greece

$$
\begin{gather*}
\frac{b c}{h_{a}^{2}}=\frac{a^{2} b c}{a^{2} h_{a}^{2}}=\frac{a \cdot a b c}{4 S^{2}}, \frac{c a}{h_{b}^{2}}=\frac{b \cdot a b c}{4 S^{2}}, \frac{a b}{h_{c}^{2}}=\frac{c \cdot a b c}{4 S^{2}} \\
\frac{r+r_{a}}{h_{a}}=\frac{a c}{h_{a}^{2}}+\frac{c a}{h_{a}^{2}}+\frac{a b}{h_{c}^{2}}=\frac{a b c}{4 S^{2}}(a+b+c)(1) \\
=\frac{1}{4 S^{2}}\left[2 S^{2} a \frac{s-a+s}{s(s-a)}=\frac{2 S \cdot a\left(r+r_{a}\right)}{2 S \cdot 2 S}=\frac{1}{4 S^{2}}\left[2 S a\left(\frac{S}{s}+\frac{S}{s-a}\right)\right]=\right. \\
\left\{\begin{array}{c}
\frac{r+r_{a}^{2}}{h_{a}}=\frac{1}{4 S^{2}}\left[\frac{a}{2}(b+c)(a-b+c)(a+b-c)\right] \\
S i m i l a r l y, \frac{r+r_{b}}{h_{b}}=\frac{1}{4 S^{2}} \frac{b}{2}(c+a)(-a+b+c)(a+b-c) \\
\frac{r+r_{c}}{h_{c}}=\frac{1}{4 S^{2}} \frac{c}{2}(a+b)(-a+b+c)(a-b+c) \\
\frac{r+a+b+c)}{h_{a}}+\frac{r+r_{b}}{h_{b}}+\frac{r+r_{c}}{h_{c}}=\frac{1}{4 S^{2}} \frac{1}{2}[2 a b c(a+b+c)]= \\
\frac{r+r_{a}}{h_{a}}+\frac{r+r_{b}}{h_{b}}+\frac{r+r_{c}}{h_{c}}=\frac{a b c}{4 S^{2}}(a+b+c)(2) \\
(1),(2) \rightarrow \frac{b c}{h_{a}^{2}}+\frac{c a}{h_{b}^{2}}+\frac{a b}{h_{c}^{2}}=\frac{r+r_{a}}{h_{a}}+\frac{r+r_{b}}{h_{b}}+\frac{r+r_{c}}{h_{c}}
\end{array}\right.
\end{gather*}
$$

Solution 3 by Bogdan Fustei-Romania

$$
\begin{gathered}
\frac{b c}{h_{a}^{2}}+\frac{c a}{h_{b}^{2}}+\frac{a b}{h_{c}^{2}}=\frac{2 R h_{a}}{h_{a}^{2}}+\frac{2 R h_{c}}{h_{b}^{2}}+\frac{2 R h_{c}}{h_{c}^{2}} \\
b c=2 R h_{a}(\text { and analogs })=\frac{2 R}{h_{a}}+\frac{2 R}{h_{b}}+\frac{2 R}{h_{c}}=\frac{2 R}{r} ; \frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}=\frac{1}{r}
\end{gathered}
$$

So, finally we have the identity: $\frac{b c}{h_{a}^{2}}+\frac{c a}{h_{b}^{2}}+\frac{a b}{h_{c}^{2}} \frac{2 R}{r}$

$$
\begin{gathered}
\frac{r+r_{a}}{h_{a}}+\frac{r+r_{b}}{h_{b}}+\frac{r+r_{c}}{h_{c}}=\frac{r}{h_{a}}+\frac{r}{h_{b}}+\frac{r}{h_{c}}+\frac{r_{a}}{h_{a}}+\frac{r_{b}}{h_{b}}+\frac{r_{c}}{h_{c}}=r \cdot \frac{1}{r}+\frac{r_{a}}{h_{a}}+\frac{r_{b}}{h_{b}}+\frac{r_{c}}{h_{c}}= \\
=1+\sum \frac{r_{a}}{h_{a}} ; \sin ^{2} \frac{A}{2}=\frac{r}{2 R} \cdot \frac{r_{a}}{h_{a}} \text { (and analogs) }
\end{gathered}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { wWw.ssmrmh.ro } \\
& \sin ^{2} \frac{A}{2}=\frac{r_{a}-r}{4 R} \text { (and analogs) } \Rightarrow \sum \sin ^{2} \frac{A}{2}=\frac{r_{a}+r_{b}+r_{c}-3 r}{4 R} \\
& r_{a}+r_{b}+r_{c}=4 R+r ; \sum \sin ^{2} \frac{A}{2}=\frac{4 R+r-3 r}{4 R}=\frac{4 R-2 r}{4 R}=\frac{2 R-r}{2 R} \\
& \sum \sin ^{2} \frac{A}{2}=\frac{r}{2 R} \cdot \sum \frac{r_{a}}{h_{a}} ; \sum \sin ^{2} \frac{A}{2}=\frac{2 R-r}{2 R} \\
& \frac{r}{2 R} \sum \frac{r_{a}}{h_{a}}=\frac{2 R-r}{2 R} \Rightarrow \sum \frac{r_{a}}{h_{a}}=\frac{2 R-r}{2 R} \cdot \frac{2 R}{r}=\frac{2 R-r}{r} \\
& \sum \frac{r+r_{a}}{h_{a}}=1+\sum \frac{r_{a}}{h_{a}}=1+\frac{2 R-r}{r}=1+\frac{2 R}{r}-1=\frac{2 R}{r}
\end{aligned}
$$

So, finally we have the following identity: $\frac{b c}{h_{a}^{2}}+\frac{a c}{h_{b}^{2}}+\frac{a b}{h_{c}^{2}}=\frac{r+r_{a}}{h_{a}}+\frac{r+r_{b}}{h_{b}}+\frac{r+r_{c}}{h_{c}}=\frac{2 R}{r}$
Solution 4 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\frac{b c}{h_{a}^{2}}+\frac{c a}{h_{b}^{2}}+\frac{a b}{h_{c}^{2}}=\frac{r+r_{a}}{h_{a}}+\frac{r+r_{b}}{h_{b}}+\frac{r+r_{c}}{h_{c}} \\
b c=2 R h_{a}, \text { etc, } \therefore L H S=\sum \frac{2 R h_{a}}{h_{a}^{2}}=2 R \sum \frac{1}{h_{a}} \stackrel{(1)}{=} \frac{2 R}{r} \\
R H S=r \sum \frac{1}{h_{a}}+\sum \frac{r_{a}}{h_{a}}=\frac{r}{r}+\sum \frac{s \tan \frac{A}{2} a}{2 r s} \\
=1+\frac{1}{2 r} \sum 4 R \sin \frac{A}{2} \cos \frac{A}{2} \tan \frac{A}{2}=1+\frac{2 R}{r} \sum \sin ^{2} \frac{A}{2} \\
=1+\frac{R}{r} \sum(1-\cos A)=1+\frac{R}{r}\left(3-1-\frac{r}{R}\right)=1+\frac{R}{r}\left(2-\frac{r}{R}\right) \stackrel{(2)}{=} \frac{2 R}{r} \\
\text { (1), (2) } \Rightarrow L H S=R H S
\end{gathered}
$$

1012. $\triangle D E F$ - pedal triangle of I - incenter in $\triangle A B C$,

$$
\varphi \text { - inradii of } \triangle D E F, I_{a}, I_{b}, I_{c} \text { - excenters }
$$

$\varphi_{a}, \varphi_{b}, \varphi_{c}$ - inradii of $\Delta I_{a} B C, \Delta I_{b} C A, \Delta I_{c} A B$. Prove that:

$$
\frac{\varphi^{2}}{\varphi_{a}^{2}}+\frac{\varphi^{2}}{\varphi_{b}^{2}}+\frac{\varphi^{2}}{\varphi_{c}^{2}}=\frac{s^{2}+r^{2}-8 R r}{4 R^{2}}
$$

Proposed by Mehmet Sahin-Ankara-Turkey

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro
Solution by Soumava Chakraborty-Kolkata-India

A, B, I_{a}, I_{b} are concyclic, as $\angle I_{a} A I_{b}=\angle I_{a} B I_{b}=90^{\circ}$
$\therefore \angle B I_{b} I_{a}=\angle B A I_{a}=\frac{A}{2} \& \angle I_{b} I_{a} A=\angle I_{b} B A=\frac{B}{2}$
Using $\Delta A B I_{b}, \angle A I_{b} B=\frac{c}{2} \&$ using $\Delta A B I_{a}, \angle A I_{a} B=\frac{c}{2}$. Using $\Delta I_{a} X C, I_{a} C \stackrel{(1)}{=} \frac{r_{a}}{\cos _{\frac{a}{2}}^{C}} \&$ using

$$
\begin{gathered}
\Delta I_{a} Y B, I_{a} B \stackrel{(2)}{=} \frac{r_{a}}{\cos \frac{B}{2}} \cdot \therefore\left[I_{a} B C\right]=\frac{1}{2} I B \cdot I C \cdot \sin \left(\frac{B+C}{2}\right) \\
\stackrel{b y(1),(2)}{=} \frac{1}{2} \cdot \frac{r_{a}^{2} \cos ^{2} \frac{A}{2}}{\cos \frac{B}{2} \cos \frac{C}{2} \cos \frac{A}{2}}=\frac{r_{a}^{2} \cos ^{2} \frac{A}{2}}{2\left(\frac{S}{4 R}\right)} \stackrel{(3)}{=} \frac{2 R}{s} r_{a}^{2} \cos ^{2} \frac{A}{2}
\end{gathered}
$$

Let circumradius of $\Delta I_{a} B C=R_{0}$

$$
=\frac{I_{a} B \cdot I_{a} C \cdot B C}{4\left[I_{a} B C\right]}=\frac{\frac{a r_{a}^{2}}{\cos \frac{B}{2} \cos \frac{C}{2}}}{4 \cdot \frac{2 R}{s} r_{a}^{2} \cos ^{2} \frac{A}{2}} \quad \text { (using (1), (2), (3)) }=\frac{a s}{8 R \cos \frac{A}{2}\left(\frac{s}{4 R}\right)} \stackrel{(4)}{=} \frac{a}{2 \cos \frac{A}{2}}
$$

Now, $\left.\frac{\varphi_{a}}{4 R_{0}}=\pi \cos \frac{A}{2}=\frac{s}{4 R} \Rightarrow \varphi_{a}=R_{0}\left(\frac{s}{R}\right) \stackrel{b y(4)}{=} \frac{a}{2 \cos \frac{A}{2}} \frac{s}{R}\right)=\frac{4 R \sin \frac{A}{2} \cos \frac{A}{2} \cdot s}{2 R \cos \frac{A}{2}} \stackrel{(a)}{=} 2 s \sin \frac{A}{2}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Similarly, $\varphi_{b} \stackrel{(b)}{=} 2 s \sin \frac{B}{2} \& \varphi_{c} \stackrel{(c)}{=} 2 s \sin \frac{c}{2}$

r is the circumcenter of $\triangle D E F, \angle D=\frac{1}{2}\left(180^{\circ}-A\right)=90^{\circ}-\frac{A}{2}$

$$
\angle E=90^{\circ}-\frac{B}{2} \& \angle F=90^{\circ}-\frac{C}{2}
$$

Now, $\frac{\varphi}{4 r}=\sin D \sin E \sin F=\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\frac{s}{4 R} \Rightarrow \varphi \stackrel{(d)}{=} \frac{s r}{R}$

$$
\text { (a), (b), (c), (d) } \Rightarrow \varphi^{2}\left(\sum \frac{1}{\varphi_{a}^{2}}\right)=\frac{s^{2} r^{2}}{R^{2}} \cdot \frac{1}{4 s^{2}} \sum \csc ^{2} \frac{A}{2}
$$

$$
=\frac{r^{2}}{4 R^{2}} \sum \frac{b c(s-a)}{r^{2} s}=\frac{1}{4 R^{2} s}\left\{s\left(s^{2}+4 R r+r^{2}\right)-12 R r s\right\}=\frac{s^{2}-8 R r+r^{2}}{4 R^{2}} \text { (Proved) }
$$

1013. If in $\triangle A B C, I_{a}, I_{b}, I_{c}-$ excenters then:

$$
A I_{c}^{2}+B I_{a}^{2}+C I_{b}^{2}=16 R^{2}-s^{2}-r^{2}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Marian Ursărescu-Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$A I_{a}=\frac{s}{\cos \frac{A}{2}}$. In $\Delta A B I_{a}$, by the cosine law $\Rightarrow B I_{a}^{2}=A I_{a}^{2}+c^{2}-2 A I_{a} \cdot c \cos \frac{A}{2} \Rightarrow$

$$
\begin{gather*}
B I_{a}^{2}=\frac{s^{2}}{\cos ^{2} \frac{A}{2}}+c^{2}-\frac{2 s}{\cos \frac{A}{2}} \cdot c \cos \frac{A}{2} \Rightarrow B I_{a}^{2}=\frac{s^{2}}{\cos ^{2} \frac{A}{2}}+c^{2}-2 s c \Rightarrow \\
A I_{c}^{2}+B I_{a}^{2}+C I_{c}^{2}=s^{2} \sum \frac{1}{\cos ^{2} \frac{A}{2}}+\sum a^{2}-2 s \sum a \tag{1}\\
\text { But } \sum \frac{1}{\cos ^{2} \frac{A}{2}}=1+\frac{(4 R+r)^{2}}{s^{2}} \text { (2) } \tag{2}\\
\sum a^{2}=2\left(s^{2}-r^{2}-4 R r\right) \text { (3) } \tag{3}\\
\text { From (1)+(2)+(3) } \Rightarrow \\
A I_{c}^{2}+B I_{a}^{2}+C I_{c}^{2}=s^{2}+16 R^{2}+8 R r+r^{2}+2 s^{2}-2 r^{2}-8 R r-4 s^{2}=16 R^{2}-s^{2}-r^{2}
\end{gather*}
$$

1014. In acute $\triangle A B C, o_{a}, o_{b}, o_{c}$ - circumcevians. Prove that:

$$
\frac{1}{o_{a}}+\frac{1}{o_{b}}+\frac{1}{o_{c}}=\frac{2}{R}
$$

Proposed by Mustafa Tarek-Cairo-Egipt
Solution 1 by Thanasis Gakopoulos-Athens-Greece

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Let $S=$ area of $\triangle A B C, \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$ (1) PLAGIOGONAL system:

$$
B C \equiv B x, B A \equiv B y
$$

$$
B(0,0), C(a, 0), A(0, c), O\left(o_{1}, o_{2}\right), o_{1}=\frac{a c^{2}\left(a^{2}+b^{2}-c^{2}\right)}{16 S^{2}}, O_{2}=\frac{a^{2} c\left(-a^{2}+b^{2}+c^{2}\right)}{16 S^{2}}
$$

$$
\frac{2}{R}=\frac{2}{\frac{a b c}{4 S}}=\frac{8 S}{a b c}(*)
$$

$$
\left\{B O: \frac{x}{o_{1}}=\frac{y}{o_{2}}, A C: \frac{x}{a}+\frac{y}{c}=1\right\} \rightarrow E\left(e_{1}, e_{2}\right) \begin{align*}
& e_{1}=\frac{o_{1} \cdot a \cdot c}{o_{1} c+o_{2} a} \tag{2}\\
& e_{2}=\frac{o_{2} \cdot a \cdot c}{o_{1} c+o_{2} a}
\end{align*}
$$

$$
\begin{gather*}
B E^{2}=e_{1}^{2}+e_{2}^{2}+2 e_{1} e_{2} \cdot \cos B \xrightarrow{(2),(3),(1)} \tag{3}\\
\rightarrow o_{b}^{2}=\frac{a^{2} b^{2} c^{2} \cdot S^{2}}{\left(a^{2} b^{2}+b^{2} c^{2}-a^{4}-c^{4}\right)^{2}} \rightarrow \frac{1}{o_{b}}=\frac{2 a^{2} c^{2}+a^{2} b^{2}+b^{2} c^{2}-a^{4}-c^{4}}{4 a b c \cdot S} \tag{4}
\end{gather*}
$$

Cyclically: $\frac{1}{o_{a}}=\frac{2 b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}-b^{4}-c^{4}}{4 a b c S}$ (5), $\frac{1}{o_{c}}=\frac{2 a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-a^{4}-b^{4}}{4 a b c \cdot S}$

$$
\begin{gather*}
\text { (4),(5),(6) } \rightarrow \frac{1}{o_{a}}+\frac{1}{o_{b}}+\frac{1}{o_{c}}=\frac{2\left(2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}-a^{4}-b^{4}-c^{4}\right)}{4 a b c S}= \tag{6}\\
=\frac{2(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{4 a b c \cdot S}=\frac{2 \cdot 16 s^{2}}{4 a b c \cdot S}=\frac{8 S}{a b c} \quad(* *) \\
(*),(* *) \rightarrow \frac{1}{o_{a}}+\frac{1}{o_{b}}+\frac{1}{o_{c}}=\frac{2}{R}
\end{gather*}
$$

Solution 2 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
\Delta O M A^{\prime} \sim \triangle A H A^{\prime} \Rightarrow \frac{O A^{\prime}}{A A^{\prime}}=\frac{O M}{A H} ; O M=\sqrt{R^{2}-\frac{B C^{2}}{4}}=\sqrt{R^{2}-\frac{a^{2}}{4}} \\
A H=\frac{2 S}{a} ; O A^{\prime}=A A^{\prime}-R=O_{a}-R \Rightarrow \frac{O_{a}-R}{O_{a}}=\frac{\sqrt{R^{2}-\frac{a^{2}}{4}}}{\frac{2 S}{a}}=\frac{a \sqrt{R^{2}-\frac{a^{2}}{4}}}{2 S}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
\Rightarrow 1-\frac{R}{O_{a}}=\frac{a \sqrt{R^{2}-\frac{a^{2}}{4}}}{2 S} \Rightarrow \frac{R}{O_{a}}=1-\frac{a \sqrt{R^{2}-\frac{a^{2}}{4}}}{2 S} \Rightarrow O_{a}=\frac{R}{1-\frac{a \sqrt{R^{2}-\frac{a^{2}}{4}}}{2 S}}=\frac{R \cdot 2 S}{2 S \cdot a \sqrt{R^{2}-\frac{a^{2}}{4}}} \Rightarrow \\
\Rightarrow \frac{1}{O_{a}}=\frac{2 S-a \sqrt{R^{2}-\frac{a^{2}}{4}}}{R \cdot 2 S} \text { (etc) } \Rightarrow \sum \frac{1}{o_{a}}=\sum \frac{2 S-a \sqrt{R^{2}-\frac{a^{2}}{4}}}{R \cdot 2 S}
\end{gathered}
$$

We must show that: $\sum\left(2 S-a \sqrt{R^{2}-\frac{a^{2}}{4}}\right)=4 S \Leftrightarrow 6 S-\sum a \sqrt{R^{2}-\frac{a^{2}}{4}}=4 S \Leftrightarrow 2 S=\sum a \sqrt{R^{2}-\frac{a^{2}}{4}}$ (*)

$$
\begin{gathered}
\because a=2 R \sin A ;(\text { etc }) \Rightarrow \sum a \sqrt{R^{2}-\frac{a^{2}}{4}} \\
=\sum(2 R \sin A) \sqrt{R^{2}-R^{2} \sin ^{2} A}=\sum\left(2 R^{2} \sin A\right) \cos A \\
=R^{2} \sum \sin 2 A=4 R^{2} \sin A \sin B \sin C=4 R^{2} \cdot \frac{s r}{2 R^{2}}=2 s r=2 S \Rightarrow\left(^{*}\right) \text { true. }
\end{gathered}
$$

Solution 3 by Adil Abdullayev-Baku-Azerbaijan

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Von-Aubel theorem: (1) $\frac{B K}{K E}=\frac{B D}{D A}+\frac{B F}{F C}$; (2) $\frac{K E}{B E}=\frac{K F}{A F}=\frac{K D}{C D}=1$; (3) $\frac{B K}{B E}+\frac{A K}{A F}+\frac{C K}{C D}=2$

$$
\begin{aligned}
& A F=o_{a}, B E=o_{b}, C D=o_{c} ; A O \\
& \text { (3) } \Rightarrow \frac{A O}{o_{a}}+\frac{B O}{o_{b}}+\frac{C O}{o_{c}}=2 \Rightarrow \frac{R}{o_{a}}+\frac{R}{o_{b}}+\frac{R}{o_{c}}=2 \Rightarrow \frac{1}{o_{a}}+\frac{1}{o_{b}}+\frac{1}{o_{c}}=\frac{2}{R}
\end{aligned}
$$

Solution 4 by Soumava Chakraborty-Kolkata-India

Firstly, $\sum a \cos A=R \sum 2 \sin A \cos A=R(\sin 2 A+\sin 2 B+\sin 2 C)$
$=R\{2 \sin (A+B) \cos (A-B)+2 \sin C \cos C\}=2 R \sin C\{\cos (A-B)-\cos (A+B)\}$

$$
=4 R \sin C \sin A \sin B=4 R\left(\frac{a b c}{8 R^{3}}\right) \stackrel{(1)}{=} \frac{a b c}{2 R^{2}}
$$

From $\triangle A C X, \frac{A X}{\sin C}=\frac{b}{\sin \theta} \Rightarrow \frac{o_{a}}{\sin C}=\frac{b}{\sin \theta} \Rightarrow \sin \theta \stackrel{(2)}{=} \frac{b \sin C}{o_{a}}$
From $\triangle B O X^{\prime}, h_{1}^{2}=R^{2}-\frac{a^{4}}{4}=R^{2}-\frac{4 R^{2} \sin ^{2} A}{4}=R^{2} \cos ^{2} A \Rightarrow h_{1} \stackrel{(3)}{=} R \cos A$
$\left(\because \triangle A B C\right.$ is acute). Again, from $\triangle X O X^{\prime}, \frac{h_{1}}{O X}=\sin \left(180^{\circ}-\theta\right)=\sin \theta$

$$
\begin{gathered}
\stackrel{b y(3)}{\Rightarrow} \frac{R \cos A}{o_{a}-R}=\sin \theta \stackrel{b y(2)}{=} \frac{b \sin C}{o_{a}} \Rightarrow \frac{o_{a}-R}{o_{a}}=\frac{R \cos A}{b \sin C} \Rightarrow \frac{R}{o_{a}}=1-\frac{R \cos A}{b \sin C} \\
=1-\frac{R \cos A}{\frac{b c}{2 R}} \stackrel{(a)}{=} 1-2 R^{2}\left(\frac{a \cos A}{a b c}\right)
\end{gathered}
$$

Similarly, $\frac{R}{O_{b}} \stackrel{(b)}{=} 1-\frac{2 R^{2}}{a b c}(b \cos B) \& \frac{R}{O_{c}} \stackrel{(c)}{=} 1-\frac{2 R^{2}}{a b c}(c \cos C)$
(a) $+(\mathrm{b})+(\mathrm{c}) \Rightarrow \frac{R}{o_{a}}+\frac{R}{o_{b}}+\frac{R}{o_{c}}=3-\frac{2 R^{2}}{a b c}\left(\sum a \cos A\right) \stackrel{b y(1)}{=} 3-\frac{2 R^{2}}{a b c}\left(\frac{a b c}{2 R^{2}}\right)$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $=3-1=2 \Rightarrow \frac{1}{o_{a}}+\frac{1}{o_{b}}+\frac{1}{o_{c}}=\frac{2}{R}$ (Done)

Solution 5 by Mansur Mansurov-Azerbaijan

$$
\begin{gathered}
\left\{\begin{array}{l}
o_{a} \cdot R \cdot(\sin \alpha+\sin \beta)=2 S \\
o_{b} \cdot R \cdot(\sin \alpha+\sin \gamma)=2 S+\rightarrow \frac{R}{S} \cdot(\sin \alpha+\sin \beta+\sin \gamma)=\frac{1}{o_{a}}+\frac{1}{o_{b}}+\frac{1}{o_{c}} \\
o_{c} \cdot R \cdot(\sin \gamma+\sin \beta)=2 S
\end{array}\right. \\
S=\frac{R^{2} \cdot(\sin \alpha+\sin \beta+\sin \gamma)}{2} \rightarrow \frac{1}{o_{a}}+\frac{1}{o_{b}}+\frac{1}{o_{c}}=\frac{2}{R}
\end{gathered}
$$

1015. Prove that $x_{1}=\cos A, x_{2}=\cos B, x_{3}=\cos C$ are the roots of equation:

$$
4 R^{2} x^{3}-4 R(R+r) x^{2}+\left(s^{2}+r^{2}-4 R^{2}\right) x+(2 R+r)^{2}-s^{2}=0
$$

Proposed by Marian Ursărescu-Romania
Solution 1 by Tran Hong-Dong Thap-Vietnam
We have: $s=a+(s-a)=2 R \sin A+r \cot \frac{A}{2} \quad(*)$
(Because: $a=2 R \sin A$; and $r=(s-a) \tan \frac{A}{2} \Leftrightarrow s-a=\frac{r}{\tan _{\frac{A}{2}}}=r \cot \frac{A}{2}$)
More, in any triangle $A B C: \sin A>0, \cot \frac{A}{2}>0$.
Then $(*) \Leftrightarrow S=2 R \sqrt{\sin ^{2} A}+r \sqrt{\cot ^{2} \frac{A}{2}}$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{align*}
& \Leftrightarrow s=2 R \sqrt{\left(1-\cos ^{2} A\right)}+r \sqrt{\frac{\cos ^{2} \frac{A}{2}}{\sin ^{2} \frac{A}{2}}} \\
& \Leftrightarrow s=2 R \sqrt{(1-\cos A)(1+\cos A)}+r \sqrt{\frac{1+\cos A}{1-\cos A}} \\
& \Leftrightarrow s \sqrt{1-\cos A}=(\sqrt{1+\cos A})[2 R(1-\cos A)+r] \\
& \Leftrightarrow s^{2}(1-\cos A)=(1+\cos A)[2 R(1-\cos A)+r]^{2} \\
& \Leftrightarrow s^{2}-s^{2} \cos A=(1+\cos A)\left(4 R^{2} \cos ^{2} A-8 R^{2} \cos A+4 R^{2}+r^{2}+4 R r-4 R r \cos A\right) \\
& \Leftrightarrow 4 R^{3} \cos ^{3} A-4 R(R+r) \cos ^{2} A+\left(s^{2}+r^{2}-4 R^{2}\right) \cos A+(2 R+r)^{2}-s^{2}=0 \tag{2}
\end{align*}
$$

$\stackrel{(2)}{\Rightarrow} x_{1}=\cos A$ is root of equation:

$$
\begin{equation*}
4 R^{2} x^{3}-4 R(R+r) x^{2}+\left(s^{2}+r^{2}-4 R^{2}\right) x+(2 R+r)^{2}-s^{2}=0 \tag{*}
\end{equation*}
$$

Similarly: $x_{2}=\cos B, x_{3}=\cos C$ are roots of (*) Proved.

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
4 R^{2} x^{3}-4 R(R+r) x^{2}+\left(s^{2}+r^{2}-4 R^{2}\right) x+(2 R+r)^{2}-s^{2} \stackrel{(1)}{=} 0
$$

Let α, β, γ be the roots of (1). Then, $\sum \alpha=\frac{4 R(R+r)}{4 R^{2}}=1+\frac{r}{R}=\sum \cos A \Rightarrow \sum \alpha \stackrel{(a)}{=} \sum \cos A$

$$
\begin{gathered}
\text { Again, } 2 \sum \cos A \cos B=\left(\sum \cos A\right)^{2}-\sum \cos ^{2} A=\left(\frac{R+r}{R}\right)^{2}-\left(3-\sum \sin ^{2} A\right) \\
=\left(\frac{R+r}{R}\right)^{2}-3+\frac{\sum a^{2}}{4 R^{2}}=\left(\frac{R+r}{R}\right)^{2}-3+\frac{s^{2}-4 R r-r^{2}}{2 R^{2}}=\frac{2(R+r)^{2}-6 R^{2}+s^{2}-4 R r-r^{2}}{2 R^{2}} \\
=\frac{s^{2}+r^{2}-4 R^{2}}{2 R^{2}} \Rightarrow \sum \cos A \cos B \stackrel{(i)}{=} \frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}} . \text { Also, } \sum \alpha \beta \stackrel{(i i)}{=} \frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}} \\
\text { (i), (ii) } \Rightarrow \sum \alpha \beta \stackrel{(b)}{=} \sum \cos A \cos B
\end{gathered}
$$

Again, $\cos A \cos B \cos C \stackrel{(i i i)}{=} \frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}$. Also, $\alpha \beta \gamma \stackrel{(i v)}{=} \frac{s^{2}-(2 R+r)^{2}}{4 R^{2}}$

$$
\text { (iii), (iv) } \Rightarrow \alpha \beta \gamma \stackrel{(c)}{=} \cos A \cos B \cos C
$$

(a), (b), (c) $\Rightarrow \cos A, \cos B, \cos C$ are roots of (1) (Proved)
1016. In $\triangle A B C, I$ - incentre, R_{a}, R_{b}, R_{c} - circumradii of $\triangle B I C, \triangle C I A, \triangle A I B$.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\left(\frac{a r_{a}}{R_{a}}\right)^{2}+\left(\frac{b r_{b}}{R_{b}}\right)^{2}+\left(\frac{c r_{c}}{R_{c}}\right)^{2}=2 s^{2}\left(2-\frac{r}{R}\right)
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution 1 by Tran Hong-Dong Thap-Vietnam

$$
\begin{gathered}
R_{a}=2 R \sin \frac{A}{2} \text { (etc) } \\
\Rightarrow\left(\frac{a r_{a}}{R_{a}}\right)^{2}=\left(\frac{2 R \sin A \cdot s \cdot \tan \frac{A}{2}}{2 R \sin \frac{A}{2}}\right)^{2}=s^{2}\left(\frac{2 \sin \frac{A}{2} \cos \frac{A}{2} \cdot \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}}{\sin \frac{A}{2}}\right)^{2} \\
=s^{2}\left(2 \sin \frac{A}{2}\right)^{2}=4 s^{2} \cdot \frac{1-\cos A}{2}=2 s^{2}(1-\cos A) \\
\Rightarrow L H S=2 s^{2} \sum(1-\cos A)=2 s^{2}\left(3-\sum \cos A\right)=2 s^{2}\left(3-\left\{1+\frac{r}{R}\right\}\right)=2 s^{2}\left(2-\frac{r}{R}\right)
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
L H S=\sum \frac{a^{2} r_{a}^{2}}{4 R^{2} \sin ^{2} \frac{A}{2}}=\sum \frac{a^{2} r^{2} s^{2} b c}{4 R^{2}(s-a)^{2}(s-b)(s-c)}=\sum \frac{4 R r s \cdot r^{2} s^{2} a}{4 R^{2} \cdot r^{2} s(s-a)} \\
=\frac{r s^{2}}{R} \sum \frac{a}{s-a}=\frac{r s^{2}}{R} \sum \frac{a-s+s}{s-a} \\
=-\frac{3 r s^{2}}{R}+\frac{r s^{3} \sum(s-b)(s-c)}{R \cdot r^{2} s}=\frac{-3 r s^{2}}{R}+\frac{s^{2}}{R r} \sum\left(s^{2}-s(b+c)+b c\right) \\
=-\frac{3 r s^{2}}{R}+\frac{s^{2}}{R r}\left(3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}\right)=-\frac{3 r s^{2}}{R}+\frac{s^{2}(4 R+r)}{R}=\frac{(4 R-2 r) s^{2}}{R} \\
=2 s^{2}\left(2-\frac{r}{R}\right)
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

1017. Find $k \in \mathbb{R}$ such that in any scalene $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{n_{a}^{2}-m_{a}^{2}}{(b-c)^{2}}=k+\frac{1}{2} \sum_{c y c} \frac{b+c}{a}, n_{a}, \boldsymbol{n}_{b}, \boldsymbol{n}_{c} \text { - Nagel's cevians }
$$

Proposed by Bogdan Fustei-Romania
Solution 1 by Soumava Chakraborty-Kolkata-India

By Stewart's theorem, $4 c^{2}(s-b)+4 b^{2}(s-c)=4 a n_{a}^{2}+4 a(s-b)(s-c)$

$$
\begin{aligned}
& \Rightarrow 4 a n_{a}^{2}= 2 c^{2}(c+a-b)+2 b^{2}(a+b-c)-a(c+a-b)(a+b-c) \\
&= 2\left(b^{3}+c^{3}-b^{2} c-b c^{2}\right)+a\left(3 b^{2}+3 c^{2}-2 b c-a^{2}\right) \\
& \stackrel{(1)}{=} 2(b+c)(b-c)^{2}+a\left(3 b^{2}+3 c^{2}-2 b c-a^{2}\right) \\
& 4 a m_{a}^{2} \stackrel{(2)}{=} a\left(2 b^{2}+2 c^{2}-a^{2}\right) \\
&(1)-(2) \Rightarrow 4 a n_{a}^{2}-4 a m_{a}^{2}=2(b+c)(b-c)^{2}+a\left(b^{2}+c^{2}-2 b c\right) \\
&=(b-c)^{2}(2 b+2 c+a) \Rightarrow \frac{4 a n_{a}^{2}-4 a m_{a}^{2}}{(b-c)^{2}}=2 b+2 c+a \\
& \Rightarrow \frac{n_{a}^{2}-m_{a}^{2}}{(b-c)^{2}}=\frac{2 b+2 c+a}{4 a} \stackrel{(i)}{=} \frac{1}{4}+\frac{1}{2}\left(\frac{b+c}{a}\right)
\end{aligned}
$$

Similarly, $\frac{n_{b}^{2}-m_{b}^{2}}{(c-a)^{2}}=\frac{(i i)}{4}+\frac{1}{2}\left(\frac{c+a}{b}\right) \& \frac{n_{c}^{2}-m_{c}^{2}}{(a-b)^{2}} \stackrel{(i i i)}{=} \frac{1}{4}+\left(\frac{a+b}{c}\right) \frac{1}{2}$
(i) + (ii) + (iii) $\Rightarrow \sum \frac{n_{a}^{2}-m_{a}^{2}}{(b-c)^{2}}=\frac{3}{4}+\frac{1}{2} \sum\left(\frac{b+c}{a}\right) \therefore k=\frac{3}{4}$ (Answer)

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 2 by Tran Hong-Dong Thap-Vietnam

In $\triangle A B K$ we have: $A B=c ; A K=n_{a} ; B M=\frac{a}{2} ; M K=B K-B M=s-c-\frac{a}{2}=\frac{b-c}{2}$
By Stewarts's theorem: $\boldsymbol{c}^{2} \cdot M K+n_{a}^{2} \cdot B M=B K \cdot\left(m_{a}^{2}+B M \cdot M K\right)$

$$
\begin{gathered}
\Leftrightarrow c^{2}\left(\frac{b-c}{2}\right)+n_{a}^{2} \cdot \frac{a}{2}=(s-c)\left(m_{a}^{2}+\frac{a}{2} \cdot \frac{b-c}{2}\right) \\
\Leftrightarrow n_{a}^{2} \cdot \frac{a}{2}=(s-c) m_{a}^{2}+(s-c) \cdot \frac{a(b-c)}{4}-\frac{c^{2}(b-c)}{2} \\
\Leftrightarrow n_{a}^{2}=\frac{2(s-c) m_{a}^{2}}{a}+\frac{(s-c)(b-c)}{2}-\frac{c^{2}(b-c)}{a} \\
\Rightarrow n_{a}^{2}-m_{a}^{2}=\left(\frac{2(s-c)}{a}-1\right) m_{a}^{2}+\frac{(s-c)(b-c)}{2}-\frac{c^{2}(b-c)}{a} \\
=\frac{(b-c)}{a} \cdot m_{a}^{2}+\frac{(s-c)(b-c)}{2}-\frac{c^{2}(b-c)}{a}=(b-c)\left[\frac{m_{a}^{2}}{a}-\frac{c^{2}}{a}+\frac{(a+b-c)}{4}\right] \\
=(b-c)\left[\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4 a}-\frac{c^{2}}{a}+\frac{(a+b-c)}{4}\right]=(b-c)\left[\frac{2\left(b^{2}-c^{2}\right)-a^{2}}{4 a}+\frac{(a+b-c)}{4}\right] \\
=\frac{(c-b)}{4 a} \cdot\left[2\left(b^{2}-c^{2}\right)-a^{2}+a(a+b-c)\right] \\
=\frac{(b-c)}{4 a}\left[2\left(b^{2}-c^{2}\right)+a b-a c\right]=\frac{(b-c)^{2}}{4 a}[a+2(b+c)](e t c) \\
\Rightarrow \sum \frac{n_{a}^{2}-m_{a}^{2}}{(b-c)^{2}}=\sum \frac{a+2(b+c)}{4 a}=\sum\left(\frac{1}{4}+\frac{(b+c)}{2 a}\right)=\frac{3}{4}+\frac{1}{2} \sum \frac{b+c}{a} \Rightarrow k=\frac{3}{4}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
1018. In $\triangle A B C, O$ - circumcenter, r_{1}, r_{2}, r_{3} - inradii of $\triangle B O C, \triangle C O A, \triangle A O B$.

Prove that:

$$
2 \sum_{c y c(A, B, C)}(\sec A+\tan A)=\frac{a}{r_{1}}+\frac{b}{r_{2}}+\frac{c}{r_{3}}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution 1 by Marian Ursărescu-Romania

$$
\begin{gathered}
\left.s=\frac{a+b+c}{2}, r_{1}=\frac{S_{O B C}}{S_{O B C}} ; \begin{array}{c}
S_{O B C}=\frac{O B \cdot O C \cdot \sin 2 A}{2}=\frac{R^{2} \sin 2 A}{2} \\
p_{O B C=\frac{R+R+a}{2}=\frac{2 R+a}{2}}^{2}
\end{array}\right\} \Rightarrow r_{1}=\frac{R^{2} \sin 2 A}{2 R+a} \Rightarrow \\
\frac{a}{r_{1}}+\frac{b}{r_{2}}+\frac{c}{r_{3}}=\sum \frac{a(2 R+a)}{R^{2} \sin 2 A}=\sum \frac{2 a R+a^{2}}{R^{2} \sin 2 A}= \\
=2 \sum \frac{a}{R \sin 2 A}+\sum \frac{a^{2}}{R^{2} \sin 2 A}=2 \sum \frac{2 R \sin A}{R \cdot 2 \sin A \cos A}+\sum \frac{4 R^{2} \sin ^{2} A}{R^{2}-2 \sin A \cos A}= \\
=2 \sum \frac{1}{\cos A}+2 \sum \tan A=2\left(\sum \sec A+\tan A\right)
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
Let R_{1} be the circumradius of $\triangle B O C . R_{1}=\frac{O B \cdot O C \cdot B C}{4 \frac{1}{2} O B \cdot O C \sin 2 A} \stackrel{(1)}{=} \frac{a}{2 \sin 2 A}$

$$
\text { Again, } \frac{r_{1}}{4 R_{1}}=\sin \angle \frac{B O C}{2} \sin \angle \frac{O B C}{2} \sin \angle \frac{O C B}{2}=\sin A \sin ^{2}\left(45^{\circ}-\frac{A}{2}\right)
$$

$$
=\sin A\left(\frac{1}{\sqrt{2}} \cos \frac{A}{2}-\frac{1}{\sqrt{2}} \sin \frac{A}{2}\right)^{2}=\frac{\sin A(1-\sin A)}{2} \Rightarrow r_{1}=2 R_{1} \sin A(1-\sin A)
$$

$$
\stackrel{b y(1)}{=} \frac{a \sin A(1-\sin A)}{\sin 2 A} \Rightarrow \frac{a}{r_{1}}=\frac{\sin 2 A}{\sin A(1-\sin A)}
$$

$$
\Rightarrow \frac{a}{r_{1}}=\frac{2 \sin A \cos A(1+\sin A)}{\sin A\left(1-\sin ^{2} A\right)}=\frac{2 \cos A(1+\sin A)}{\cos ^{2} A} \stackrel{(a)}{=} 2(\sec A+\tan A)
$$

Similarly, $\frac{b}{r_{2}} \stackrel{(2)}{=} 2(\sec B+\tan B) \& \frac{c}{r_{3}} \stackrel{(c)}{=} 2(\sec C+\tan C)$
$(\mathbf{a})+(\mathbf{b})+(\mathbf{c}) \Rightarrow 2 \sum(\sec A+\tan A)=\frac{a}{r_{1}}+\frac{b}{r_{2}}+\frac{c}{r_{3}}($ proved $)$

1019.

$$
\begin{gathered}
A B=k, B C=k+3, A C=k+2, k>0, I-\text { incenter of } \triangle A B C \\
N_{a} \text { - Nagel's point of } \triangle A B C, r \text { - inradius of } A B C, N_{a} \in(I, r)
\end{gathered}
$$

Find: $S(a b c)$ (area)

Proposed by Thanasis Gakopoulos-Greece

Solution by Soumava Chakraborty-Kolkata-India

$$
a=k+3, b=k+2, c=k, N_{a} \in(I, r) S(A B C)=?
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{aligned}
I N_{a}^{2}= & r^{2} \Rightarrow 9 I G^{2}=r^{2} \Rightarrow \frac{9}{18 s}\left(2 \sum a^{2} b+2 \sum a b^{2}-\sum a^{3}-9 a b c\right)=r^{2} \\
& \Rightarrow \frac{1}{2 s}\left(2 \sum a b(2 s-c)-2 s\left(s^{2}-6 R r-3 r^{2}\right)-36 R r s\right)=r^{2} \\
& \Rightarrow \frac{1}{2 s}\left(4 s\left(s^{2}+4 R r+r\right)^{2}-2 s\left(s^{2}-6 R r-3 r^{2}\right)-60 R r s\right)=r^{2} \\
\Rightarrow & \frac{1}{2 s}\left(2 s^{3}+10 s r^{2}-32 R r s\right)=r^{2} \Rightarrow s^{2}-16 R r+5 r^{2}=r^{2} \Rightarrow s^{2} \stackrel{(1)}{=} 16 R r-4 r^{2}
\end{aligned}
$$

Now, $a b c=4 R r s \Rightarrow k(k+2)(k+3)=2 R r(k+k+2+k+3) \Rightarrow 2 R r \stackrel{(2)}{=} \frac{k(k+2)(k+3)}{3 k+5}$
Again, $\sum a b=s^{2}+4 R r+r^{2} \Rightarrow(k+3)(k+2)+k(k+2)+k(k+3)$

$$
=\left(\frac{k+k+2+k+3}{2}\right)^{2}+2\left(\frac{k(k+2)(k+3)}{3 k+5}\right)+r^{2}
$$

$$
\Rightarrow 4(3 k+5) r^{2}=4(3 k+5)\left(3 k^{2}+10 k+6\right)-(3 k+5)^{3}-8 k(k+2)(k+3)
$$

$$
\Rightarrow 4(3 k+5) r^{2}=\left(k^{2}-1\right)(k+5) \Rightarrow r \stackrel{(3)}{=} \frac{\left(k^{2}-1\right)(k+5)}{4(3 k+5)}
$$

Plugging (2), (3) in (1): $\frac{(3 k+5)^{2}}{4}=\frac{8 k(k+2)(k+3)}{3 k+5}-\frac{4\left(k^{2}-1\right)(k+5)}{4(3 k+5)}$

$$
\begin{aligned}
& \Rightarrow \frac{(3 k+5)^{2}}{4}=\frac{7 k^{3}+35 k^{2}+49 k+5}{3 k+5} \Rightarrow k^{3}+5 k^{2}-29 k-105=0 \\
& \Rightarrow(k+3)(k+7)(k-5)=0 \Rightarrow k=5 \therefore a=8, b=7, c=5 \Rightarrow s=10 \\
& \Rightarrow S(A B C)=\sqrt{(10)(10-8)(10-7)(10-5)}=10 \sqrt{3} \text { (Answer) }
\end{aligned}
$$

1020. URSARESCU's REFINEM ENT OF EULER'S INEQUALITY

In $\triangle A B C$ the following relationship holds:

$$
R \geq \frac{1}{6}\left(\frac{a(b+c-a)}{h_{a}}+\frac{b(c+a-b)}{h_{b}}+\frac{c(a+b-c)}{h_{c}}\right) \geq 2 r
$$

Proposed by Marian Ursărescu - Romania
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\sum \frac{2 a(s-a)}{h_{a}}=\sum \frac{2 a(s-a) a}{2 r s}=\frac{1}{r s} \sum a^{2}(s-a)=
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \frac{s \cdot 2\left(s^{2}-4 R r-r^{2}\right)-2 s\left(s^{2}-6 R r-3 r^{2}\right)}{r s}=\frac{2 s\left(2 R r+2 r^{2}\right)}{r s}=4(R+r) \\
& \therefore \frac{1}{6} \sum \frac{2 a(s-a)}{h_{a}}=\frac{2}{3}(R+r) \\
& \therefore R \geq \frac{1}{6} \sum \frac{2 a(s-a)}{h_{a}} \Leftrightarrow R \geq \frac{2}{3}(R+r) \Leftrightarrow R \geq 2 r \rightarrow \text { true } \\
& \& \frac{1}{6} \sum \frac{2 a(s-a)}{h_{a}} \geq 2 r \Leftrightarrow \frac{R+r}{3} \geq r \Leftrightarrow R \geq 2 r \rightarrow \text { true (proved) }
\end{aligned}
$$

Solution 2 by Tran Hong-Vietnam

We have: $\frac{1}{6} \sum \frac{a(b+c-a)}{h_{a}}=\frac{1}{6} \sum \frac{a(b+c-a)}{\frac{2 s r}{a}}=\frac{1}{6 s r} \sum \frac{a^{2}}{2}(b+c-a)=\frac{a b c}{6 s r}(\cos A+\cos B+\cos C)$

$$
\begin{gathered}
=\frac{4 R s r}{6 s r}\left(1+\frac{r}{R}\right)=\frac{2}{3}(R+r) \\
R \geq \frac{1}{6} \sum \frac{a(b+c-a)}{h_{a}}=\frac{2}{3}(R+r) \Leftrightarrow R \geq 2 r \text { (true) } \\
2 r \leq \frac{1}{6} \sum \frac{a(b+c-a)}{h_{a}}=\frac{2}{3}(R+r) \Leftrightarrow R \geq 2 r \quad \text { (true) }
\end{gathered}
$$

1021. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{2 m_{a}+2 m_{b}}{m_{c}}\right)^{7}+\left(\frac{2 m_{b}+2 m_{c}}{m_{a}}\right)^{7}+\left(\frac{2 m_{c}+2 m_{a}}{m_{b}}\right)^{7}>\left(\frac{3 a}{m_{a}}\right)^{7}+\left(\frac{3 b}{m_{b}}\right)^{7}+\left(\frac{3 c}{m_{c}}\right)^{7}
$$

Proposed by Daniel Sitaru - Romania
Solution by Lahiru Samarakoon-Sri Lanka

$$
\sum\left(\frac{2 m_{a}+2 m_{b}}{m_{c}}\right)^{7}>\sum\left(\frac{3 a}{m_{a}}\right)^{7}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
$\Delta A C G, A G=\frac{2}{3} \boldsymbol{m}_{\boldsymbol{a}}$ and $\boldsymbol{C G}=\frac{2}{3} \boldsymbol{m}_{\boldsymbol{a}}$. So, to have: $\boldsymbol{A G}+\boldsymbol{G C}>A C$. So, $\frac{2 m_{a}}{3}+\frac{2}{3} \boldsymbol{m}_{\boldsymbol{c}}>b$

$$
\left(2 m_{a}+2 m_{c}\right)>3 b ;\left(\frac{2 m_{a}+2 m_{c}}{m_{b}}\right)^{7}>\left(\frac{3 b}{m_{b}}\right)^{7}\left(\because m_{b}>0\right)
$$

So, similarly, from $\triangle A G B$ and $\triangle B G C$, and by summation: $\sum\left(\frac{2 m_{a}+2 m_{c}}{m_{b}}\right)^{7}>\sum\left(\frac{3 b}{m_{b}}\right)^{7}$
1022. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{3\left(\frac{1}{h_{a}^{2}}+\frac{1}{h_{b}^{2}}+\frac{1}{h_{c}^{2}}\right)} \leq \frac{m_{a} m_{b} m_{c}}{S^{2}}
$$

Proposed by Bogdan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { (1) } \Leftrightarrow 3\left(\frac{\sum a^{2}}{4 S^{2}}\right) \leq \frac{m_{a}^{2} m_{b}^{2} m_{c}^{2}}{s^{4}} \Leftrightarrow 4 m_{a}^{2} m_{b}^{2} m_{c}^{2} \stackrel{(2)}{\geq} 6 r^{2} s^{2}\left(s^{2}-4 R r-r^{2}\right) \\
\text { Now, } m_{a}^{2} m_{b}^{2} m_{c}^{2}=\frac{\left(2 b^{2}+2 c^{2}-a^{2}\right)\left(2 c^{2}+2 a^{2}-b^{2}\right)\left(2 a^{2}+2 b^{2}-c^{2}\right)}{64}= \\
\stackrel{(a)}{=} \frac{-4 \sum a^{6}+6\left(\sum a^{4} b^{2}+\sum a^{2} b^{4}\right)+3 a^{2} b^{2} c^{2}}{64} \\
\text { Now, } \sum a^{6}=\left(\sum a^{2}\right)^{3}-3\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)\left(c^{2}+a^{2}\right)= \\
=\left(\sum a^{2}\right)^{3}-3\left(\sum a^{2}-c^{2}\right)\left(\sum a^{2}-a^{2}\right)\left(\sum a^{2}-b^{2}\right) \\
=\left(\sum a^{2}\right)^{3}-3\left\{\left(\sum a^{2}\right)^{3}-\left(\sum a^{2}\right)^{3}+\left(\sum a^{2}\right)\left(\sum a^{2} b^{2}\right)-a^{2} b^{2} c^{2}\right\}= \\
\quad \stackrel{(b)}{=}\left(\sum a^{2}\right)^{3}-3\left(\sum a^{2}\right)\left(\sum a^{2} b^{2}\right)+3 a^{2} b^{2} c^{2}
\end{gathered}
$$

Also, $\sum a^{4} b^{2}+\sum a^{2} b^{4}=\sum a^{2} b^{2}\left(\sum a^{2}-c^{2}\right) \stackrel{(c)}{=}\left(\sum a^{2}\right)\left(\sum a^{2} b^{2}\right)-3 a^{2} b^{2} c^{2}$

$$
\left.\begin{array}{c}
\text { (a), (b), (c) } \Rightarrow m_{a}^{2} m_{b}^{2} m_{c}^{2}=\frac{1}{64}\left\{-4\left(\sum a^{2}\right)^{3}+18\left(\sum a^{2}\right)\left(\sum a^{2} b^{2}\right)-27 a^{2} b^{2} c^{2}\right\} \\
=\frac{1}{64}\left[-32\left(s^{2}-4 R r-r^{2}\right)^{3}+36\left(s^{2}-4 R r-r^{2}\right)\left\{\left(s^{2}+4 R r+r^{2}\right)^{2}-2 a b c(2 s)\right\}\right] \\
-432 R^{2} r^{2} s^{2} \\
\stackrel{(d)}{=} \frac{1}{16}\left\{s^{6}-s^{4}\left(12 R r-33 r^{2}\right)-s^{2}\left(60 R^{2} r^{2}+120 R r^{3}+33 r^{4}\right)-64 R^{3} r^{3}-48 R^{2} r^{4}\right\} \\
-12 R r^{5}-r^{6}
\end{array}\right\}, ~ \$
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
(d) $\Rightarrow(2) \Leftrightarrow s^{6}-s^{4}\left(12 R r-33 r^{2}\right)-s^{2}\left(60 R^{2} r^{2}+120 R r^{3}+33 r^{4}\right)-64 R^{3} r^{3}-$ $-48 R^{2} r^{4}-12 R r^{5}-r^{6} \geq 24 r^{2} s^{2}\left(s^{2}-4 R r-r^{2}\right)$
$\Leftrightarrow s^{6}-s^{4}\left(12 R r-9 r^{2}\right)-s^{2}\left(60 R^{2} r^{2}+24 R r^{3}+9 r^{4}\right)-64 R^{3} r^{3}-48 R^{2} r^{4}-12 R r^{5}-r^{6} \xrightarrow{(3)} 0$
Now, LHS of (3) $\stackrel{\text { Gerretsen }}{\geq} s^{4}\left(4 R r+4 r^{2}\right)-s^{2}\left(60 R^{2} r^{2}+24 R r^{3}+9 r^{4}\right)-64 R^{3} r^{3}-$

$$
-48 R^{2} r^{4}-12 R r^{5}-r^{6} \underset{(\underset{(4)}{\text { Gerretsen }}}{>} 0
$$

Now, LHS of (4) $\stackrel{\text { Gerretsen }}{\geq} s^{2}\left\{\left(16 R r-5 r^{2}\right)\left(4 R r+4 r^{2}\right)-\left(60 R^{2} r^{2}+24 R r^{3}+9 r^{4}\right)\right\}-$

$$
\begin{gathered}
-64 R^{3} r^{3}-48 R^{2} r^{4}-12 R r^{5}-r^{6} \stackrel{?}{\geq} 0 \Leftrightarrow \\
\Leftrightarrow s^{2}\left(4 R^{2}+20 R r-29 r^{2}\right)-64 R^{3} r-48 R^{2} r^{2}-12 R r^{3}-r^{4} \underset{(5)}{?} 0
\end{gathered}
$$

Now, $4 R^{2}+20 R r-29 r^{2} \stackrel{\text { Euler }}{\geq} 4 R^{2}+40 r^{2}-29 r^{2}>0 \therefore$ LHS of (5)
$\stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)\left(4 R^{2}+20 R r-29 r^{2}\right)-64 R^{3} r-48 R^{2} r^{2}-12 R r^{3}-r^{4} \xrightarrow[?]{\geq} 0$

$$
\Leftrightarrow 7 R^{2}-16 R r+4 r^{2} \xrightarrow{?} 0 \Leftrightarrow(R-2 r)(7 R-2 r) \stackrel{?}{\geq} 0 \rightarrow \text { true (Euler) (Proved) }
$$

1023. In $\triangle A B C$ the following relationship holds:

$$
2\left(\sqrt{\cos \frac{A}{2}}+\sqrt{\cos \frac{B}{2}}+\sqrt{\cos \frac{C}{2}}\right)-(\sqrt{\sin A}+\sqrt{\sin B}+\sqrt{\sin C}) \geq \frac{3^{\frac{5}{4}}}{2^{\frac{1}{2}}}
$$

Proposed by Nguyen Van Nho-Nghe An-Vietnam
Solution 1 by Daniel Sitaru-Romania

$$
\begin{aligned}
& f:(0, \pi) \rightarrow \mathbb{R}, f(x)=(\sin x)^{\frac{1}{2},} f^{\prime \prime}(x)=-\frac{1}{2} \sin x(\sin x)^{-\frac{1}{2}}-\frac{1}{4} \cos ^{2} x(\sin x)^{-\frac{3}{2}}<0, \\
& f \text { - concave } \\
& \frac{1}{3} \sum_{c y c(A, B, C)} f(A)+f\left(\frac{A+B+C}{3}\right) \leq \frac{2}{3} \sum_{c y c(A, B, C)} f\left(\frac{B+C}{2}\right) \\
& \frac{1}{3} \sum_{c y c(A, B, C)} \sqrt{\sin A}+\sin \left(\frac{\pi}{3}\right) \leq \frac{2}{3} \sum_{c y c(A, B, C)} \sqrt{\sin \left(\frac{B+C}{2}\right)}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
\sum_{c y c(A, B, C)} \sqrt{\sin A}+3 \sqrt{\frac{\sqrt{3}}{2}} \leq 2 \sum_{c y c(A, B, C)} \sqrt{\sin \left(\frac{\pi-A}{2}\right)} \\
2 \sum_{c y c(A, B, C)} \sqrt{\cos \frac{A}{2}-\sum_{c y c(A, B, C)} \sqrt{\sin A}} \geq \frac{3^{\frac{5}{4}}}{2^{\frac{1}{2}}}
\end{gathered}
$$

Solution 2 by Lahiru Samarakoon-Sri Lanka

$$
\begin{aligned}
& \text { We have to prove, } \sum \sqrt{\sin A}+\frac{3^{\frac{5}{4}}}{2^{\frac{1}{2}}} \leq 2\left(\sum \sqrt{\cos \frac{A}{2}}\right) \text {. Let's consider, } f(x)=\sqrt{\sin x} \\
& \begin{array}{l}
f^{\prime}(x)=\frac{\cos x}{2 \sqrt{\sin x}} ; f^{\prime \prime}(x)=\frac{\sqrt{\sin x}(-\sin x)-\cos x \frac{\cos x}{2 \sqrt{\cos x}}}{2 \sin x}=\frac{-\left(2 \sin ^{2} x+\cos ^{2} x\right)}{4 \sin x \sqrt{\cos x}} \\
\text { Then, } f^{\prime \prime}(x)<0 \\
\frac{1}{3} \sum \sqrt{\sin A}+\sqrt{\sin \left(\frac{A+B+C}{2}\right)} \leq \frac{2}{3} \sum \sin \left(\frac{B+C}{2}\right) \\
\frac{1}{3} \sum \sqrt{\sin A}+\left(\frac{\sqrt{3}}{2}\right)^{\frac{1}{2}} \leq \frac{2}{3} \sum \cos \frac{A}{2} ; \sum \sqrt{\sin A}+\frac{3^{\frac{5}{4}}}{2^{\frac{1}{2}}} \leq 2 \sum \cos \frac{A}{2} ; \text { (it's true) }
\end{array}
\end{aligned}
$$

1024. In acute $\triangle A B C, I$ - incenter the following relationship holds:

$$
\frac{m_{a}}{A I^{2}}+\frac{m_{b}}{B I^{2}}+\frac{m_{c}}{C I^{2}} \leq \frac{4 R+r}{4 r^{2}}
$$

Proposed by Bogdan Fustei - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
\sum \frac{m_{a}}{A I^{2}} \leq \frac{4 R+r}{4 r^{2}} \because m_{a} & \leq R(1+\cos A), \text { etc, } \therefore \sum \frac{m_{a}}{A I^{2}} \leq \sum \frac{R \cdot 2 \cos ^{2} \frac{A}{2} \sin ^{2} \frac{A}{2}}{r^{2}}=\sum \frac{R \sin ^{2} A}{2 r^{2}}=\sum \frac{R \cdot a^{2}}{2 r^{2} \cdot 4 R^{2}}= \\
& =\frac{1}{8 R r^{2}} \sum a^{2} \stackrel{?}{\leq} \frac{4 R+r}{4 r^{2}} \Leftrightarrow \sum a^{2} \stackrel{?}{\leq} 8 R^{2}+2 R r \Leftrightarrow \\
\Leftrightarrow & s^{2}-4 R r-r^{2} \stackrel{?}{\leq} 4 R^{2}+R r \Leftrightarrow s^{2} \underset{(1)}{\frac{?}{<}} 4 R^{2}+5 R r+r^{2}
\end{aligned}
$$

Now, LHS of (1) $\stackrel{\text { Gerretsen }}{\leq} 4 R^{2}+4 R r+3 r^{2} \stackrel{?}{\leq} 4 R^{2}+5 R r+r^{2} \Leftrightarrow R r \stackrel{?}{\geq} 2 r^{2} \Leftrightarrow$

$$
\Leftrightarrow R \stackrel{?}{\geq} 2 r \rightarrow \text { true (Euler) (Proved) }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

1025. In $\triangle A B C$ the following relationship holds:

$$
\sum \sqrt{r_{a}\left(r_{b}+r_{c}\right)} \leq\left(m_{a}+m_{b}+m_{c}\right) \sqrt{\frac{R}{r}}
$$

Proposed by Bogdan Fustei - Romania

Solution 1 by Marian Ursărescu-Romania

From Cauchy's inequality $\Rightarrow\left(\sum \sqrt{r_{a}\left(r_{b}+r_{c}\right)}\right)^{2} \leq 3 \sum r_{a}\left(r_{b}+r_{c}\right)$

$$
\begin{gather*}
\Rightarrow \sum \sqrt{r_{a}\left(r_{b}+r_{c}\right)} \leq \sqrt{6 \sum r_{a} r_{b}} \\
\text { But } \sum r_{a} r_{b}=s^{2} \text { (2) } \tag{2}
\end{gather*}
$$

From (1) + (2) $\Rightarrow \Sigma \sqrt{r_{a}\left(r_{b}+r_{c}\right)} \leq \sqrt{6} s$ (3)

$$
\left.\begin{array}{c}
m_{a}+m_{b}+m_{c} \geq 3 \sqrt[3]{m_{a} m_{b} m_{c}} \\
m_{a} \geq \sqrt{s(s-a)} \tag{4}
\end{array}\right\} \Rightarrow m_{a}+m_{b}+m_{c} \geq 3 \sqrt[3]{s S} \Rightarrow
$$

From (3)+ (4) we must show:

$$
\begin{equation*}
3 \sqrt[3]{s^{2} r} \cdot \sqrt{\frac{R}{r}} \geq \sqrt{6} s \Leftrightarrow 3^{6} s^{4} r^{2} \cdot \frac{R^{3}}{r^{3}} \geq 6^{3} s^{6} \Leftrightarrow 3^{6} \frac{R^{3}}{r} \geq 3^{3} \cdot 2^{3} \cdot s^{2} \Leftrightarrow 27 R^{3} \geq 8 s^{2} r \tag{5}
\end{equation*}
$$

From Mitrinovic's inequality: $27 R^{2} \geq 4 s^{2} \Rightarrow 27 R^{3} \geq 4 R s^{2}$ (6)
From (5)+ (6) we must show: $4 R s^{2} \geq 8 s^{2} r \Leftrightarrow R \geq 2 r$, true (Euler)
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum \sqrt{r_{a}\left(r_{b}+r_{c}\right)} \leq\left(\sum m_{a}\right) \sqrt{\frac{R}{r}} \\
\sum \sqrt{r_{a}\left(r_{b}+r_{c}\right)}=\sum \sqrt{s^{2} \tan \frac{A}{2}\left(\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}+\frac{\sin \frac{C}{2}}{\cos \frac{C}{2}}\right)} \\
=\sum \sqrt{s^{2} \tan \frac{A}{2}\left(\frac{\cos \frac{A}{2}}{\cos \frac{B}{2} \cos \frac{C}{2}}\right)}=\sum \sqrt{s^{2} \tan \frac{A}{2}\left(\frac{\cos ^{2} \frac{A}{2}}{\frac{S}{4 R}}\right)}
\end{gathered}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& =\sum \sqrt{4 R s \cos \frac{A}{2} \sin \frac{A}{2}}=\sum \sqrt{\boldsymbol{s} \boldsymbol{a}} \stackrel{C B S}{\leq} \sqrt{\boldsymbol{s}} \sqrt{\mathbf{3}} \sqrt{\mathbf{2 s}}=\sqrt{\mathbf{6} s}: \therefore \boldsymbol{L H S} \stackrel{(1)}{\leq} \sqrt{\boldsymbol{6} s}
\end{aligned}
$$

Again, RHS $\stackrel{\text { Tereshin }}{\geq} \sqrt{\frac{R}{r}} \sum\left(\frac{b^{2}+c^{2}}{4 R}\right)=\sqrt{\frac{R}{r}}\left(\frac{\sum a^{2}}{2 R}\right):$ RHS $\stackrel{(2)}{\geq} \sqrt{\frac{R}{r}}\left(\frac{\sum a^{2}}{2 R}\right)$
(1), (2) \Rightarrow it suffices to prove: $\sqrt{\frac{R}{r}}\left(\frac{\sum a^{2}}{2 R}\right) \geq \sqrt{6} s \Leftrightarrow\left(\sum \boldsymbol{a}^{2}\right)^{2} \geq \mathbf{2 4 R r s} s^{2}$

$$
\begin{gathered}
\Leftrightarrow s^{4}+r^{2}(4 R+r)^{2}-2 s^{2}\left(4 R r+r^{2}\right) \geq 6 R r s^{2} \\
\Leftrightarrow s^{4}+r^{2}(4 R+r)^{2} \stackrel{(3)}{\geq} 2\left(7 R r+r^{2}\right) s^{2}
\end{gathered}
$$

Now, LHS of (3) $\stackrel{\text { Gerretsen }}{\geq} s^{2}\left(16 R r-5 r^{2}\right)+r^{2}(4 R+r)^{2} \geq 2\left(7 R r+r^{2}\right) s^{2} \Leftrightarrow$

$$
\Leftrightarrow s^{2}(2 R-4 r)+r(4 R+r)^{2} \sum_{(4)}^{?} 3 r s^{2}
$$

Now, LHS of (4) $\underset{(\overline{4})}{\substack{\text { Gerretsen }}}(2 R-4 r)\left(16 R r-5 r^{2}\right)+r(4 R+r)^{2}$

$$
\& \operatorname{RHS} \text { of (4) } \underset{(\bar{b})}{\text { Gerretsen }} 3 r\left(4 R^{2}+4 R r+3 r^{2}\right)
$$

(a), (b) \Rightarrow in order to prove (4), it suffices to prove:

$$
\begin{gathered}
\quad(2 R-4 r)(16 R-5 r)+(4 R+r)^{2} \geq 3\left(4 R^{2}+4 R r+3 r^{2}\right) \geq 0 \\
\Leftrightarrow \\
(R-2 r)(6 R-r) \geq 0 \rightarrow \text { true } \Rightarrow(4) \text { is true } \Rightarrow \text { (3) is true (Proved) }
\end{gathered}
$$

1026. If $x, y, z>0$ then in $\triangle A B C$ the following relationship holds:

$$
\frac{x}{y+z} \cdot r_{a}^{2}+\frac{y}{z+x} \cdot r_{b}^{2}+\frac{z}{x+y} \cdot r_{c}^{2} \geq \frac{91 r^{2}-16 R^{2}}{2}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution by Soumitra M andal-Chandar Nagore-India
We know, $\sum_{c y c} r_{a}=4 R+r$ and $\sum_{c y c} r_{a} r_{b}=s^{2}$

$$
\sum_{c y c} \frac{x}{y+z} r_{a}^{2}=(x+y+z) \sum_{c y c} \frac{r_{a}^{2}}{y+z}-\sum_{c y c} r_{a}^{2}
$$

> ROMANIAN MATHEMATICAL MAGAZINE $\left.\underset{\text { www.ssmrmh.ro }}{\substack{\text { Bergatrom's } \\ \text { InEQUALITy }}} \mathrm{(r}_{a}+r_{b}+r_{c}\right)^{2} \frac{2}{\geq}-\left(\sum_{c y c} r_{a}\right)^{2}+2 \sum_{c y c} r_{a} r_{b}=2 s^{2}-\frac{(4 R+r)^{2}}{2}$

We need to prove, $2 s^{2}-\frac{(4 R+r)^{2}}{2} \geq \frac{91 r^{2}-16 R^{2}}{2} \Leftrightarrow s^{2} \geq 23 r^{2}+2 R r$
We know, $s^{2} \geq 16 R r-5 r^{2}$ we need to prove, $16 R r-5 r^{2} \geq 23 r^{2}+2 R r$
$\Leftrightarrow 14 R(R-2 r) \geq 0$, which is true. Hence proved
1027. In $\triangle A B C, I$ - incentre, $A I=x, B I=y, C I=z$
the following relationship holds:

$$
\frac{2 r^{3}}{27}(x+y+z)^{3}+r^{2}\left(x^{4}+y^{4}+z^{4}\right) \geq x^{2} y^{2} z^{2}
$$

Proposed by Mustafa Tarek-Cairo-Egypt
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& r^{2} \sum A I^{4}=r^{6} \sum \frac{1}{\sin ^{4} \frac{A}{2}}=r^{6} \sum \frac{b^{2} c^{2}(s-a)^{2}}{(s-b)^{2}(s-c)^{2}(s-a)^{2}}= \\
& =\left(\frac{r^{6}}{r^{4} s^{2}}\right)\left(\sum b^{2} c^{2}(s-a)^{2}\right) \stackrel{(1)}{=} \frac{r^{2} \sum b^{2} c^{2}\left(s^{2}-2 a s+a^{2}\right)}{s^{2}}
\end{aligned}
$$

Now, $\sum b^{2} c^{2}\left(s^{2}-2 a s+a^{2}\right)=s^{2}\left[\left(\sum a b\right)^{2}-2 a b c(2 s)\right]-2 s a b c\left(\sum a b\right)+3\left(16 R^{2} r^{2} s^{2}\right)$

$$
\begin{gathered}
=s^{2}\left(s^{2}+4 R r+r^{2}\right)^{2}-8 R r s^{2}\left(s^{2}+4 R r+r^{2}\right)-16 R r s^{4}+48 R^{2} r^{2} s^{2} \\
=s^{2}\left(s^{2}+4 R r+r^{2}\right)\left(s^{2}-4 R r+r^{2}\right)-16 R r s^{4}+48 R^{2} r^{2} s^{2} \\
=s^{2}\left[\left(s^{2}+r^{2}\right)^{2}-16 R^{2} r^{2}-16 R r s^{2}+48 R^{2} r^{2}\right] \\
\stackrel{(2)}{=} s^{2}\left(s^{4}+r^{4}+2 s^{2} r^{2}-16 R r s^{2}+32 R^{2} r^{2}\right) \\
\text { (1), (2) } \Rightarrow r^{2} \sum A I^{4} \stackrel{(3)}{=} r^{2}\left(s^{4}+r^{4}+2 s^{2} r^{2}-16 R r s^{2}+32 R^{2} r^{2}\right) \\
\text { Now, } \frac{2 r^{3}}{27}\left(\sum A I\right)^{3} \stackrel{A-G}{\geq} 2 r^{3}(\Pi A I)=\frac{2 r^{6}}{\frac{r}{4 R}}=8 R r^{5} \Rightarrow \frac{2 r^{3}}{27}\left(\sum A I\right)^{3} \stackrel{(4)}{\geq} 8 R r^{5} \\
\text { (3)+(4) } \Rightarrow \text { LHS } \geq 8 R r^{5}+r^{2}\left(s^{4}+r^{4}+2 s^{2} r^{2}-16 R r s^{2}+32 R^{2} r^{2}\right) \stackrel{?}{\geq}(\Pi A I)^{2}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE
www.ssmrmh.ro

$$
\begin{gathered}
\Leftrightarrow 8 R r^{5}+r^{2}\left(s^{4}+r^{4}+2 s^{2} r^{2}-16 R r s^{2}+32 R^{2} r^{2}\right) \stackrel{?}{\geq}\left(\frac{r^{3}}{\frac{r}{4 R}}\right)^{2}=16 R^{2} r^{4} \\
\Leftrightarrow r^{2}\left(s^{4}-s^{2}\left(16 R r-2 r^{2}\right)+16 R^{2} r^{2}+8 R r^{3}+r^{4}\right) \stackrel{?}{\geq} 0 \\
\Leftrightarrow s^{4}-s^{2}\left(16 R r-2 r^{2}\right)+16 R^{2} r^{2}+8 R r^{3}+r^{4} \geq 0 \\
\Leftrightarrow s^{4}-s^{2}\left(16 R r-2 r^{2}\right)+r^{2}(4 R+r)^{2} \sum_{(5)}^{?} 0
\end{gathered}
$$

Now, RHS of (5) $\stackrel{\text { Trucht }}{\geq} s^{4}-s^{2}\left(16 R r-2 r^{2}\right)+3 r^{2} s^{2}=s^{2}\left(s^{2}-16 R r+2 r^{2}+3 r^{2}\right)$

$$
=s^{2}\left(s^{2}-\left(16 R r-5 r^{2}\right)\right) \stackrel{\text { Gerretsen }}{\geq} 0 \Rightarrow(5) \text { is true (proved) }
$$

Solution 2 by Marian Ursărescu-Romania

We must show: $\frac{2 r^{3}}{27}(A I+B I+C I)^{3}+r^{2}\left(A I^{4}+B I^{4}+C I^{4}\right) \geq(A I \cdot B I \cdot C I)^{2}$

$$
\begin{equation*}
\text { But } A I=\frac{r}{\sin _{\frac{A}{2}}} \text { and } A I \cdot B I \cdot C I=4 R r^{2} \text { (2) } \tag{1}
\end{equation*}
$$

From (1)+(2) we must show: $\frac{2 r^{3}}{27}(A I+B I+C I)^{3}+r^{2}\left(A I^{4}+B I^{4}+C I^{4}\right) \geq 16 R^{2} r^{4} \Leftrightarrow$

$$
\begin{gather*}
\frac{2 r}{27}(A I+B I+C I)^{3}+\left(A I^{4}+B I^{4}+C I^{4}\right) \geq 16 R^{2} r^{2} \\
A I+B I+C I \geq 3 \sqrt[3]{A I \cdot B I \cdot C I} \tag{4}
\end{gather*}
$$

From (3)+ (4) we must show: $2 r \cdot A I \cdot B I \cdot C I+\left(A I^{4}+B I^{4}+C I^{4}\right) \geq 16 R^{2} r^{2} \stackrel{(2)}{\Leftrightarrow}$

$$
A I^{4}+B I^{4}+C I^{4} \geq 8 R r^{2}(2 R-r)
$$

From Cauchy's inequality: $A I^{4}+B I^{4}+C I^{4} \geq \frac{\left(A I^{2}+B I^{2}+C I^{2}\right)^{2}}{3}$ and

$$
\begin{align*}
& A I^{2}+B I^{2}+C I^{2}=s^{2}+r^{2}-8 R r \Rightarrow \\
& A I^{4}+B I^{4}+C I^{4} \geq \frac{\left(s^{2}+r^{2}-8 R r\right)^{2}}{3} \tag{6}
\end{align*}
$$

From (5)+ (6) we must show: $\left(s^{2}+r^{2}-8 R r\right)^{2} \geq 24 R r^{2}(2 R-r)$
From Gerretsen's inequality we have: $s^{2} \geq 16 R r-5 r^{2} \quad$ (8)
From (7)+ (8): $\left(8 R r-4 r^{2}\right)^{2} \geq 24 R r^{2}(2 R-r) \Leftrightarrow R \geq 2 r$ true.

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 3 by Tran Hong-Vietnam

$$
\begin{gather*}
x=A I=\frac{r}{\sin \frac{A}{2}} ; y=\frac{r}{\sin \frac{B}{2}} ; z=\frac{r}{\sin \frac{C}{2}} ; \text { Hence, inequality } \Leftrightarrow \\
\frac{2 r^{3}}{27}\left(r \sum \frac{1}{\sin \frac{A}{2}}\right)^{3}+r^{2} r^{4} \sum\left(\frac{1}{\sin \frac{A}{2}}\right)^{4} \geq r^{6}\left(\frac{1}{\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}\right)^{2} \\
\left.\Leftrightarrow \frac{2}{27}\left(\sum \frac{1}{\sin \frac{A}{2}}\right)^{3}+\sum\left(\frac{1}{\sin \frac{A}{2}}\right)^{4} \geq\left(\frac{1}{\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}\right)^{2} \quad ~^{*}\right) \tag{}
\end{gather*}
$$

Let $a=\frac{1}{\sin _{\frac{A}{2}}^{A}} ; b=\frac{1}{\sin _{\frac{B}{2}}^{B}} ; c=\frac{1}{\sin _{\frac{C}{2}}^{C}}$ then $a b c=4 \cdot \frac{R}{r} ; a^{2}+b^{2}+c^{2}=\frac{s^{2}+r^{2}-8 R r}{r^{2}}$
Hence (*) becomes: $\frac{2}{27}(a+b+c)^{3}+\left(a^{4}+b^{4}+c^{4}\right) \geq(a b c)^{2}=16 \frac{R^{2}}{r^{2}}$

$$
\begin{gathered}
\frac{2}{27}(a+b+c)^{3} \stackrel{\text { Cauchy }}{\geq} 2 \cdot 4 \cdot \frac{R}{r}=8 \frac{R}{r} \\
a^{4}+b^{4}+c^{4} \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{2}}{3}=\frac{\left(s^{2}+r^{2}-8 R r\right)^{2}}{3 r^{4}} \\
\text { We must show that: } 8 \frac{R}{r}+\frac{\left(s^{2}+r^{2}-8 R r\right)^{2}}{3 r^{4}} \geq 16 \frac{R^{2}}{r^{2}}(* *) \\
{\text { But } s^{2} \geq 16 R r-5 r^{2}}_{L_{H} S_{(* *)} \geq 8 \cdot \frac{R}{r}+\frac{\left(8 R r-4 r^{2}\right)^{2}}{3 r^{4}}=8 \cdot \frac{R}{r}+\frac{16}{3}\left(\frac{2 R}{r}-1\right)^{2}}^{\text {Must show: } 8 t+\frac{16}{3}(2 t-1)^{2} \geq 16 r^{2}\left(t=\frac{R}{r} \geq 2\right)} \\
\Leftrightarrow \frac{2}{3} t^{2}-\frac{5}{3} t+\frac{2}{3} \geq 0 \Leftrightarrow(t-2)\left(t-\frac{1}{2}\right) \geq 0 \\
\text { (true because } t \geq 2) . \text { Proved. }
\end{gathered}
$$

1028. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a} m_{b} m_{c}\left(m_{a}+m_{b}+m_{c}\right)}{9 S^{2}} \geq\left(\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{m_{a} m_{b}+m_{b} m_{c}+m_{c} m_{a}}\right)^{2}
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 Solution 1 by Bogdan Fustei-Romania

In $\triangle A B C$ the following relationship: $\frac{a^{2}}{R_{a}^{2}}+\frac{b^{2}}{R_{b}^{2}}+\frac{c^{2}}{R_{c}^{2}} \leq 8+\left(\frac{a b+b c+a c}{a^{2}+b^{2}+c^{2}}\right)^{2}$
(I - incenter in $\triangle A B C$); R_{a}, R_{b}, R_{c} - circumradii $\triangle B I C, \triangle C I A, \Delta A I B$)
Using two additional inequalities:

$$
\begin{gathered}
\text { 1) } \frac{R}{r} \geq \frac{a b c+a^{2}+b^{3}+c^{3}}{2 a b c} \\
\text { 2) } x, y, z>0: \frac{x^{3}+y^{3}+z^{3}}{4 x y z}+\frac{1}{4} \geq\left(\frac{x^{2}+y^{2}+z^{2}}{x y+y z+z x}\right)^{2}
\end{gathered}
$$

From the two inequalities from above we can write the following:

$$
\begin{gathered}
\frac{R}{2 r} \stackrel{(1)}{\geq} \frac{a^{3}+b^{3}+c^{3}}{4 a b c}+\frac{1}{4} \stackrel{(2)}{\geq}\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+a c}\right)^{2} . \text { So, finally: } \frac{R}{2 r} \geq\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+a c}\right)^{2} \\
R_{a}=2 R \sin \frac{A}{2} \text { (and the analogs); } \sin \frac{A}{2}=\sqrt{\frac{r_{a}-r}{4 R}} \text { (and the analogs) } \\
a^{2}=\left(r_{b}+r_{c}\right)\left(r_{a}-r\right) \text { (and the analogs) } \\
\Rightarrow R_{a}=2 R \cdot \sqrt{\frac{r_{a}-r}{R}}=\sqrt{4 R^{2} \frac{\left(r_{a}-r\right)}{4 R}}=\sqrt{R\left(r_{a}-r\right)} \text { (and the analogs) } \\
R_{a}^{2}=R\left(r_{a}-r\right) \text { (and the analogs) } \Rightarrow \frac{a^{2}}{R_{a}^{2}}=\frac{\left(r_{b}+r_{c}\right)\left(r_{a}-r\right)}{R\left(r_{a}-r\right)}=\frac{r_{b}+r_{c}}{R} \\
\text { So }, \frac{a^{2}}{R_{a}^{2}}=\frac{r_{b}+r_{c}}{R} \text { (and the analogs) } \\
\frac{a^{2}}{R_{a}^{2}}+\frac{b^{2}}{R_{b}^{2}}+\frac{c^{2}}{R_{c}^{2}}=\frac{r_{b}+r_{c}}{R}+\frac{r_{a}+r_{c}}{R}+\frac{r_{a}+r_{b}}{R}=\frac{2\left(r_{a}+r_{b}+r_{c}\right)}{R}=\frac{2(4 R+r)}{R} \\
\left(r_{a}+r_{b}+r_{c}=4 R+r\right) \Rightarrow \frac{a^{2}}{R_{a}^{2}}+\frac{b^{2}}{R_{b}^{2}}+\frac{c^{2}}{R_{c}^{2}}=\frac{8 R+2 r}{R}=8+\frac{2 r}{R}
\end{gathered}
$$

The inequality from enunciation becomes: $8+\frac{2 r}{R} \leq 8+\left(\frac{a b+b c+a c}{a^{2}+b^{2}+c^{2}}\right)^{2} \Rightarrow$

$$
\Rightarrow \frac{R}{2 r} \geq\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+a c}\right)
$$

From the above, the inequality from enunciation is proved.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
R \geq 2 r\left(\frac{\sum a^{2}}{\sum a b}\right)^{2} \Leftrightarrow R\left(S^{2}+4 R r+r^{2}\right)^{2} \geq 8 r\left(S^{2}-4 R r-r^{2}\right)^{2} \\
\Leftrightarrow R\left\{S^{4}+r^{2}(4 R+r)^{2}+2 S^{2}\left(4 R r+r^{2}\right)\right\} \geq 8 r\left\{S^{4}+r^{2}(4 R+r)^{2}-2 S^{2}\left(4 R r+r^{2}\right)\right\} \\
\Leftrightarrow(R-2 r) S^{4}+2 S^{2}\left(4 R r+r^{2}\right)(R+8 r)+r^{2}(4 R+r)^{2}(R-8 r) \stackrel{(1)}{\geq} 6 r s^{4} \\
\text { Now, LHS of (1) } \underset{(\bar{a})}{\text { Gerretsen }} S^{2}(R-2 r)\left(16 R r-5 r^{2}\right)+ \\
+2 S^{2}\left(4 R r+r^{2}\right)(R+8 r)+r^{2}(4 R+r)^{2}(R-8 r) \\
=S^{2} r\left(24 R^{2}+29 R r+26 r^{2}\right)+r^{2}(4 R+r)^{2}(R-8 r) \\
\& R H S \text { of (1) } \underset{(\bar{b})}{\operatorname{Gerretsen}} 6 r s^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)
\end{gathered}
$$

(a), (b) \Rightarrow in order to prove (1), it suffices to prove:

$$
S^{2}\left(5 R r+8 r^{2}\right)+r(4 R+r)^{2}(R-8 r) \stackrel{(2)}{\geq} 0
$$

Now, LHS of (2) $\stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)\left(5 R r+8 r^{2}\right)+r(4 R+r)^{2}(R-8 r) \xrightarrow[\geq]{\geq} 0$ $\Leftrightarrow 2 t^{3}-5 t^{2}+5 t-6 \xrightarrow{\geq} 0 \quad\left(t=\frac{R}{r}\right)$
$\Leftrightarrow(t-2)\{2 t(t-2)+3 t+3\} \xrightarrow{\geq} 0 \rightarrow$ true $\because t \stackrel{\text { Euler }}{\geq} 2$
$\Rightarrow R \geq 2 r\left(\frac{\sum a^{2}}{\sum a b}\right)^{2} \Rightarrow R \cdot 4 r s^{2} \geq 8 r^{2} S^{2}\left(\frac{\sum a^{2}}{\sum a b}\right)^{2} \Leftrightarrow \frac{S a b c}{8 S^{2}} \stackrel{(3)}{\geq}\left(\frac{\sum a^{2}}{\sum a b}\right)^{2}$
Applying (3) on a triangle with sides $\frac{2}{3} m_{a}, \frac{2}{3} m_{b}, \frac{2}{3} m_{c}$ (whose area will be $=\frac{S}{3}$), we get,

$$
\frac{\left(\frac{1}{3} \sum m_{a}\right) \frac{8}{27} m_{a} m_{b} m_{c}}{8\left(\frac{S^{2}}{9}\right)} \geq \frac{\left(\frac{4}{9}\right)^{2}\left(\sum m_{a}^{2}\right)^{2}}{\left(\frac{4}{9}\right)^{2}\left(\sum m_{a} m_{b}\right)^{2}} \Rightarrow \frac{m_{a} m_{b} m_{c}\left(\sum m_{a}\right)}{9 S^{2}} \geq\left(\frac{\sum m_{a}^{2}}{\sum m_{a} m_{b}}\right)^{2}
$$

1029. If $M \in \operatorname{Int}(\triangle A B C)$ then:

$$
27 \cdot[M A B] \cdot[M B C] \cdot[M C A] \leq[A B C]^{3}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 Solution 1 by Mehmet Sahin-Ankara-Turkey

Let (x, y, z) be the barycentric coordinates of M.
$x+y+z=1$ and $[M B C]=x \cdot[A B C] ;[M C A]=y \cdot[A B C] ;[M A B]=z \cdot[A B C]$

$$
[M A B] \cdot[M B C] \cdot[M C A]=x y z[A B C]^{3}
$$

Using Arithmetic and Geometric Mean inequality:

$$
\begin{equation*}
\frac{x+y+z}{3} \geq \sqrt[3]{x y z} \Rightarrow \sqrt[3]{x y z} \leq \frac{1}{3} \Rightarrow x y z \leq \frac{1}{27} \tag{2}
\end{equation*}
$$

From (1) and (2): $27[M A B] \cdot[M B C] \cdot[M C A] \leq[A B C]]^{3}$
Solution 2 by Ravi Prakash-New Delhi-India

$$
27[M B C][M C A][M A B]=27 A_{1} A_{2} A_{3}=\left[3 A_{1}^{\frac{1}{3}} A_{2}^{\frac{1}{3}} A_{3}^{\frac{1}{3}}\right]^{3} \leq\left(A_{1}+A_{2}+A_{3}\right)^{3}=[A B C]^{3}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 3 by Thanasis Gakopoulos-Athens-Greece

$$
\begin{gathered}
\text { PLAGIOGONAL system: } B C \equiv B x, B A=B y \\
B(0,0), C(a, 0), A(0, c), M\left(m_{1}, m_{2}\right) \\
(M A B)=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & m_{1} & 0 \\
0 & m_{2} & c
\end{array}\right| \cdot \sin B=\frac{m_{1} c \cdot \sin B}{2} \\
\left.(M B C)=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & m_{1} & a \\
0 & m_{2} & 0
\end{array}\right| \right\rvert\, \cdot \sin B=\frac{m_{2} \cdot a \cdot \sin B}{2} \\
(A B C)=\frac{1}{2} a c \cdot \sin B,(M C A)=(A B C)-(M A B)-(M B C)=\frac{\left(a c-m_{1} c-m_{2} a\right) \sin B}{2} \\
A M-G M:(M A B)(M B C)(M C A) \leq\left[\frac{(M A B)+(M B C)+(M C A)}{3}\right]^{3}= \\
=\frac{1}{27}\left[\frac{m_{1} c \cdot \sin B}{2}+\frac{m_{2} a \sin B}{2}+\frac{\left(a c-m_{1} c-m_{2} a\right) \sin B}{2}\right]^{3}= \\
=\frac{1}{27}\left(\frac{1}{2} a c \cdot \sin B\right)^{3}=\frac{1}{27}(A B C)^{3} \rightarrow \rightarrow 27(M A B) \cdot(M B C) \cdot(M C A) \leq(A B C)^{3}
\end{gathered}
$$

1030. In $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
4\left(m_{a}+m_{b}+m_{c}\right) \leq & \frac{r_{a}}{\sin ^{2} \frac{A}{2}}+\frac{r_{b}}{\sin ^{2} \frac{B}{2}}+\frac{r_{c}}{\sin ^{2} \frac{C}{2}} \\
& \text { Proposed by Bogdan Fustei - Romania }
\end{aligned}
$$

Solution 1 by Lahiru Samarakoon-Sri Lanka

$$
4\left(m_{a}+m_{b}+m_{c}\right) \leq \sum \frac{r_{a}}{\sin ^{2} \frac{A}{2}}
$$

RHS $=\sum \frac{r_{a}}{\sin \frac{A}{2}}=\sum \frac{s \tan \frac{A}{2}}{\sin ^{2} \frac{A}{2}}=2 S \sum \frac{1}{\sin A}=2 S \times 2 R \frac{\left(\sum a b\right)}{a b c}=\frac{4 S R \times\left(s^{2}+r^{2}+4 R r\right)}{4 R \times S r}=\frac{\left(s^{2}+r^{2}+4 R r\right)}{r}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

But $S^{2} \geq 16 R r-s r^{2}$
$\geq \frac{\left(16 R r-S r^{2}+r^{2}+4 R r\right)}{r}=4(5 R-r) \geq 4(4 R+r)(\because R \geq 2 r)$ Euler
We have to prove: $4 \sum m_{a} \leq 4(4 R+r)$
$\sum m_{a} \leq(4 R+r) \quad$ (it's true) $\left(\because \sum m_{a} \leq \sum r_{a}=4 R+r\right)$
Solution 2 by Marian Ursărescu-Romania
In any $\triangle A B C$ we have: $\sum \frac{r_{a}}{\sin ^{2} \frac{A}{2}}=\frac{s^{2}+r^{2}+4 R r}{r} \Rightarrow$ we must show:

$$
\begin{equation*}
4\left(m_{a}+m_{b}+m_{c}\right) \leq \frac{s^{2}+r^{2}+4 R r}{r} \tag{1}
\end{equation*}
$$

But in any $\triangle A B C$ we have: $m_{a}+m_{b}+m_{c} \leq 4 R+r$ (2)
From (1)+ (2) we must show:

$$
\begin{equation*}
16 R+4 r \leq \frac{s^{2}+r^{2}+4 R r}{r} \Leftrightarrow 16 R r+4 r^{2} \leq s^{2}+r^{2}+4 R r \Leftrightarrow s^{2} \geq 12 R r+3 r^{2} \tag{3}
\end{equation*}
$$

Form Gerretsen's inequality: $s^{2} \geq 16 R r-5 r^{2}$ (4)
From (3)+ (4) we must show: $16 R r-5 r^{2} \geq 12 R r+3 r^{2} \Leftrightarrow 4 R r \geq 8 r^{2} \Leftrightarrow R \geq 2 r$, true (Euler)
Solution 3 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum r_{a} \csc ^{2} \frac{A}{2}=\sum r_{a}\left(1+\cot ^{2} \frac{A}{2}\right)=\sum r_{a}+\sum s \tan \frac{A}{2} \cot ^{2} \frac{A}{2}=\sum r_{a}+\sum s \cot \frac{A}{2} \\
=\sum r_{a}+\sum \sqrt[s]{\frac{s(s-a)}{(s-b)(s-c)}}=\sum r_{a}+\sum \frac{s^{2}(s-a)}{\sqrt{s(s-a)(s-b)(s-c)}} \\
=\sum r_{a}+\sum s^{2}\left(\frac{s-a}{\Delta}\right)=\sum r_{a}=\sum s^{2}\left(\frac{1}{r_{a}}\right) \\
=\sum r_{a}+s^{2}\left(\frac{\sum r_{a} r_{b}}{r_{a} r_{b} r_{c}}\right)=\sum r_{a}+\frac{s^{4}}{r s^{2}}=\sum r_{a}+\frac{s^{2}}{r} \\
\quad \underset{\substack{\text { Gerretsen } \\
\geq}}{4 R+r+16 R-5 r=20 R-4 r} \\
=16 R+4(R-r) \stackrel{\text { Euler }}{\geq} 16 R+4 r=4(4 R+r) \geq 4 \sum m_{a}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

1031. If in $\triangle A B C, A D, B E, C F-$ internal bisectors then:

$$
A F \cdot B C+B D \cdot A C+C E \cdot A B \geq 18 r^{2}
$$

Proposed by Marian Ursărescu - Romania

Solution 1 by Lahiru Samarakooon-Sri Lanka

Because CF, $A D$ bisectors: $\frac{B D}{D C}=\frac{A B}{A C}=\frac{c}{b} \Rightarrow B D=\frac{a c}{b+c}$. So, $B D \cdot A C=\frac{a c}{b+c} b=\frac{a b c}{b+c}$
\therefore similarly, for $A F, B C$ and $C E, A B$ set summating LHS $=\sum B D A C=a b c \sum\left[\frac{1}{b+c}\right]$

$$
\begin{gathered}
=a b c\left[\frac{12}{b+c}+\frac{12}{a+c}+\frac{2}{b+c}\right] \geq a b c \times \frac{(1+1+1)^{2}}{2(a+b+c)} \\
=4 R S r \times \frac{9}{4 S}\left(\because \sum a=2 s\right)=9 R r, \text { but } R \geq 2 r . S 0, \geq 18 r^{2} \quad \text { (proved) } \\
\sum B D \cdot A C \geq 18 r^{2}
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India
By angle-bisector theorem, $\frac{C D}{B D}=\frac{b}{c} \Rightarrow \frac{C D+B D}{B D}=\frac{b+c}{c}$

$$
\Rightarrow B D \stackrel{(1)}{=} \frac{a c}{b+c} . \text { Similarly, } A F \stackrel{(2)}{=} \frac{b c}{a+b} \& C E \stackrel{(3)}{=} \frac{a b}{c+a}
$$

(1), (2), (3) \Rightarrow LHS $=\boldsymbol{a b c}\left(\sum \frac{1}{a+b}\right)=a b c\left(\frac{\sum(b+c)(c+a)}{\Pi(a+b)}\right)$
$=a b c\left(\frac{\left(\sum a^{2}+2 \sum a b\right)+\sum a b}{2 a b c+\sum a b(2 s-c)}\right)=a b c\left(\frac{4 s^{2}+s^{2}+4 R r+r^{2}}{2 s\left(s^{2}+4 R r+r^{2}\right)-4 R r s}\right)$

$$
=\frac{4 R r s\left(5 s^{2}+4 R r+r^{2}\right)}{2 s\left(s^{2}+2 R r+r^{2}\right)}=\frac{2 R r\left(5 s^{2}+4 R r+r^{2}\right)}{s^{2}+2 R r+r^{2}} 18 r^{2}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\Leftrightarrow R\left(5 s^{2}+4 R r+r^{2}\right) \geq 9 r\left(s^{2}+2 R r+r^{2}\right)
$$

$$
\Leftrightarrow(5 R-9 r) s^{2}+R r(4 R+r)-9 r^{2}(2 R+r) \stackrel{(4)}{\geq} 0
$$

Now, LHS of (4) $\stackrel{\text { Gerretsen }}{\geq}(5 R-9 r)\left(16 R r-5 r^{2}\right)+R r(4 R+r)-9 r^{2}(2 R+r) \stackrel{?}{\geq} 0$

$$
\begin{gathered}
\Leftrightarrow 42 R^{2}-93 R r+18 r^{2} \stackrel{?}{\geq}(R-2 r)(42 R-9 r) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because R \geq 2 r \\
\text { (Euler) } \Rightarrow(4) \text { is true (proved) }
\end{gathered}
$$

1032. In acute $\triangle A B C$ the following relationship holds:

$$
\begin{aligned}
& \frac{2 \sqrt{3}}{R} \leq \frac{1}{a \cos A}+\frac{1}{b \cos B}+\frac{1}{c \cos C} \leq \frac{\sqrt{3}}{4 R \cos A \cos B \cos C} \\
& \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

Solution 1 by Lahiru Samarakoon-Sri Lanka
Consider, $\frac{2 \sqrt{3}}{R} \leq \sum \frac{1}{a \cos A}=\sum \frac{1}{2 R \sin A \cos A}:$ we have to prove, $\sum \frac{1}{\sin 2 A} \geq 2 \sqrt{3}$
Consider, $f(n)=\frac{1}{\sin n}=\csc n(n \in(0, \pi)) \because A B C$ acute triangle, so,

$$
0<2 A, 2 B, 2 C<\pi
$$

$$
f^{\prime}(n)=-\csc n \cdot \cot n \Leftrightarrow f^{\prime \prime}(n)=\csc ^{2} n(\csc n+\cot x) \text { then } f^{\prime \prime}(n) \geq 0
$$

$$
\therefore \sum \frac{1}{\sin 2 A} \geq 3 \frac{1}{\sin \left(\frac{2 A+2 B+2 C}{3}\right)}=\frac{3}{\sin \left(\frac{2 \pi}{3}\right)}=\frac{3 \times 2}{\sqrt{3}}=2 \sqrt{3} \text { it's true. }
$$

Consider, $\sum \frac{1}{a \cos A} \leq \frac{\sqrt{3}}{4 R \cos A \cos B \cos C}$. We have to prove,

$$
\frac{\sum b c \cdot \cos B \cdot \cos C}{4 R \Delta \cdot \cos A \cos B \cos C} \leq \frac{\sqrt{3}}{4 R \cos A \cos B \cos C}
$$

So, we have to prove, $\Sigma \frac{\cos B \cdot \cos C}{\sin A} \leq \frac{\sqrt{3}}{2}\left(\because \frac{1}{2} b c \operatorname{cin} A=\Delta\right)$

$$
\text { LHS }=\frac{1}{4 \Pi \sin A} \sum \sin 2 B \cdot \sin 2 C
$$

$$
\leq \frac{1}{4 \Pi \cos A} \frac{(\sin 2 A+\sin 2 B+\sin 2 C)^{2}}{3}(\because \sin 2 A, \sin 2 A, \sin 2 C \geq 0)
$$

$$
=\frac{1}{4 \Pi \sin A} \times \frac{1}{3} \times(4 \Pi \sin A)^{2}=\frac{4}{3}(\sin A \cdot \sin B \cdot \sin C) \leq \frac{4}{3} \times \frac{3 \sqrt{3}}{8}=\frac{\sqrt{3}}{2} \text { it's true (Proved) }
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 Solution 2 by Marian Ursărescu-Romania

$$
\text { From AM-GM } \Rightarrow \frac{1}{a \cos A}+\frac{1}{b \cos B}+\frac{1}{a \cos C} \geq 3 \sqrt[3]{\frac{1}{a b c \cos A \cos B \cos C}} \Rightarrow
$$

We must show this: $\frac{3}{\sqrt[3]{a b c \cos A \cos B \cos C}} \geq \frac{2 \sqrt{3}}{R} \Leftrightarrow$

$$
\begin{equation*}
\Leftrightarrow \frac{a b \cos A \cos B \cos C}{27} \leq \frac{R^{3}}{8 \cdot 3 \sqrt{3}} \Leftrightarrow a b \cos A \cos B \cos C \leq \frac{3 \sqrt{3}}{7} R^{3} \tag{1}
\end{equation*}
$$

But $a b c \leq 3 \sqrt{3} R^{3}$ and $\left.\cos A \cos B \cos C \leq \frac{1}{8}\right\} \Rightarrow(1)$ it's true.

Let $a \leq b \leq c \Rightarrow \cos A \geq \cos B \geq \cos C$. From Chebyshev's inequality \Rightarrow

$$
\frac{1}{a \cos A}+\frac{1}{b \cos B}+\frac{1}{c \cos C} \leq \frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C}\right) \Rightarrow
$$

We must show this: $\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C}\right) \leq \frac{\sqrt{3}}{4 R \cos A \cos B \cos C}$

$$
\begin{equation*}
\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)(\cos A \cos B+\cos A \cos C+\cos C \cos A) \leq \frac{3 \sqrt{3}}{4 R} \tag{2}
\end{equation*}
$$

But $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{\sqrt{3}}{2 r}$ (3). From (2)+ (3) we must show:

$$
\begin{equation*}
\sum \cos A \cos B \leq \frac{3 r}{2 R} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\text { But } \sum \cos A \cos B=\frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}} \tag{5}
\end{equation*}
$$

From (4)+ (5) we must show: $\frac{s^{2}+r^{2}-4 R^{2}}{4 R^{2}} \leq \frac{3 r}{2 R} \Leftrightarrow s^{2}+r^{2}-4 R^{2} \leq 6 R r$ (6)

From Gerretsen's inequality:

$$
\begin{equation*}
s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \Rightarrow s^{2}+r^{2}-4 R^{2} \leq 4 R r+4 r^{2} \tag{7}
\end{equation*}
$$

Form (6)+ (7) we must show: $4 R r+4 r^{2} \leq 6 R r \Leftrightarrow 4 r^{2} \leq 2 R r \Leftrightarrow 2 r \leq R$ (true Euler)
1033. In acute $\triangle A B C$ the following relationship holds:

$$
\cos A \sin (\sin A)+\cos B \sin (\sin B)+\cos C \sin (\sin C) \leq \frac{3}{2} \sin \left(\frac{\sqrt{3} R}{4 r}\right)
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{gathered}
A ; B ; C \in\left(0 ; \frac{\pi}{2}\right) \\
f(x)=\cos x \cdot \sin (\sin x) \\
f^{\prime}(x)=-\sin x \cdot \sin (\sin x)+\cos ^{2} x \cdot \cos (\sin x) \\
f^{\prime \prime}(x)=-\cos x \cdot \sin (\sin x)-\sin ^{2} x \cdot \cos (\sin x)-2 \cdot \cos x \\
\cdot \sin x \cdot \cos (\sin x)-\cos ^{3} x \cdot \sin (\sin x)= \\
=-\left(\left(\cos x+\cos ^{3} x\right) \cdot \sin (\sin x)+\left(\sin ^{2} x+2 \cos x \cdot \sin x\right) \cdot \cos (\sin x)\right)<0 \\
f^{\prime \prime}(x)<0 \\
\sum \cos A \cdot \sin (\sin A) \leq 3 \cdot \cos \frac{A+B+C}{3} \cdot \sin \left(\sin \frac{A+B+C}{3}\right)= \\
=\frac{3}{2} \cdot \sin \left(\sin \frac{\pi}{3}\right)=\frac{3}{2} \sin \left(\frac{\sqrt{3}}{2}\right) \stackrel{\text { Acuter }}{\text { Euler }} \frac{3}{2} \cdot \sin \left(\frac{\sqrt{3} R}{4 r}\right)
\end{gathered}
$$

1034. If in $\triangle A B C, I$ - incenter then:

$$
\begin{array}{r}
\left(\frac{A I+B I}{C I}\right)^{5}+\left(\frac{B I+C I}{A I}\right)^{5}+\left(\frac{C I+A I}{B I}\right)^{5}>\left(\frac{B C}{A I}\right)^{5}+\left(\frac{C A}{B I}\right)^{5}+\left(\frac{A B}{C I}\right)^{5} \\
\text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

Solution by Lahiru Samarakoon-Sri Lanka

For $A B I$ triangle, $A I+B I>A B .\left(\frac{A I+B I}{C I}\right)>\left(\frac{A B}{C I}\right)(\because C I>0) . \mathrm{So},\left(\frac{A I+B I}{C I}\right)^{5}>\left(\frac{A B}{C I}\right)^{5}$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

\therefore similarly, from $\triangle B I C$ and $\triangle A I C$, and get summation,

$$
\sum\left(\frac{A I+B I}{C I}\right)^{5}>\sum\left(\frac{B C}{A I}\right)^{5}
$$

1035. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \sqrt{\frac{r_{a}}{m_{a}}}+\sum_{c y c} \frac{h_{b}+h_{c}}{w_{a}} \geq 6 \sum_{c y c} \sin \frac{A}{2}
$$

Proposed by Bogdan Fustei - Romania
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
\because \boldsymbol{m}_{a} \leq \frac{R}{2 r} & h_{a} \text { etc., } \therefore \sqrt{\frac{r_{a}}{m_{a}}} \geq \sqrt{\frac{2 r}{R} \cdot \frac{r_{a}}{h_{a}}} \text { etc. } \Rightarrow \sum \sqrt{\frac{r_{a}}{m_{a}}} \geq \sum \sqrt{\frac{2 r}{R} \cdot \frac{\Delta}{s-a} \cdot \frac{a}{2 \Delta}} \\
& =\sum \sqrt{\frac{r}{R}} \sqrt{\frac{a b c s}{s(s-a) b c}}=\sum \sqrt{\frac{r}{R} \sqrt{\frac{a^{2} s}{4 R r s}} \cdot \frac{1}{\cos \frac{A}{2}}} \\
& =\sum \sqrt{\frac{r}{R}} \sqrt{\frac{1}{4 R r}} \cdot \frac{4 R \sin \frac{A}{2} \cos \frac{A}{2}}{\cos \frac{A}{2}}=2 \sum \sin \frac{A}{2}
\end{aligned}
$$

Now, $\frac{h_{b}+h_{c}}{w_{a}} \geq 4 \sin \frac{A}{2} \Leftrightarrow \frac{c a+a b}{2 R} \cdot \frac{(b+c)}{2 b c \cos _{\frac{A}{2}}^{2}} \geq 4 \sin \frac{A}{2} \Leftrightarrow a(b+c)^{2} \geq\left(4 R \sin \frac{A}{2} \cos \frac{A}{2}\right)(4 b c)$

$$
\Leftrightarrow a(b+c)^{2} \geq 4 a b c \Leftrightarrow(b+c)^{2} \geq 4 b c \rightarrow \operatorname{true} \Rightarrow \frac{h_{b}+h_{c}}{w_{a}} \stackrel{(a)}{\geq} 4 \sin \frac{A}{2}
$$

$$
\text { Similarly, } \frac{h_{c}+h_{a}}{w_{b}} \stackrel{(b)}{\geq} 4 \sin \frac{B}{2} \& \frac{h_{a}+h_{b}}{h_{c}} \stackrel{(c)}{\geq} 4 \sin \frac{C}{2}
$$

$$
\begin{aligned}
& \text { (a) }+(\mathrm{b})+(\mathrm{c}) \Rightarrow \sum \frac{h_{b}+h_{c}}{w_{a}} \stackrel{(2)}{\geq} 4 \sum \sin \frac{A}{2} \\
& \text { (1) }+(2) \Rightarrow \sum \sqrt{\frac{r_{a}}{m_{a}}}+\sum \frac{h_{b}+h_{c}}{w_{a}} \geq 6 \sum \sin \frac{A}{2}
\end{aligned}
$$

Solution 2 by Tran Hong-Vietnam

$$
\sum \sqrt{\frac{r_{a}}{m_{a}}}+\sum \frac{h_{b}+h_{c}}{w_{a}} \geq 6 \sum \sin \frac{A}{2}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

We have: $\frac{1}{m_{a}} \geq \frac{2 r}{R} \cdot \frac{1}{h_{a}}=\frac{2 r \cdot a}{R \cdot 2 r s}=\frac{a}{R s} \Rightarrow \sum \sqrt{\frac{r_{a}}{m_{a}}} \geq \sum \sqrt{\frac{r s \cdot a}{s-a} \cdot \frac{a}{R s}}=\sqrt{\frac{r a}{R(s-a)}}=$

$$
\begin{gather*}
\sum \sqrt{\tan \frac{A}{2} \cdot 4 \sin \frac{A}{2} \cdot \cos \frac{A}{2}}=2 \sum \sin \frac{A}{2} \tag{1}\\
\sum \frac{h_{b}+h_{c}}{w_{a}}=\sum \frac{2 S\left(\frac{1}{b}+\frac{1}{c}\right)}{\frac{2 b c}{b+c} \cos \frac{A}{2}}=\sum S \cdot \frac{(b+c)^{2}}{(b c)^{2}} \cdot \frac{1}{\cos \frac{A}{2}} \\
=\sum b c \sin \frac{A}{2} \cdot \cos \frac{A}{2} \cdot \frac{(b+c)^{2}}{(b c)^{2}} \cdot \frac{1}{\cos \frac{A}{2}}=\sum \sin \frac{A}{2} \cdot \frac{(b+c)^{2}}{b c} \geq 4 \sum \sin \frac{A}{2}
\end{gather*}
$$

$$
\left\{\because(b+c)^{2} \geq 4 b c\right\} \text {. Form (1)+(2) } \Rightarrow \text { Proved. }
$$

1036. If a, b and c are the lengths of the sides of a triangle, then:

$$
\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}-2\left[\left(\frac{a-b}{a+b}\right)^{2}+\left(\frac{b-c}{b+c}\right)^{2}+\left(\frac{c-a}{c+a}\right)^{2}\right] \geq 3
$$

Proposed by Titu Zvonaru, Neculai Stanciu-Romania
Solution 1 by Marian Ursărescu-Romania

$$
\begin{equation*}
\frac{a}{b+c-a}=\frac{2 R \sin A}{2 R(\sin B+\sin C-\sin A)}=\frac{\sin A}{\sin B+\sin C-\sin A} \tag{1}
\end{equation*}
$$

But if $A+B+C=\pi$ then: $\sin B+\sin C-\sin A=4 \sin \frac{B}{2} \sin \frac{C}{2} \cos \frac{A}{2}$ (2)

$$
\begin{align*}
& \text { From (1) }+(2) \Rightarrow \frac{a}{b+c-a}=\frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{4 \sin \frac{B}{2} \sin \frac{B}{2} \cos \frac{A}{2}}=\frac{\sin \frac{A}{2}}{2 \sin \frac{B}{2} \sin \frac{C}{2}} \tag{3}\\
& \text { From (3) } \Rightarrow \sum \frac{a}{b+c-a}=\sum \frac{\sin \frac{A}{2}}{2 \sin \frac{B}{2} \sin \frac{C}{2}}=\frac{1}{2} \sum \frac{\sum \sin ^{2} \frac{A}{2}}{\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}} \tag{4}
\end{align*}
$$

But $\sum \sin ^{2} \frac{A}{2}=\frac{2 R-r}{2 R}$ and $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{r}{4 R}$

$$
\begin{equation*}
\text { From (4)+(5) } \Rightarrow \sum \frac{a}{b+c-a}=\frac{2 R-r}{r}=2 \frac{R}{r}-1 \tag{5}
\end{equation*}
$$

From (6) inequality becomes: $2 \frac{R}{r}-1-2 \sum\left(\frac{a-b}{a+b}\right)^{2} \geq 3 \Leftrightarrow$

$$
\begin{aligned}
& \frac{R}{r}-2-\sum\left(\frac{a-b}{a+b}\right)^{2} \geq 0 \text { (7). But }(a+b)^{2} \geq 4 a b \Rightarrow \text { (7) becomes: } \\
& \frac{R}{r}-2-\sum \frac{(a-b)^{2}}{4 a b} \geq 0 \Leftrightarrow \frac{R}{r}-2-\sum \frac{a^{2}-2 a b+b^{2}}{a b} \geq 0 \Leftrightarrow
\end{aligned}
$$

$$
\begin{align*}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { wWW.ssmrmh.ro } \\
& \qquad \begin{array}{c}
\boldsymbol{R} \\
r
\end{array}-\mathbf{2}-\frac{\mathbf{1}}{\mathbf{4}} \sum \frac{\boldsymbol{a}^{2}+\boldsymbol{b}^{2}}{\boldsymbol{a b}}+\frac{\mathbf{3}}{\mathbf{2}} \geq \mathbf{0} \Leftrightarrow \frac{\boldsymbol{R}}{\boldsymbol{r}}-\frac{\mathbf{1}}{2}-\frac{\mathbf{1}}{4} \sum \frac{\boldsymbol{a}^{2}+\boldsymbol{b}^{2}}{\boldsymbol{a b}} \geq \mathbf{0} \Leftrightarrow \\
& \Leftrightarrow \frac{4 R}{r}-\mathbf{2}-\sum \frac{a^{2}+b^{2}}{a b} \geq \mathbf{0} \text { (8) } \tag{8}\\
& \text { But } \sum \frac{a^{2}+b^{2}}{a b}=\frac{s^{2}+r^{2}-2 R r}{2 R r} \tag{9}
\end{align*}
$$

From (8)+ (9) we must show this: $4 \frac{R}{r}-2-\frac{s^{2}+r^{2}-2 R r}{2 R r} \geq 0$

$$
\begin{equation*}
\text { But from Gerretsen } s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \tag{11}
\end{equation*}
$$

From (10)+(11) we must show: $4 \frac{R}{r}-2-\frac{4 R^{2}+2 R r+4 r^{2}}{2 R r} \geq 0$. Let $\frac{R}{r}=x, x \geq 2$

$$
\Rightarrow 4 x-2-\frac{4 x^{2}+2 x+4}{2 x} \geq 0 \Leftrightarrow 2 x^{2}-3 x-2 \geq 0 \Leftrightarrow(2 x+1)(x-2) \geq 0 \text { true. }
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\Delta A B C, \sum \frac{a}{b+c-a}-2 \sum\left(\frac{a-b}{a+b}\right)^{2} \stackrel{(1)}{\geq} 3 \\
(1) \Leftrightarrow 3+\sum \frac{a}{b+c-a} \geq 6+2 \sum\left(\frac{a-b}{a+b}\right)^{2} \\
\Leftrightarrow \sum\left(\frac{a}{b+c-a}+1\right) \geq 2 \sum\left(1+\frac{(a-b)^{2}}{(a+b)^{2}}\right)=\sum \frac{4\left(a^{2}+b^{2}\right)}{(a+b)^{2}} \\
\Leftrightarrow \frac{1}{2} \sum\left(\frac{b+c}{s-a}\right) \stackrel{(1)}{\geq} \sum \frac{4\left(a^{2}+b^{2}\right)}{(a+b)^{2}}
\end{gathered}
$$

$$
\because(a+b)^{2} \geq 4 a b, \text { etc., RHS of (1) } \stackrel{(2)}{\leq} \sum \frac{a^{2}+b^{2}}{a b}=\frac{\sum c\left(a^{2}+b^{2}\right)}{a b c}=\frac{\sum a b(2 s-c)}{4 R r s}
$$

$$
=\frac{2 s\left(s^{2}+4 R r+r^{2}\right)-12 R r s}{4 R r s}=\frac{s^{2}-2 R r+r^{2}}{2 R r}
$$

LHS of (1) $=\frac{1}{2} \sum\left(\frac{2 s-a}{s-a}\right)=\frac{1}{2} \sum\left(1+\frac{s}{s-a}\right)=\frac{3}{2}+\frac{s}{2}\left(\frac{\sum(s-b)(s-c)}{(s-a)(s-b)(s-c)}\right)$

$$
=\frac{3}{2}+\frac{s}{2 s r^{2}}\left(3 s^{2}-4 s^{2}+s^{2}+4 R r+r^{2}\right)=\frac{3}{2}+\frac{4 R+r}{2 r} \stackrel{(3)}{=} \frac{2(R+r)}{r}
$$

(2), (3) \Rightarrow it suffices to prove: $\frac{2(R+r)}{r} \geq \frac{s^{2}-2 R r+r^{2}}{2 R r}$

$$
\Leftrightarrow 4 R(R+r)+2 R r-r^{2} \geq s^{2} \Leftrightarrow s^{2} \stackrel{(4)}{\leq} 4 R^{2}+6 R r-r^{2}
$$

Now, Gerretsen $\Rightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \stackrel{?}{\leq} 4 R^{2}+6 R r-r^{2} \Leftrightarrow R \stackrel{?}{\geq} 2 r$ \rightarrow true (Euler) \Rightarrow (4) is true (Proved)

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

1037. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a}}{r_{b}+r_{c}}+\frac{r_{b}}{r_{c}+r_{b}}+\frac{r_{c}}{r_{a}+r_{b}}+\frac{3}{2} \leq \frac{12}{6-\frac{R}{r}}
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan
Solution by M yagmarsuren Yadamsuren-Darkhan-M ongolia

$$
\begin{aligned}
& \frac{r_{a}}{r_{b}+r_{c}}+\frac{r_{b}}{r_{c}+r_{a}}+\frac{r_{c}}{r_{a}+r_{b}}+\frac{3}{2} \leq \frac{12}{6-\frac{R}{r}} \\
& \sum\left(\frac{r_{a}}{r_{b}+r_{c}}+1\right)+\frac{3}{2}-3 \leq \frac{12 r}{6 r-R} ; \sum r_{a} \cdot \sum \frac{1}{r_{a}+r_{b}} \leq \frac{12 r}{6 r-R}+\frac{3}{2}=\frac{42 r-3 R}{2(6 r-R)} \\
& \sum r_{a} \cdot \frac{\sum\left(r_{a}+r_{b}\right)\left(r_{b}+r_{c}\right)}{\prod\left(r_{a}+r_{b}\right)} \leq \frac{42 r-3 R}{2(6 r-R)} \\
& \sum r_{a} \cdot \frac{\left(\sum r_{a}\right)^{2}+\sum r_{a} r_{b}}{\sum r_{a} \cdot \sum r_{a} \cdot r_{b}-r_{a} r_{b} r_{c}} \leq \frac{42 r-3 R}{2(6 r-R)} \\
& \text { a) } \sum r_{a}=4 R+r \\
& \text { b) } \sum r_{a} r_{b}=s^{2} \\
& \text { c) } r_{a} r_{b} r_{c}=r \cdot s^{2} \\
& (4 R+r)\left[\frac{(4 R+r)^{2}+s^{2}}{(4 R+r) s^{2}-r s^{2}}\right]=(4 R+r)\left[\frac{(4 R+r)^{2}+s^{2}}{4 R s^{2}}\right] \leq \frac{42 r-3 R}{2(6 r-R)} \\
& (6 r-R)(4 R+r)^{3}+(4 R+r)(6 r-R) \cdot s^{2} \leq 2 R(42 r-3 r) s \\
& (6 r-R)(4 R+r)^{3} \leq\left(61 R r-2 R^{2}-6 r^{2}\right) s^{2} \\
& 6\left(R r-2 r^{2}-6 r^{2}\right)>0 \\
& (6 r-R)(4 R+r)^{3} \leq\left(61 R r-2 R^{2}-6 r^{2}\right)\left(16 R r-5 r^{2}\right) ; \frac{R}{2}=t \\
& (6-t)(4 t+1)^{3} \leq\left(61 t-2 t^{2}-6\right)(16 t-5) \\
& -64 t^{4}+336 t^{3}+276 t^{2}+71 t+6 \leq-32 t^{3}+986 t^{2}-410 t+30 \\
& 32 t^{4}+184 t^{3}+355 t^{2}-236 t+12 \geq 0 \\
& \underbrace{(t-2)^{2}}_{\geq 0} \underbrace{\left(32 t^{2}-56+2\right)^{2}}_{\geq 0} \geq 0
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

1038.

If in $\triangle A B C, \omega$ - Brocard angle then:

$$
\sin \omega \leq \frac{(a+b)^{2}+(b+c)^{2}+(c+a)^{2}}{16\left(a^{2}+b^{2}+c^{2}\right)}+\frac{S}{\sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \because \sin \omega=\frac{2 s}{\sqrt{\sum a^{2} b^{2}}}, \therefore \text { given inequality } \Leftrightarrow \frac{s}{\sqrt{\sum a^{2} b^{2}}} \leq \frac{\Sigma(a+b)^{2}}{16 \sum a^{2}} \Leftrightarrow \\
& \Leftrightarrow \sqrt{\sum a^{2} b^{2}} \sum(a+b)^{2} \stackrel{(1)}{\geq} r s \cdot 16 \sum a^{2} \\
& \text { Now, LHS of }(1) \geq \sqrt{a b c(2 S)}\left\{2\left(\sum a^{2}+\sum a b\right)\right\} \\
& =4 S \sqrt{2 R r}\left(3 S^{2}-4 R r-r^{2}\right) \stackrel{?}{\geq} 32 r s\left(S^{2}-4 R r-r^{2}\right) \\
& \Leftrightarrow 2 R r\left(3 S^{2}-4 R r-r^{2}\right)^{2} \stackrel{?}{\geq} 64 r^{2}\left(S^{2}-4 R r-r^{2}\right)^{2} \\
& \Leftrightarrow R\left(3 S^{2}-4 R r-r^{2}\right)^{2} \geq 32 r\left(S^{2}-4 R r-r^{2}\right)^{2} \\
& \Leftrightarrow R\left\{9 S^{4}+\left(4 R r+r^{2}\right)^{2}-6 S^{2}\left(4 R r+r^{2}\right)\right\} \stackrel{?}{\geq} 32 r\left\{S^{4}+\left(4 R r+r^{2}\right)^{2}-2 S^{2}\left(4 R r+r^{2}\right)\right\} \\
& \Leftrightarrow(9 R-18 r) S^{4}-6 R\left(4 R r+r^{2}\right) S^{2}+64 r^{2}(4 R+r) S^{2}+ \\
& +\operatorname{Rr}^{2}(4 R+r)^{2}-32 r^{3}(4 R+r)^{2} \sum_{(2)}^{?} 14 r s^{4}
\end{aligned}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
Now, LHS of (2) $\underset{(\bar{a})}{\text { Gerretsen }}\left(16 R r-5 r^{2}\right)(9 R-18 r) S^{2}-$
$-6 R\left(4 R r+r^{2}\right) S^{2}+64 r^{2}(4 R+r) S^{2}+R r^{2}(4 R r+r)^{2}-32 r^{3}(4 R+r)^{2} \&$ also,

$$
\text { RHS of (2) } \underset{(b)}{\leq} 14 r S^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)
$$

(a), (b) \Rightarrow in order to prove (2), it suffices to prove:

$$
\begin{gathered}
s^{2}\left\{\left(16 R r-5 r^{2}\right)(9 R-18 r)-6 R\left(4 R r+r^{2}\right)+64 r^{2}(4 R+r)-14 r\left(4 R^{2}+4 R r+3 r^{2}\right)\right\} \\
+R r^{2}(4 R+r)^{2}-32 r^{3}(4 R+r)^{2} \geq 0 \\
\Leftrightarrow S^{2}\left(64 R^{2}-139 R r+112 r^{2}\right)+R r(4 R+r)^{2}-32 r^{2}(4 R+r)^{2} \stackrel{(3)}{\geq} 0 \\
\because 64 R^{2}-139 R r+112 r^{2} \\
=(R-2 r)(64 R-11 r)+90 r^{2}>0(\because R \stackrel{\text { Euler }}{\geq} 2 r)
\end{gathered}
$$

$$
\begin{gathered}
\therefore \text { LHS of (3) } \stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)\left(64 R^{2}-139 R r+112 r^{2}\right)+ \\
+R r(4 R+r)^{2}-32 r^{2}(4 R+r)^{2} \geq 0 \Leftrightarrow 130 t^{3}-381 t^{2}+279 t-74 \stackrel{?}{\geq} 0\left(t=\frac{R}{r}\right) \\
\Leftrightarrow(t-2)\{130 t(t-2)+139 t+37\} \stackrel{?}{\geq} 0 \rightarrow \text { true } \because t \stackrel{\text { Euler }}{\geq} 2 \text { (Proved) }
\end{gathered}
$$

Solution 2 by Tran Hong-Vietnam

$$
\begin{align*}
\sin \omega= & \frac{2 S}{\sqrt{\sum a^{2} b^{2}}} . \text { Inequality } \Leftrightarrow \frac{S}{\sqrt{\sum a^{2} b^{2}}} \leq \frac{\sum a^{2}+\sum a b}{8 \sum a^{2}} \\
& \Leftrightarrow \frac{2 \sum a^{2} b^{2}-\sum a^{4}}{\sum a^{2} b^{2}} \leq\left(\frac{\sum a^{2}+\sum a b}{2 \sum a^{2}}\right)^{2} \tag{1}
\end{align*}
$$

Let $p=\sum a, q=\sum a b, r=a b c$, suppose $c \leq b \leq a$
$(1) \Leftrightarrow\left\{8\left(q^{2}-2 p r\right)-4\left(p^{4}-4 p^{2} q+2 q^{2}+4 p r\right)\right\}\left(p^{2}-2 q\right)^{2} \leq\left(q^{2}-2 p r\right)\left(p^{2}-q\right)^{2} ;$

$$
\begin{gathered}
\Leftrightarrow\left\{-2 p\left(p^{2}-q\right)^{2}+32 p\left(p^{2}-2 q\right)^{2}\right\} r+g(p, q) \geq 0 \\
\Leftrightarrow 2 p\left\{16\left(p^{2}-2 q\right)^{2}-\left(p^{2}-q\right)^{2}\right\} r+g(p, q) \geq 0 \\
\Leftrightarrow 2 p\left\{15 p^{4}-62 p^{2} q+63 q^{2}\right\} r+g(p, q) \geq 0
\end{gathered}
$$

$$
\text { Let } f(r)=2 p\left\{15 p^{4}-62 p^{2} q+63 q^{2}\right\} r+g(p, q)
$$

$15 p^{4}-62 p^{2} q+63 q^{2}=\left(3 p^{2}-7 q\right)\left(5 p^{2}-9 q\right)>0\left(\right.$ because $p^{2} \geq 3 q$)
\Rightarrow The function f increasing of $r=a b c$, by $A B C$ Theorem we just check:

$$
\because \boldsymbol{c}=\mathbf{0}, \mathbf{0}<a \leq b:
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
\text { (1) } \Leftrightarrow \frac{2 a^{2} b^{2}-\left(a^{4}+b^{4}\right)}{2} \leq\left(\frac{a^{2}+b^{2}+a b}{2 a^{2}+2 b^{2}}\right)^{2} \\
\Leftrightarrow 4\left(a^{4}-b^{4}\right)^{2}+a^{2} b^{2}\left(a^{2}+a b+b^{2}\right)^{2} \geq 0 \text { (true) } \\
\because a=b, c \leq a: \\
(1) \Leftrightarrow \frac{4 a^{2} c^{2}-c^{4}}{a^{4}+2 a^{2} c^{2}} \leq\left(\frac{3 a^{2}+c^{2}+2 a c}{4 a^{2}+2 c^{2}}\right)^{2} \\
\Leftrightarrow(a-c)^{2}\left(9 a^{6}+30 a^{5} c+15 a^{4} c^{2}+28 a^{3} c^{3}+14 a^{2} c^{4}+8 a c^{5}+4 c^{6}\right) \geq 0
\end{gathered}
$$

$$
\text { It is true. Proved. Equality } \Leftrightarrow a=b=c
$$

1039. In $\triangle A B C$ the following relationship holds:

$$
16\left(\sum a b \sin ^{2} A\right)\left(\sum a b \cos ^{2} A\right) \leq 729 R^{4}
$$

Proposed by Daniel Sitaru - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\mathrm{AM} \geq \mathrm{GM} \Rightarrow \sqrt{\sum a b \sin ^{2} A} \sqrt{\sum a b \cos ^{2} A} \leq \frac{\sum a b \sin ^{2} A+\sum a b \cos ^{2} A}{2} \\
=\frac{a b\left(\sin ^{2} A+\cos ^{2} A\right)+b c\left(\sin ^{2} B+\cos ^{2} B\right)+c a\left(\sin ^{2} C+\cos ^{2} C\right)}{2} \\
=\frac{\sum a b}{2}\left(\because \sin ^{2} A+\cos ^{2} A=1, \text { etc. }\right) \therefore\left(\sum a b \sin ^{2} A\right)\left(\sum a b \cos ^{2} A\right) \leq \frac{\left(\sum a b\right)^{2}}{4} \\
\Rightarrow 16\left(\sum a b \sin ^{2} A\right)\left(\sum a b \cos ^{2} A\right) \leq 4\left(\sum a b\right)^{2} \leq 324 R^{4} \\
\Leftrightarrow \sum a b \leq 9 R^{2} \rightarrow \text { true } \because \sum a b \leq \sum a^{2} \stackrel{\text { Leibnitz }}{\leq} 9 R^{2} \\
\text { (Proved) }
\end{gathered}
$$

1040. If in $\triangle A B C, I$ - incentre, $\Delta A^{\prime} B^{\prime} C^{\prime}$ - pedal triangle of incentre then:

$$
\frac{I A \cdot I A^{\prime}}{w_{a}}+\frac{I B \cdot I B^{\prime}}{w_{b}}+\frac{I C \cdot I C^{\prime}}{w_{c}} \leq \frac{3 \sqrt{3}}{4 S} \cdot I A \cdot I B \cdot I C
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution by Soumava Chakraborty-Kolkata-India

$$
\text { Angle - bisector theorem } \Rightarrow \frac{A^{\prime} C}{A^{\prime} B}=\frac{b}{c} \Rightarrow \frac{a}{A^{\prime} B}=\frac{b+c}{c} \Rightarrow A^{\prime} B \stackrel{(1)}{=} \frac{a c}{b+c}
$$

Angle - bisector on $\Delta A B A^{\prime} \Rightarrow \frac{I A^{\prime}}{I A} \stackrel{b y(1)}{=} \frac{\frac{a c}{b+c}}{c}=\frac{a}{b+c} \Rightarrow I A^{\prime}=\frac{a}{b+c} I A \Rightarrow I A^{\prime} \cdot I A=\frac{a}{b+c} I A^{2}$

$$
\begin{aligned}
& =\frac{a}{b+c} \cdot \frac{r^{2}}{\sin ^{2} \frac{A}{2}} \Rightarrow \frac{I A \cdot I A^{\prime}}{w_{a}}=\frac{a r^{2} b c(b+c)}{(b+c)(s-b)(s-c) 2 b c \cos \frac{A}{2}} \\
& =\frac{4 R \sin \frac{A}{2} \cos \frac{A}{2} r^{2}}{2(s-b)(s-c) \cos \frac{A}{2}}=\frac{2 R r^{2}}{(s-b)(s-c)} \sqrt{\frac{(s-b)(s-c)}{b c}}
\end{aligned}
$$

$$
=\frac{2 R r^{2}}{\sqrt{b c(s-b)(s-c)}}=\frac{2 R r^{2} \sqrt{a(s-a)}}{\sqrt{4 R r s \cdot r^{2} S}}=\sqrt{\frac{4 R^{2} r^{4}}{4 R r^{3} s^{2}}} \sqrt{a(s-a)} \stackrel{(a)}{=} \sqrt{\frac{R r}{s^{2}}} \sqrt{a(s-a)}
$$

$$
\text { Similarly, } \frac{I B \cdot I B^{\prime}}{w_{b}} \stackrel{(b)}{=} \sqrt{\frac{R r}{s^{2}}} \sqrt{b(s-b)} \& \frac{I C \cdot I C^{\prime}}{w_{c}} \stackrel{(c)}{=} \sqrt{\frac{R r}{s^{2}}} \sqrt{\boldsymbol{c}(s-c)}
$$

$$
\text { (a) }+\mathbf{(b)}+\mathbf{(c)} \Rightarrow \mathbf{L H S}=\sqrt{\frac{R r}{s^{2}}} \sum \sqrt{\boldsymbol{a}(s-a)}
$$

$$
\stackrel{C B S}{\leq} \frac{\sqrt{R r}}{s} \sqrt{3} \sqrt{\sum a(s-a)}=\frac{\sqrt{3 R r}}{s} \sqrt{s(2 s)-2\left(s^{2}-4 R r-r^{2}\right)}
$$

$$
\stackrel{(i)}{=} \frac{\sqrt{3 R r}}{s} \sqrt{2\left(4 R r+r^{2}\right)}=\frac{r}{s} \sqrt{6 R(4 R+r)}
$$

$$
\text { Now, RHS }=\frac{3 \sqrt{3}}{4 r s} \cdot \frac{r^{3}}{\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}=\frac{3 \sqrt{3} r^{2}}{s\left(\frac{r}{R}\right)} \stackrel{(i i)}{=} \frac{3 \sqrt{3} R r}{s}
$$

(i), (ii) \Rightarrow it suffices to prove: $6 R(4 R+r) \leq 27 R^{2} \Leftrightarrow 3 R^{2} \geq 6 R r \Leftrightarrow R \geq 2 r \rightarrow$ true
(Euler) (Proved)

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
1041. In $\triangle A B C$ the following relationship holds:

$$
\frac{\boldsymbol{m}_{a}}{\boldsymbol{h}_{a}}+\frac{\boldsymbol{m}_{b}}{\boldsymbol{h}_{b}}+\frac{\boldsymbol{m}_{c}}{\boldsymbol{h}_{c}} \geq \frac{1}{2}\left(\frac{h_{b}+h_{c}}{h_{a}}+\frac{h_{c}+h_{a}}{h_{b}}+\frac{h_{a}+h_{b}}{h_{c}}\right)
$$

Proposed by Bogdan Fustei - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\left.\right)=\frac{1}{2} \sum\left(\frac{b^{2}+c^{2}}{b c}\right)=\frac{\sum a^{2} b+\sum a b^{2}}{2 a b} \stackrel{b y(1)}{=} R H S .
$$

1042. In $\triangle A B C$ the following relationship holds:

$$
\frac{1}{m_{a}} \sin \frac{A}{2}+\frac{1}{m_{b}} \sin \frac{B}{2}+\frac{1}{m_{c}} \sin \frac{C}{2} \leq \frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{2 m_{a} m_{b} m_{c}}
$$

Proposed by Daniel Sitaru - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum \frac{\sin \frac{A}{2}}{m_{a}}=\frac{\sum m_{a}^{2}}{2 m_{a} m_{b} m_{c}} \Leftrightarrow \sum m_{b} m_{c} \sin \frac{A}{2} \stackrel{(1)}{\leq} \frac{\sum m_{a}^{2}}{2}=\frac{3 \sum a^{2}}{8} \\
& \sum m_{b} m_{c} \sin \frac{A}{2} \stackrel{C B S}{\leq} \sqrt{\sum m_{b}^{2} m_{c}^{2}} \sqrt{\sum \sin ^{2} \frac{A}{2}}=\sqrt{\frac{9 \sum a^{2} b^{2}}{16}} \sqrt{\frac{\sum(1-\cos A)}{2}} \\
& =\sqrt{\frac{9 \sum a^{2} b^{2}}{16}} \sqrt{\frac{2 R-r}{2 R}} \stackrel{?}{\leq} \frac{3 \sum a^{2}}{8} \Leftrightarrow \frac{9 \sum a^{2} b^{2}}{16}\left(\frac{2 R-r}{2 R}\right) \stackrel{?}{\leq} \frac{9}{64}\left(\sum a^{2}\right)^{2} \\
& \Leftrightarrow 2(2 R-r)\left(\left(\sum a b\right)^{2}-2 a b c(2 s)\right) \stackrel{?}{\leq} 4 R\left(s^{2}-4 R r-r^{2}\right)^{2} \\
& \Leftrightarrow 2(2 R-r)\left(s^{2}+4 R r+r^{2}\right)^{2}-4 R\left(s^{2}-4 R r-r^{2}\right)^{2} \stackrel{?}{\leq} 32(2 R-r) R r s^{2}
\end{aligned}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\Leftrightarrow 2 R\left(\left(s^{2}+4 R r+r^{2}\right)^{2}-\left(s^{2}-4 R r-r^{2}\right)^{2}\right) \stackrel{?}{\leq} 16(2 R-r) R r s^{2}+r\left(s^{2}+4 R r+r^{2}\right)^{2} \\
\Leftrightarrow 2 R\left(2 s^{2}\right)\left(8 R r+2 r^{2}\right) \stackrel{?}{\leq} 16(2 R-r) R r s^{2}+r\left(s^{2}+4 R r+r^{2}\right)^{2} \\
\Leftrightarrow s^{4}+r^{2}(4 R+r)^{2}+2 s^{2}\left(4 R r+r^{2}\right) \stackrel{?}{\geq} 24 R r s^{2}
\end{gathered}
$$

Now, LHS of (2) $\stackrel{\text { Gerretsen }}{\leq} s^{2}\left(16 R r-5 r^{2}\right)+r^{2}(4 R+r)^{2}+2 s^{2}\left(4 R r+r^{2}\right) \xrightarrow[\geq]{\geq} 24 R r s^{2}$

$$
\Leftrightarrow r^{2}(4 R+r)^{2} \geq ? 3 r^{2} s^{2} \Leftrightarrow 4 R+r \geq ? \sqrt{3} s \rightarrow \text { true (Trucht) } \Rightarrow(1) \text { is true (Done). }
$$

1043. In $\triangle A B C: P=e^{(\sin A+2 \sin B)(\sin B+2 \sin C)(\sin C+2 \sin A)}$

Find: $\max P$

Proposed by Nguyen Van Nho-Nghe An-Vietnam

Solution by Sagar Kumar-Patna Bihar-India

$$
\begin{gathered}
P=e^{(\sin A+2 \sin B)(\sin B+2 \sin C)(\sin C+2 \sin A)} \Rightarrow \cos 0<A, B, C<\pi \Rightarrow \\
\Rightarrow \sin A, \sin B, \sin C>0 \Rightarrow(\sin A+2 \sin B)(\sin B+2 \sin C)(\sin C+2 \sin A) \\
\leq\left(\frac{3(\sin (A)+\sin B+\sin C)}{3}\right)^{3} \\
\mathrm{AM} \geq \mathrm{GM} \Rightarrow L H S \leq(\sin (A)+\sin B+\sin C)^{3}
\end{gathered}
$$

and we know that in a $\triangle A B C: \sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2} \Rightarrow L H S \leq\left(\frac{3 \sqrt{3}}{2}\right)^{3}=\frac{81 \sqrt{3}}{8}$

$$
\text { Hence } P_{\max } \leq e^{\left(\frac{81 \sqrt{3}}{8}\right)} \text {. Equality holds when } A=B=C=\frac{\pi}{3}
$$

1044. In $\triangle A B C, I$ - incentre, R_{a}, R_{b}, R_{c} - circumradii in $\triangle B I C, \triangle C I A, \triangle A I B$.

Prove that:

$$
2 R^{2}-2 R r-r^{2} \leq \frac{1}{4 R^{2}}\left(R_{a}^{4}+R_{b}^{4}+R_{c}^{4}\right) \leq 4 R^{2}-8 R r+3 r^{2}
$$

Proposed by Marian Ursărescu - Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 1 by Bogdan Fustei-Romania

$$
\left.\begin{array}{c}
R_{a}=2 R \sin \frac{A}{2}(\text { and analogous) } \\
\sin \frac{A}{2}=\sqrt{\frac{r_{a}-r}{4 R}}(\text { and analogous })
\end{array}\right) R_{a}=\sqrt{R\left(r_{a}-r\right)} \text { (and analogous) }
$$

$\frac{R_{a}^{4}+R_{b}^{4}+R_{c}^{4}}{4 R^{2}}=\frac{2 R^{2}\left(8 R^{2}-s^{2}+r^{2}\right)}{4 R^{2}}=\frac{8 R^{2}-s^{2}+r^{2}}{2}$. The inequality from enunciation becomes:

$$
2 R^{2}-2 R r-r^{2} \leq \frac{8 R^{2}-s^{2}+r^{2}}{2} \leq 4 R^{2}-8 R r+3 r^{2}
$$

$$
4 R^{2}-4 R r-2 r^{2} \leq 8 R^{2}-s^{2}+r^{2} \Rightarrow s^{2} \leq 8 R^{2}+r^{2}-4 R^{2}+4 R r+2 r^{2}=
$$

$$
=4 R^{2}+4 R r+3 r^{2} \quad \text { (Gerretsen's inequality) }
$$

$8 r^{2}-s^{2}+r^{2} \leq 8 R^{2}-16 R r+6 r^{2} \Rightarrow 16 R r-5 r^{2} \leq s^{2}$ (Gerretsen's inequality)
From the above the inequality from enunciation is proved.
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
2 R^{2}-2 R r-r^{2} \stackrel{(a)}{\leq} \frac{\sum R_{a}^{4}(b)}{4 R^{2}} \leq 4 R^{2}-8 R r+3 r^{2}
$$

From $\triangle B I C, \frac{B I \cdot C I \cdot B C}{4 R_{a}}=\frac{1}{2} B C \cdot r \Rightarrow R_{a}=\frac{r^{2} \sin \frac{A}{2}}{2 r \sin \frac{B}{2} \sin \frac{C}{2} \sin \frac{A}{2}}=\frac{r \sin \frac{A}{2}}{2\left(\frac{r}{4 R}\right)}=2 R \sin \frac{A}{2}$

$$
\text { Similarly, } R_{b}=2 R \sin \frac{B}{2} \& R_{c}=2 R \sin \frac{C}{2}
$$

$$
\therefore \frac{\sum R_{a}^{4}}{4 R^{2}}=\frac{16 R^{4} \sum \sin ^{4} \frac{A}{2}}{4 R^{2}} \text { (using above } 3 \text { relations) }
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
$=\sum R^{2}\left(2 \sin ^{2} \frac{A}{2}\right)^{2}=R^{2} \sum(1-\cos A)^{2}=R^{2} \sum\left(1+1-\sin ^{2} A-2 \cos A\right)$
$=6 R^{2}-\sum \frac{a^{2} \cdot R^{2}}{4 R^{2}}-2 R^{2}\left(1+\frac{r}{R}\right)=6 R^{2}-\frac{s^{2}-4 R r-r^{2}}{2}-2 R(R+r)$
$=\frac{12 R^{2}-s^{2}+4 R r+r^{2}-4 R^{2}-4 R r}{2} \stackrel{(1)}{=} \frac{8 R^{2}+r^{2}-s^{2}}{2}$
(1) \Rightarrow (a) $\Leftrightarrow 8 R^{2}+r^{2}-s^{2} \geq 4 R^{2}-4 R r-2 r^{2}$
$\Leftrightarrow s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \rightarrow$ true by Gerretsen \Rightarrow (a) is true
Also, (1) \Rightarrow (b) $\Leftrightarrow 8 R^{2}+r^{2}-s^{2} \leq 8 R^{2}-16 R r+6 r^{2}$
$\Leftrightarrow s^{2} \geq 16 R r-5 r^{2} \rightarrow$ true by Gerretsen $\Rightarrow(\mathrm{b})$ is true (Done)
1045. In $\triangle A B C$ the following relationship holds:
$a^{3} \cos B \cos C+b^{3} \cos C \cos A+c^{3} \cos A \cos B \geq \frac{27 a b c}{\left(\frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C}\right)^{2}}$
Proposed by Daniel Sitaru - Romania
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\frac{a b c}{2 R^{2}} \sum a^{2}-\sum a^{3} \cos A=\frac{4 R r s}{R^{2}}\left(s^{2}-4 R r-r^{2}\right)-\sum a^{3}\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right) \\
=\frac{4 r s}{R}\left(s^{2}-4 R r-r^{2}\right)-\sum \frac{a^{4}\left(b^{2}+c^{2}-a^{2}\right)}{2 a b c} \\
=\frac{4 r s\left(s^{2}-4 R r-r^{2}\right)}{R}-\frac{\sum a^{2} b^{2}\left(\sum a^{2}-c^{2}\right)-\sum a^{6}}{8 R r s} \\
\stackrel{(1)}{=} \frac{32 r^{2} s^{2}\left(s^{2}-4 R r-r^{2}\right)-\left(\sum a^{2} b^{2}\right)\left(\sum a^{2}\right)+3 a^{2} b^{2} c^{2}+\sum a^{6}}{8 R r s}
\end{gathered}
$$

Numerator $=32 r^{2} s^{2}\left(s^{2}-4 R r-r^{2}\right)-\left(\sum a^{2} b^{2}\right)\left(\sum a^{2}\right)+3 a^{2} b^{2} c^{2}+3 a^{2} b^{2} c^{2}+$

$$
\begin{gathered}
+\sum a^{2}\left(\sum a^{4}-\sum a^{2} b^{2}\right)= \\
=32 r^{2} s^{2}\left(s^{2}-4 R r-r^{2}\right)-2\left(\sum a^{2} b^{2}\right)\left(\sum a^{2}\right)+96 R^{2} r^{2} s^{2}+ \\
+\left(\sum a^{2}\right)\left\{\left(\sum a^{2}\right)^{2}-2 \sum a^{2} b^{2}\right\}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\begin{gathered}
=32 r^{2} s^{2}\left(s^{2}-4 R r-r^{2}\right)-8\left(\sum a^{2} b^{2}\right)\left(s^{2}-4 R r-r^{2}\right)+ \\
+96 R^{2} r^{2} S^{2}+8\left(s^{2}-4 R r-r^{2}\right)^{2} \\
=8\left(s^{2}-4 R r-r^{2}\right)\left\{\left(s^{2}-4 R r-r^{2}\right)^{2}-\left(\sum a b\right)^{2}+16 R r s^{2}+4 r^{2} s^{2}\right\}+ \\
+96 R^{2} r^{2} S^{2} \\
=8\left(s^{2}-4 R r-r^{2}\right)\left\{\left(2 s^{2}\right)\left(-8 R r-2 r^{2}\right)+16 R r s^{2}+4 r^{2} s^{2}+96 R^{2} r^{2} S^{2}\right\} \\
\stackrel{(2)}{=} 96 R^{2} r^{2} S^{2}
\end{gathered}
$$

$$
\text { (1), (2) } \Rightarrow \frac{a b c}{2 R^{2}} \sum a^{2}-\sum a^{3} \cos A=\frac{96 R^{2} r^{2} s^{2}}{8 R r s} \stackrel{(3)}{=} 12 R r s
$$

Now, $\sum a^{3} \cos B \cos C=\frac{1}{2} \sum a^{3}(2 \cos B \cos C)=$

$$
=\frac{1}{2} \sum a^{3}\{\cos (B+C)+\cos (B-C)\}=
$$

$$
=-\frac{1}{2} \sum a^{3} \cos A+\frac{1}{2} \sum a^{2} \cdot 2 R \sin (B+C) \cos (B-C)
$$

$$
=-\frac{1}{2} \sum a^{3} \cos A+\frac{R}{2} \sum a^{2}(\sin 2 B+2 \sin 2 C)
$$

$$
=-\frac{1}{2} \sum a^{3} \cos A+\frac{R}{2} \sum a^{2}\left(\sum \sin 2 A-\sin 2 A\right)
$$

$$
=-\frac{1}{2} \sum a^{3} \cos A+\frac{R}{2}\left(\sum a^{2}\right)\left(4 \frac{a b c}{8 R^{3}}\right)-\frac{R}{2} \sum a^{2} \cdot 2 \sin A \cos A
$$

$$
=-\frac{1}{2} \sum a^{3} \cos A+\frac{R}{2}\left(\sum a^{2}\right)\left(\frac{a b c}{2 R^{3}}\right)-\frac{1}{2} \sum a^{2} \cdot a \cos A
$$

$$
=-\sum a^{3} \cos A+\frac{a b c}{4 R^{2}}\left(\sum a^{2}\right)
$$

$$
=\left(\frac{a b c}{2 R^{2}}\left(\sum a^{2}\right)-\sum a^{3} \cos A\right)-\frac{a b c}{4 R^{2}}\left(\sum a^{2}\right)
$$

$$
\stackrel{\operatorname{by}(3)}{=}(12 R r s)-\frac{4 R r s}{4 R^{2}} \cdot 2\left(s^{2}-4 R r-r^{2}\right)=12 R r s-\frac{2 r s\left(s^{2}-4 R r-r^{2}\right)}{R}
$$

$$
=\frac{12 R^{2} r s-2 r s\left(s^{2}-4 R r-r^{2}\right)}{R} \stackrel{(4)}{=} \frac{2 r s\left(6 R^{2}-s^{2}+4 R r+r^{2}\right)}{R}
$$

Now, $6 R^{2}-s^{2}+4 R r+r^{2}>0 \Leftrightarrow s^{2}<6 R^{2}+4 R r+r^{2}$
But, $s^{2} \stackrel{\text { Gerretsen }}{\leq} 4 R^{2}+4 R r+3 r^{2} \stackrel{?}{<} 6 R^{2}+4 R r+r^{2}$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

$$
\Leftrightarrow R>r \rightarrow \text { true } \therefore \boldsymbol{R}^{2}-s^{2}+4 R r+r^{2}>0
$$

(4) \Rightarrow given inequality $\Leftrightarrow \frac{2 r s\left(6 R^{2}-s^{2}+4 R r+r^{2}\right)}{R}\left(\Sigma \frac{1}{\cos A}\right)^{2(5)} \xrightarrow[\geq]{2} 27 a b c$

$$
\because\left(\sum \frac{1}{\cos A}\right)^{2} \stackrel{(6)}{\geq} 3 \sum \frac{1}{\cos A \cos B}=\frac{3 \sum \cos A}{\Pi \cos A}
$$

$$
=\frac{3\left(\frac{R+r}{R}\right)}{\frac{s^{2}-4 R^{2}-4 R r-r^{2}}{4 R^{2}}}=\frac{12 R(R+r)}{s^{2}-4 R^{2}-4 R r-r^{2}},
$$

$$
\therefore(6) \Rightarrow(5) \Leftrightarrow \frac{12(R+r) \cdot 2 r s\left(6 R^{2}-s^{2}+4 R r+r^{2}\right)}{R\left(s^{2}-4 R^{2}-4 R r-r^{2}\right)} \geq 108 R r s
$$

$$
\Leftrightarrow 2(R+r)\left(6 R^{2}-s^{2}+4 R r+r^{2}\right) \geq 9 R\left(s^{2}-4 R^{2}-4 R r-r^{2}\right)
$$

$$
\Leftrightarrow 2(R+r) 6 R^{2}-2(R+r) s^{2}+2(R+r)\left(4 R r+r^{2}\right) \geq
$$

$$
\geq 9 R s^{2}-36 R^{3}-9 R\left(4 R r+r^{2}\right)
$$

$$
\Leftrightarrow 48 R^{3}+12 R^{2} r+(11 R+2 r)\left(4 R r+r^{2}\right) \stackrel{(7)}{\geq}(11 R+2 r) s^{2}
$$

$$
\text { Now, RHS of }(7) \stackrel{\text { Gerretsen }}{\leq}(11 R+2 r)\left(4 R^{2}+4 R r+3 r^{2}\right)
$$

$$
\stackrel{?}{\leq} 48 R^{3}+12 R^{2} r+\left(4 R r+r^{2}\right)(11 R+2 r) \Leftrightarrow 2 t^{3}+2 t^{2}-11 t-2 \stackrel{?}{\geq} 0\left(\text { where } t=\frac{R}{r}\right)
$$

$$
\Leftrightarrow(t-2)\left(2 t^{2}+6 t+1\right) \stackrel{?}{\geq} 0 \rightarrow \text { true because } t \stackrel{\text { Euler }}{\geq} 2 \Rightarrow(7) \text { is true } \Rightarrow(5) \text { is true }
$$

(Proved)
1046. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{h_{b} h_{c}}{h_{a}}\right)^{2}+\left(\frac{h_{c} h_{a}}{h_{b}}\right)^{2}+\left(\frac{h_{a} h_{b}}{h_{c}}\right)^{2} \geq\left(\frac{2 S}{R}\right)^{2}
$$

Proposed by Bogdan Fustei - Romania
Solution 1 by Daniel Sitaru - Romania

$$
\sum_{c y c}\left(\frac{h_{b} h_{c}}{h_{a}}\right)^{2}=\sum_{c y c}\left(\frac{\frac{2 S}{b} \cdot \frac{2 S}{c}}{\frac{2 S}{a}}\right)^{2}=4 S^{2} \sum_{c y c} \frac{a^{2}}{b^{2} c^{2}}=
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& =4 S^{2} \cdot \frac{1}{a^{2} b^{2} c^{2}} \sum_{c y c} a^{4} \stackrel{\text { GOLDNER(1949) }}{\mathbb{2}} \frac{4 S^{2}}{a^{2} b^{2} c^{2}} \cdot 16 S^{2}=\frac{4 S^{2}}{16 R^{2} S^{2}} \cdot 16 S^{2}=\left(\frac{2 S}{R}\right)^{2}
\end{aligned}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\sum\left(\frac{h_{b} h_{c}}{h_{a}}\right)^{2} \stackrel{\text { Chebyshev }}{\geq} \frac{1}{3}\left(\sum \frac{h_{b} h_{c}}{h_{a}}\right)^{2}=\frac{1}{3}\left(\sum \frac{4 S^{2}}{2 S} \cdot \frac{a^{2}}{4 R r S}\right)^{2}= \\
=\frac{1}{3}\left(\frac{\sum a^{2}}{2 R}\right)^{2} \geq\left(\frac{2 S}{R}\right)^{2} \Leftrightarrow \frac{1}{\sqrt{3}} \cdot \frac{\sum a^{2}}{2 R} \geq \frac{2 S}{R} \Leftrightarrow \sum a^{2} \geq 4 \sqrt{3} S \\
\rightarrow \text { true (Ionescu - Weitzenbock) (Proved) }
\end{gathered}
$$

1047. In acute $\triangle A B C$ the following relationship holds:

$$
\frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C}>A^{2}+B^{2}+C^{2}+\cos A+\cos B+\cos C
$$

Proposed by Daniel Sitaru - Romania

Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gather*}
\sum \frac{1}{\cos A}>\sum A^{2}+\sum \cos A \Leftrightarrow \sum\left(\frac{1}{\cos A}-\cos A\right)>\sum A^{2} \Leftrightarrow \sum \frac{\sin ^{2} A}{\cos A} \stackrel{(1)}{>} \sum A^{2} \\
\text { Let } f(x)=\sin ^{2} x-x^{2} \cos x, \forall x \in\left[0, \frac{\pi}{2}\right) \\
f^{\prime}(x)=2 \sin x \cos x+x^{2} \sin x-2 x \cos x \geq 2 \sin x \cos x+x^{2} \sin x-2 \sin x \tag{2}\\
\left(\because x \cos x \leq \sin x \text { as } x \leq \tan x ; \forall x \in\left[0, \frac{\pi}{2}\right)\right) \\
=\sin x\left(2 \cos x+x^{2}-2\right) . \text { Let } g(x)=2 \cos x+x^{2}-2 \forall x \in\left[0, \frac{\pi}{2}\right) \\
g^{\prime}(x)=-2 \sin x+2 x \geq 0 \text { as } \forall x \in\left[0, \frac{\pi}{2}\right), x \geq \sin x \therefore g(x) \stackrel{(3)}{>} g(0)=0 \\
(2),(3) \Rightarrow f^{\prime}(x) \geq 0 \therefore f(x) \geq f(0)=0 \\
\Rightarrow \forall x \in\left[0, \frac{\pi}{2}\right), \sin ^{2} x \geq x^{2} \cos x, \text { with equality at } x=0 \\
\therefore \forall x \in\left(0, \frac{\pi}{2}\right), \sin ^{2} x>x^{2} \cos x \Rightarrow \frac{\sin ^{2} x}{\cos x}>x^{(a)} \because A, B, C \in\left(0, \frac{\pi}{2}\right) \therefore(\mathrm{a}) \Rightarrow \frac{\sin ^{2} A}{\cos A}>A^{2} \text { etc } \\
\Rightarrow \sum \frac{\sin ^{2} A}{\cos A}>\sum A^{2} \Rightarrow(1) \text { is true (Proved) }
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

1048. In $\triangle A B C$ the following relationship holds:

$$
12 R \leq \frac{b^{2}+c^{2}}{h_{a}}+\frac{c^{2}+a^{2}}{h_{b}}+\frac{a^{2}+b^{2}}{h_{c}} \leq \frac{9 \sqrt{3} R^{2}}{S}
$$

Proposed by Mehmet Sahin-Ankara-Turkey
Solution 1 by Marian Ursărescu-Romania

$$
\begin{equation*}
b^{2}+c^{2} \geq 2 b c \text { and } h_{a}=\frac{2 S}{a} \Rightarrow \frac{b^{2}+c^{2}}{h_{a}} \geq \frac{a b c}{s} \Rightarrow \sum \frac{b^{2}+c^{2}}{h_{a}} \geq \frac{3 a b c}{s} \tag{1}
\end{equation*}
$$

But $a b c=4 s R r$ and $S=s r$ (2). From (1) + (2) $\Rightarrow \sum \frac{b^{2}+c^{2}}{h_{a}} \geq \frac{12 s R r}{s r}=12 R$
Now: $\sum \frac{b^{2}+c^{2}}{h_{a}} \geq \frac{9 \sqrt{3} R^{3}}{s} \Leftrightarrow \sum \frac{b^{2}+c^{2}}{\frac{2 S}{a}} \geq \frac{9 \sqrt{3} R^{2}}{s} \Leftrightarrow \sum a\left(b^{2}+c^{2}\right) \geq 18 \sqrt{3} R^{3} \Leftrightarrow$

$$
\begin{equation*}
\Leftrightarrow \sum a^{2}(b+c) \geq 18 \sqrt{3} R^{3} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\text { But } \sum a^{2}(b+c)=2 s\left(s^{2}+r^{2}-2 R r\right) \tag{4}
\end{equation*}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \sum \frac{b^{2}+c^{2}}{h_{a}} \stackrel{\text { Bergrstrom }}{\geq} \frac{\left(2 \sum a\right)^{2}}{2 \sum h_{a}}=\frac{4\left(\sum a\right)^{2} R}{\sum a b} \\
& \stackrel{\left(\sum a\right)^{2} \geq 3 \sum a b}{\geq} \frac{\left(12 \sum a b\right) R}{\sum a b}=12 R \Rightarrow \sum \frac{b^{2}+c^{2}}{h_{a}} \geq 12 R \text {. Now, Tereshin } \Rightarrow b^{2}+c^{2} \leq 4 R m_{a} \text {, etc } \\
& \therefore \sum \frac{b^{2}+c^{2}}{h_{a}} \stackrel{(1)}{\leq} 4 R \sum \frac{m_{a}}{h_{a}} \text {. WLOG, we may assume } a \geq b \geq c \\
& \therefore \boldsymbol{m}_{a} \leq \boldsymbol{m}_{b} \leq \boldsymbol{m}_{c} \& \frac{1}{h_{a}} \geq \frac{1}{h_{b}} \geq \frac{1}{h_{c}} \therefore \mathbf{(1)} \Rightarrow \sum \frac{b^{2}+c^{2}}{h_{a}} \stackrel{\text { Chebyshev }}{\leq} \frac{4 R}{3}\left(\sum \boldsymbol{m}_{a}\right)\left(\sum \frac{1}{h_{a}}\right) \\
& \sum m_{a} \leq 4 R+r, ~ \frac{4 R(4 R+r)}{3 r}=\frac{4 R s(4 R+r)}{3 S} \stackrel{\text { Mitrinovic }}{\leq} \frac{4 R \frac{3 \sqrt{3} R}{2}(4 R+r)}{3 S} \\
& \stackrel{\text { Euler }}{\leq} \frac{4 R\left(\frac{\sqrt{3} R}{2}\right)\left(\frac{9 R}{2}\right)}{S}=\frac{9 \sqrt{3} R^{3}}{S} \Rightarrow \sum \frac{b^{2}+c^{2}}{h_{a}} \leq \frac{9 \sqrt{3} R^{3}}{S} \text { (Done) }
\end{aligned}
$$

From (3)+ (4) we must show: $s\left(s^{2}+r^{2}-2 R r\right) \geq 9 \sqrt{3} R^{3}$

$$
\begin{equation*}
\text { But } s \leq \frac{3 \sqrt{3}}{2} R \text { (6) } \tag{5}
\end{equation*}
$$

From (5)+(6) we must show $s^{2}+r^{2}-2 R r \leq 6 R^{2}$
Form Gerretsen's inequality $s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \Rightarrow$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $$
\begin{equation*} \Rightarrow s^{2}+r^{2}-2 R r \leq 4 R^{2}+2 R r+4 r^{2}(8) \tag{9} \end{equation*}
$$

From (7)+ (8) we must show: $4 R^{2}+2 R r+4 r^{2} \leq 6 R^{2} \Leftrightarrow R r+2 r^{2} \leq R^{2}$
But from Euler $r \leq \frac{R}{r} \wedge r^{2} \leq \frac{R^{2}}{4} \Rightarrow R r+2 r^{2} \leq R^{2}$.
1049. In $\triangle A B C$ the following relationship holds:

$$
\frac{a \cdot m_{a}}{\sin \frac{A}{2}}+\frac{b \cdot m_{b}}{\sin \frac{B}{2}}+\frac{c \cdot m_{c}}{\sin \frac{C}{2}} \geq 6 s R
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Marian Ursărescu-Romania

$$
\begin{equation*}
\frac{a m_{a}}{\sin \frac{A}{2}}=\frac{2 R \sin A m_{a}}{\sin \frac{A}{2}}=\frac{4 R \sin \frac{A}{2} \cos \frac{A}{2} m_{a}}{\sin \frac{A}{2}}=4 R \cos \frac{A}{2} m_{a} \Rightarrow \tag{1}
\end{equation*}
$$

We must show this: $m_{a} \cos \frac{A}{2}+m_{b} \cos \frac{B}{2}+m_{c} \cos \frac{C}{2} \geq \frac{3}{2} s$

$$
\text { But } m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}
$$

From (1)+ (2) we must show: $\sum(b+c) \cos ^{2} \frac{A}{2} \geq 3 s \quad$ (3)

$$
\begin{equation*}
\text { But } \cos ^{2} \frac{A}{2}=\frac{s(s-a)}{b c} \tag{4}
\end{equation*}
$$

From (3)+ (4) we must show: $\sum \frac{(b+c)(s-a)}{b c} \geq 3 \Leftrightarrow \sum \frac{(b+c)(b+c-a)}{b c} \geq 6$

$$
\begin{gather*}
\operatorname{But} \sum \frac{(b+c)(b+c-a)}{b c}=\sum \frac{a(b+c)(b+c-a)}{a b c}= \tag{5}\\
=\frac{\sum a(b+c)^{2}-\sum a^{2}(b+c)}{a b c}=\frac{\sum\left(a b^{2}+a c^{2}+2 a b c\right)-\sum a^{2} b-\sum a^{2} c}{a b c} \\
=\frac{\sum a b^{2}+\sum a c^{2}+6 a b c-\sum a^{2} b-\sum a^{2} c}{a b c}=\frac{6 a b c}{a b c}=6 \quad \text { (6).From (6) } \Rightarrow \text { it's true. }
\end{gather*}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{aligned}
& \text { LHS }=\sum \frac{4 R \sin \frac{A}{2} \cos \frac{A}{2}}{\sin \frac{A}{2}} m_{a} \stackrel{m_{a}=\frac{b+c}{2} \cos \frac{A}{2}}{\geq} \sum 4 R \cos \frac{A}{2} \cdot \frac{b+c}{2} \cos \frac{A}{2} \\
& =2 R \sum(b+c) \cdot \frac{s(s-a)}{b c}=\frac{2 R s}{4 R r s} \sum a(b+c)(s-a)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \begin{array}{c}
\text { www.ssmrmh.ro } \\
=\frac{\mathbf{1}}{\mathbf{2} \boldsymbol{r}} \sum\left(\sum \boldsymbol{a} \boldsymbol{b}-\boldsymbol{b} \boldsymbol{c}\right)(\boldsymbol{s}-\boldsymbol{a})=\frac{\mathbf{1}}{\mathbf{2 r}}\left\{\sum \boldsymbol{a b} \sum(\boldsymbol{s}-\boldsymbol{a})-\sum \boldsymbol{b} \boldsymbol{c}(\boldsymbol{s}-\boldsymbol{a})\right\} \\
=\frac{\mathbf{1}}{2 r}\left(\boldsymbol{s} \sum \boldsymbol{a} \boldsymbol{b}-\boldsymbol{s} \sum \boldsymbol{a} \boldsymbol{b}+\mathbf{1 2 R r} \boldsymbol{s}\right)=\mathbf{6 s} \boldsymbol{R} \text { (Proved) }
\end{array}
\end{aligned}
$$

1050. In $\triangle A B C$ the following relationship holds:

$$
\begin{array}{r}
\frac{\sqrt{b+c}}{r_{a}}+\frac{\sqrt{c+a}}{r_{b}}+\frac{\sqrt{a+b}}{r_{c}} \leq \frac{4 R-2 r}{r \cdot \sqrt[4]{27 r^{2}}} \\
\text { Proposed by Mehmet Sahin-Ankara-Turkey }
\end{array}
$$

Solution by Soumava Chakraborty-Kolkata-India

WLOG, we may assume $a \geq b \geq c$. Then, $\sqrt{b+c} \leq \sqrt{c+a} \leq \sqrt{a+b} \& \frac{1}{r_{a}} \leq \frac{1}{r_{b}} \leq \frac{1}{r_{c}}$

$$
\begin{gathered}
\therefore \text { LHS } \stackrel{\text { Chebyshev }}{\leq} \frac{1}{3}\left(\sum \sqrt{b+c}\right)\left(\sum \frac{1}{r_{a}}\right) \stackrel{C B S}{\leq} \frac{\sqrt{3}}{3} \sqrt{4 s}\left(\frac{1}{r}\right)=\frac{1}{r} \sqrt{\frac{4 s}{3}} \stackrel{?}{\leq} \frac{4 R-2 r}{r \sqrt[4]{27 r^{2}}} \\
\Leftrightarrow \frac{4 s}{3} \stackrel{?}{\leq} \frac{4(2 R-r)^{2}}{3 \sqrt{3} r} \Leftrightarrow s r \sqrt{3} \stackrel{?}{(1)}(2 R-r)^{2} . \text { Now, LHS of (1) } \stackrel{\text { Mitrinovic }}{\leq} \frac{3 \sqrt{3} R}{2} \cdot r \sqrt{3}=\frac{9 R r}{2} \\
\stackrel{?}{\leq}(2 R-r)^{2} \Leftrightarrow 8 R^{2}-17 R r+2 r^{2} \stackrel{?}{\geq} 0 \Leftrightarrow(8 R-r)(R-2 r) \stackrel{?}{\geq} 0 \rightarrow \text { true } \because R \stackrel{\text { Euler }}{\geq} 2
\end{gathered}
$$

1051. In $\triangle A B C$ the following relationship holds:

$$
\left(m_{a}+m_{b}+m_{c}\right)\left(\frac{1}{m_{a}}+\frac{1}{m_{b}}+\frac{1}{m_{c}}\right)+\frac{9 S^{2}}{m_{a} m_{b} m_{c}\left(m_{a}+m_{b}+m_{c}\right)} \geq 10
$$

Proposed by Adil Abdullayev-Baku-Azerbaijan
Solution by Soumava Chakraborty-Kolkata-India

> We shall first prove: $\left(\sum a\right)\left(\sum \frac{1}{a}\right)+\frac{16 s^{2}}{a b c\left(\sum a\right)} \geq 10$
> $\Leftrightarrow\left(\frac{2 s}{4 R r s}\right)\left(s^{2}+4 R r+r^{2}\right)+\frac{16 r^{2} s^{2}}{8 R r s^{2}} \geq 10 \Leftrightarrow \frac{s^{2}+4 R r+5 r^{2}}{2 R r} \geq 10$
> $\Leftrightarrow s^{2} \geq 16 R r-5 r^{2} \rightarrow$ true (Gerretsen) $:\left(\sum a\right)\left(\sum \frac{1}{a}\right)+\frac{16 s^{2}}{a b c\left(\sum a\right)} \stackrel{(1)}{\geq} 10$

Applying (1) on a triangle with sides $\frac{2 m_{a}}{3}, \frac{2 m_{b}}{3}, \frac{2 m_{c}}{3}$ and whose area

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

of course, will be $\frac{s}{3^{\prime}}$, we get: $\left(\frac{2}{3} \sum m_{a}\right)\left(\frac{3}{2} \sum \frac{1}{m_{a}}\right)+\frac{16\left(\frac{s^{2}}{9}\right)}{\left(\frac{8}{27} \Pi m_{a}\right)\left(\frac{2}{3} \sum m_{a}\right)} \geq 10$

$$
\Leftrightarrow\left(\sum m_{a}\right)\left(\sum \frac{1}{m_{a}}\right)+\frac{9 S^{2}}{\left(\prod m_{a}\right)\left(\sum m_{a}\right)} \geq 10 \text { (proved) }
$$

1052. In $\triangle A B C$ the following relationship holds:

$$
\frac{a^{2}}{R_{a}^{2}}+\frac{b^{2}}{R_{b}^{2}}+\frac{c^{2}}{R_{c}^{2}} \leq 8+\left(\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}\right)^{2}
$$

(I - incentre, R_{a}, R_{b}, R_{c} - circumradii of $\triangle B I C, \triangle C I A, \triangle A I B$)

Proposed by Adil Abdullayev-Baku-Azerbaijan

Solution 1 by Bogdan Fustei-Romania

Using two additional inequalities: 1) $\frac{R}{r} \geq \frac{a b c+a^{2}+b^{3}+c^{3}}{2 a b c}$

$$
\text { 2) } x, y, z>0: \frac{x^{3}+y^{3}+z^{3}}{4 x y z}+\frac{1}{4} \geq\left(\frac{x^{2}+y^{2}+z^{2}}{x y+y z+z x}\right)^{2}
$$

From the two inequalities from above we can write the following:

$$
\begin{gathered}
\frac{R}{2 r} \stackrel{(1)}{\geq} \frac{a^{3}+b^{3}+c^{3}}{4 a b c}+\frac{1}{4} \stackrel{(2)}{\geq}\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+a c}\right)^{2} . \text { So, finally: } \frac{R}{2 r} \geq\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+a c}\right)^{2} \\
R_{a}=2 R \sin \frac{A}{2} \text { (and the analogs); } \sin \frac{A}{2}=\sqrt{\frac{r_{a}-r}{4 R}} \text { (and the analogs) } \\
a^{2}=\left(r_{b}+r_{c}\right)\left(r_{a}-r\right) \text { (and the analogs) } \\
\Rightarrow R_{a}=2 R \cdot \sqrt{\frac{r_{a}-r}{R}}=\sqrt{4 R^{2} \frac{\left(r_{a}-r\right)}{4 R}}=\sqrt{R\left(r_{a}-r\right)} \text { (and the analogs) }
\end{gathered}
$$

$$
R_{a}^{2}=R\left(r_{a}-r\right)(\text { and the analogs }) \Rightarrow \frac{a^{2}}{R_{a}^{2}}=\frac{\left(r_{b}+r_{c}\right)\left(r_{a}-r\right)}{R\left(r_{a}-r\right)}=\frac{r_{b}+r_{c}}{R} \text {. So, } \frac{a^{2}}{R_{a}^{2}}=\frac{r_{b}+r_{c}}{R} \text { (and the }
$$

$$
\text { analogs) } \frac{a^{2}}{R_{a}^{2}}+\frac{b^{2}}{R_{b}^{2}}+\frac{c^{2}}{R_{c}^{2}}=\frac{r_{b}+r_{c}}{R}+\frac{r_{a}+r_{c}}{R}+\frac{r_{a}+r_{b}}{R}=\frac{2\left(r_{a}+r_{b}+r_{c}\right)}{R}=\frac{2(4 R+r)}{R}
$$

$$
\left(r_{a}+r_{b}+r_{c}=4 R+r\right) \Rightarrow \frac{a^{2}}{R_{a}^{2}}+\frac{b^{2}}{R_{b}^{2}}+\frac{c^{2}}{R_{c}^{2}}=\frac{8 R+2 r}{R}=8+\frac{2 r}{R}
$$

The inequality from enunciation becomes: $8+\frac{2 r}{R} \leq 8+\left(\frac{a b+b c+a c}{a^{2}+b^{2}+c^{2}}\right)^{2} \Rightarrow$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

$$
\Rightarrow \frac{R}{2 r} \geq\left(\frac{a^{2}+b^{2}+c^{2}}{a b+b c+a c}\right)
$$

From the above, the inequality from enunciation is proved.
Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\text { Area of } \triangle B I C=\frac{1}{2} a r \& \text { also }=\frac{B I \cdot C I \cdot a}{4 R_{a}} \Rightarrow \frac{a r}{2}=\frac{r^{2} a}{\sin \frac{B}{2} \sin \frac{C}{2} \cdot 4 R_{a}} \Rightarrow R_{a}=\frac{r}{2 \sin \frac{B}{2} \sin \frac{C}{2}} \\
=\frac{2 r \sin \frac{A}{2}}{4 \pi \sin \frac{A}{2}}=\frac{2 r \sin \frac{A}{2}}{\frac{r}{R}}=2 R \sin \frac{A}{2} \\
\Rightarrow R_{a}=2 R \sin \frac{A}{2} \Rightarrow \frac{a^{2}}{R_{a}^{2}}=\frac{\left(4 R \sin \frac{A}{2} \cos \frac{A}{2}\right)^{2}}{4 R^{2} \sin ^{2} \frac{A}{2}} \stackrel{(1)}{=} 4 \cos ^{2} \frac{A}{2}
\end{gathered}
$$

$$
\text { Similarly, } \frac{b^{2}}{R_{b}^{2}} \stackrel{(2)}{=} 4 \cos ^{2} \frac{B}{2} \& \frac{c^{2}}{R_{c}^{2}} \stackrel{(3)}{=} 4 \cos ^{2} \frac{C}{2}
$$

$$
(1)+(2)+(3) \Rightarrow L H S=2\left(\sum 2 \cos ^{2} \frac{A}{2}\right)=2 \sum(1+\cos A)
$$

$$
=2\left(3+1+\frac{r}{R}\right)=\frac{2(4 R+r)}{R} \leq 8+\left(\frac{\sum a b}{\sum a^{2}}\right)^{2} \Leftrightarrow R \geq 2 r\left(\frac{\sum a^{2}}{\sum a b}\right)^{2}
$$

$$
\Leftrightarrow R\left(s^{2}+4 R r+r^{2}\right)^{2} \geq 8 r\left(s^{2}-4 R r-r^{2}\right)^{2}
$$

$$
\Leftrightarrow(R-2 r) s^{4}+2 s^{2}\left(4 R+r^{2}\right)(R+8 r)+r^{2}(4 R+r)^{2}(R-8 r) \stackrel{(4)}{\geq} 6 r s^{4}
$$

$$
\text { Now, } \because(R-2 r) s^{4} \stackrel{\text { Gerretsen }}{\geq} s^{2}(R-2 r)\left(16 R r-5 r^{2}\right)
$$

\therefore LHS of (4) $\stackrel{(a)}{\geq} s^{2} r\left(24 R^{2}+29 R r+26 r^{2}\right)+r^{2}(4 R+r)^{2}(R-8 r)$

$$
\& \text { RHS of (4) } \underset{(b)}{\Sigma} 6 r s^{2}\left(4 R^{2}+4 R r+3 r^{2}\right)
$$

(a), (b) \Rightarrow in order to prove (4), it suffices to prove:

$$
s^{2}\left(5 R r+8 r^{2}\right)+r(4 R+r)^{2}(R-8 r) \stackrel{(5)}{\geq} 0
$$

Now, LHS of (5) $\stackrel{\text { Gerretsen }}{\geq}\left(16 R r-5 r^{2}\right)\left(5 R r+8 r^{2}\right)+r(4 R+r)^{2}(R-8 r) \xrightarrow{\geq} 0 \Leftrightarrow$
$\Leftrightarrow(t-2)\{2 t(t-2)+3 t+3\} \stackrel{?}{\geq} 0\left(t=\frac{R}{r}\right) \rightarrow$ true $b \because t \stackrel{\text { Euler }}{\geq} 2$ (proved).

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

1053. If in $\triangle A B C$: $a \leq b \leq c$ then:

$$
\frac{b m_{c}}{c m_{b}}+\frac{a m_{b}}{b m_{a}}+\frac{c m_{a}}{a m_{c}} \geq \frac{c m_{b}}{b m_{c}}+\frac{b m_{a}}{a m_{b}}+\frac{a m_{c}}{c m_{a}}
$$

Proposed by Daniel Sitaru - Romania
Solution by Serban George Florin-Romania

$$
\begin{aligned}
& \left(\frac{b m_{c}}{c m_{b}}-\frac{c m_{b}}{b m_{c}}\right)+\left(\frac{a m_{b}}{b m_{a}}-\frac{b m_{a}}{a m_{b}}\right)+\left(\frac{c m_{a}}{a m_{c}}-\frac{a m_{c}}{c m_{a}}\right) \geq 0 \\
& \frac{b^{2} m_{c}^{2}-c^{2} m_{b}^{2}}{b c m_{b} m_{c}}+\frac{a^{2} m_{b}^{2}-b^{2} m_{a}^{2}}{a b m_{a} m_{b}}+\frac{c^{2} m_{a}^{2}-a^{2} m_{a}^{2}}{a c m_{a} m_{c}} \geq 0 \\
& \Rightarrow \frac{\left(\frac{\boldsymbol{m}_{c}}{c}\right)^{2}-\left(\frac{\boldsymbol{m}_{b}}{b}\right)^{2}}{\frac{m_{b}}{b} \cdot \frac{\boldsymbol{m}_{c}}{c}}+\frac{\left(\frac{\boldsymbol{m}_{b}}{b}\right)^{2}-\left(\frac{\boldsymbol{m}_{a}}{a}\right)^{2}}{\frac{\boldsymbol{m}_{a}}{a} \cdot \frac{\boldsymbol{m}_{b}}{b}}+\frac{\left(\frac{m_{a}}{a}\right)^{2}-\left(\frac{\boldsymbol{m}_{c}}{c}\right)^{2}}{\frac{\boldsymbol{m}_{a}}{a} \cdot \frac{\boldsymbol{m}_{c}}{c}} \geq 0 \\
& \text { If } a \leq b \text { then } \frac{m_{a}}{a} \geq \frac{m_{b}}{b} \Leftrightarrow \frac{m_{a}^{2}}{a^{2}} \geq \frac{m_{b}^{2}}{b^{2}} \\
& \frac{b^{2}\left(2 b^{2}+2 c^{2}-a^{2}\right)}{4} \geq \frac{a^{2}\left(2 a^{2}+2 c^{2}-b^{2}\right)}{4}, 2 b^{4}+2 b^{2} c^{2}-a^{2} b^{2} \geq 2 a^{4} \\
& +2 a^{2} c^{2}-a^{2} b^{2},\left(b^{4}-a^{4}\right)+c^{2}\left(b^{2}-a^{2}\right) \geq 0,\left(b^{2}-a^{2}\right)\left(b^{2}+a^{2}\right)+c^{2}\left(b^{2}-a^{2}\right) \geq 0 \\
& \left(b^{2}-a^{2}\right)\left(b^{2}+a^{2}+c^{2}\right) \geq 0 \text { (true) } b^{2} \geq a^{2}, b^{2}-a^{2} \geq 0 \\
& \text { Note } \frac{m_{a}}{a}=x, \frac{m_{b}}{b}=y, \frac{m_{c}}{c}=z, a \leq b \leq c \Rightarrow x \geq y \geq z \Rightarrow \frac{z^{2}-y^{2}}{y z}+\frac{y^{2}-x^{2}}{x y}+\frac{x^{2}-z^{2}}{x z} \geq 0 \\
& \Rightarrow \frac{x^{2}-z^{2}}{x z} \geq \frac{y^{2}-z^{2}}{y z}+\frac{x^{2}-y^{2}}{x y}, \frac{\left(x^{2}-y^{2}\right)+\left(y^{2}-z^{2}\right)}{x z} \geq \frac{y^{2}-z^{2}}{y z}+\frac{x^{2}-b^{2}}{x y} \\
& \frac{x^{2}-y^{2}}{x z}+\frac{y^{2}-z^{2}}{x z} \geq \frac{y^{2}-z^{2}}{y z}+\frac{x^{2}-y^{2}}{x y} ;\left(x^{2}-y^{2}\right)\left(\frac{1}{x z}-\frac{1}{x y}\right) \geq\left(y^{2}-z^{2}\right)\left(\frac{1}{y z}-\frac{1}{x z}\right) \\
& \frac{(x-y)(x+y)(y-z)}{x y z} \geq \frac{(y-z)(y+z)(x-y)}{x y z} \\
& \Rightarrow(x-y)(x+y)(y-z) \geq(y-z)(y+z)(x-y) \\
& \Rightarrow(x-y)(x+y)(y-z)-(y-z)(y+z)(x-y) \geq 0 \\
& \Rightarrow(x-y)(y-z)(x+y-y-z) \geq 0,(x-y)(y-z)(x-z) \geq 0
\end{aligned}
$$

True

$$
x \geq y \Rightarrow x-y \geq 0 ; y \geq z \Rightarrow y-z \geq 0 ; x \geq z \Rightarrow x-z \geq 0
$$

ROMANIAN MATHEMATICAL MAGAZINE

 www.ssmrmh.ro1054. In acute $\triangle A B C$ the following relationship holds:

$$
\begin{array}{r}
\prod\left(\frac{a}{c} \cos A+\frac{b}{c} \cos B-\cos C\right) \leq \cos A \cos B \cos C \\
\text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

Solution 1 by Soumava Chakraborty-Kolkata-India

$$
a \cos A, b \cos B, c \cos C>0 ; a \cos A+b \cos B-c \cos C
$$

$=R(\sin 2 A+\sin 2 B)-2 R \sin C \cos C=R \cdot 2 \sin C \cos (A-B)-2 R \sin C \cos C$

$$
\begin{aligned}
& =2 R \sin C\{\cos (A-B)+\cos (A+B)\}=2 R \sin C \cdot 2 \cos A \cos B \\
& =4 R \sin C \cos A \cos B>0(\because \cos A, \cos B>0)
\end{aligned}
$$

Similarly, $b \boldsymbol{\operatorname { c o s }} B+\boldsymbol{c} \boldsymbol{\operatorname { c o s }} C-\boldsymbol{a} \cos A>0 \& \boldsymbol{c} \cos C+\boldsymbol{a} \cos A-b \cos B>0$
$\therefore \boldsymbol{a} \cos A, b \cos B, c \cos C$ are sides of a triangle.
Let $a \cos A=x, b \cos B=y, c \cos C=z$. Then, given inequality becomes: $x y z \geq(x+y-z)(y+z-x)(z+x-y)$, which, of course holds true when x, y, z are

$$
3 \text { sides of a triangle (proved). }
$$

Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand
Since A, B, C are a cute - angles. Hence: $\cos A, \cos B, \cos C>0$. Hence:

$$
\begin{gathered}
\left(\frac{a}{c} \cos A+\frac{b}{c} \cos B-\cos C\right)\left(\frac{a}{b} \cos A+\frac{c}{b} \cos B-\cos B\right)\left(\frac{b}{a} \cos B+\frac{c}{a} \cos C-\cos A\right) \\
\leq \cos A \cos B \cos C
\end{gathered}
$$

If $(a \cos A+b \cos B-\cos C)(b \cos B+c \cos C-a \cos A)(a \cos A+c \cos C-b \cos B)$

$$
\leq(a \cos A)(b \cos B)(c \cos C)
$$

Let $a \cos A=x, b \cos B=y, \cos c=z$. If $(x+y-z)(y+z-x)(z+x y) \leq x y z$
Let $x+y-z=m, y+z-x=n, z+x-y=p, \frac{m+n}{2}=y, \frac{n+p}{2}=z, \frac{m+p}{z}=x$
If $\boldsymbol{m} n \boldsymbol{p} \leq\left(\frac{m+p}{2}\right)\left(\frac{m+n}{2}\right)\left(\frac{n+p}{2}\right)$ and it's true. Therefore,

$$
\left(\frac{a}{c} \cos A+\frac{b}{c} \cos B-\cos C\right)\left(\frac{a}{b} \cos A+\frac{c}{b} \cos B-\cos B\right)\left(\frac{b}{a} \cos B+\frac{c}{a} \cos C-\cos A\right)
$$

$$
\leq \cos A \cos B \cos C .
$$

It's true.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

1055. In acute $\triangle A B C$ the following relationship holds:

$$
\left(a m_{a}+b m_{b}+c m_{c}\right)\left(s_{a} m_{a}+s_{b} m_{b}+s_{c} m_{c}\right) \leq \frac{243 \sqrt{3} R^{4}}{8}
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Mehmet Sahin-Ankara-Turkey

$$
\begin{gather*}
\left(a m_{a}+b m_{b}+c m_{c}\right)^{2} \leq\left(a^{2}+b^{2}+c^{2}\right)\left(m_{a}^{2}+m_{b}^{2}+m_{c}^{2}\right) \\
a m_{a}+b m_{b}+c m_{c} \leq \sqrt{9 R^{2} \cdot \frac{3}{4} \cdot 9 R^{2}}=\frac{9 \sqrt{3} R^{3}}{2} \tag{1}\\
s_{a} \leq m_{a}, s_{b} \leq m_{b}, s_{c} \leq m_{c} \\
s_{a} m_{a}+s_{b} m_{b}+s_{c} m_{c} \leq m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4} \cdot 9 R^{2} \tag{2}
\end{gather*}
$$

From (1) and (2): $\left(a m_{a}+b m_{b}+c m_{c}\right)\left(s_{a} m_{b}+s_{b} m_{b}+s_{c} m_{c}\right) \leq \frac{9 \sqrt{3}}{2} \cdot \frac{27}{4} R^{4} \leq \frac{243 \sqrt{3}}{8} R^{4}$
Solution 2 by Soumava Chakraborty-Kolkata-India
By Tsintsifas, $m_{a} \leq \frac{b^{2}+c^{2}}{2 b c} w_{a} \Rightarrow \frac{2 b c}{b^{2}+c^{2}} \boldsymbol{m}_{a} \leq w_{a} \Rightarrow s_{a} \stackrel{(1)}{\leq} w_{a}$

$$
\begin{aligned}
& \text { Similarly, } s_{b} \stackrel{(2)}{\leq} w_{b}, s_{c} \stackrel{(3)}{\leq} w_{c} \\
& \text { (1), (2), (3) } \Rightarrow \sum s_{a} m_{a} \leq \sum w_{a} m_{a} \stackrel{C B S}{\leq} \sqrt{\sum w_{a}^{2}} \sqrt{\sum m_{a}^{2}} \\
& \stackrel{w_{a}^{2} \leq s(s-a), e t c}{\leq} \sqrt{s \sum(s-a)} \sqrt{\sum m_{a}^{2}}=s \sqrt{\sum m_{a}^{2}} \\
& \stackrel{\text { Mitrinovic }}{\leq} \frac{3 \sqrt{3} R}{2} \sqrt{\sum m_{a}^{2}}: \therefore s_{a} m_{a} \stackrel{(a)}{\leq} \frac{3 \sqrt{3} R}{2} \sqrt{\sum m_{a}^{2}} \\
& \text { Also, } \sum a m_{a} \stackrel{\text { CBS }}{\leq} \sqrt{\sum a^{2}} \sqrt{\sum m_{a}^{2}} \underset{(b)}{\text { Leibnitz }} \quad 3 \boldsymbol{R} \sqrt{\sum m_{a}^{2}}
\end{aligned}
$$

(a), (b) \Rightarrow LHS $\leq \frac{9 \sqrt{3} R^{2}}{2}\left(\sum m_{a}^{2}\right)=\frac{27 \sqrt{3} R^{2}}{8} \sum a^{2} \stackrel{\text { Leibnitz }}{\leq} \frac{243 \sqrt{3} r^{4}}{8}$ (Proved)
1056. In $\triangle A B C$ the following relationship holds:

$$
\sum \sqrt{2 s-2 \sqrt{a(2 s-a)}} \geq(\sqrt{2}-1)(\sqrt{a}+\sqrt{b}+\sqrt{c})
$$

Proposed by Daniel Sitaru - Romania

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
Solution by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
\begin{array}{c}
\sum \sqrt{2 s-2 \sqrt{a(2 s-a)}}=\sum \sqrt{(\sqrt{2 s-a})^{2}+(\sqrt{a})^{2}-2 \sqrt{a(2 s-a)}} \\
=\sum \sqrt{(\sqrt{2 s-a}-\sqrt{a})^{2}} \stackrel{(1)}{=} \sum(\sqrt{2 s-a}-\sqrt{a}) \\
(\because \sqrt{2 s-a}>\sqrt{a} \text { as } 2 s=a+b+c>2 a \because b+c>a) \\
(1) \Rightarrow \text { it suffices to prove: } \sum \sqrt{b+c} \geq \sqrt{2} \sum \sqrt{a} \\
\Leftrightarrow \sum(b+c)+2 \sum \sqrt{(b+c)(c+a)} \geq 2 \sum a+4 \sum \sqrt{a b} \\
\Leftrightarrow \sum \sqrt{(b+c)(c+a)} \geq 2 \sum \sqrt{a b} \\
\geq 4 \sum a b+8 \sqrt{a b c}\left(\sum \sqrt{a}\right) \\
\Leftrightarrow \sum(b+c)(c+a)+2 \sqrt{(a+b)(b+c)(c+a)}\left(\sum \sqrt{a+b}\right) \\
\Leftrightarrow \sum a^{2}+3 \sum a b+2 \sqrt{(a+b)(b+c)(c+a)}\left(\sum \sqrt{a+b}\right) \\
\geq 4 \sum a b+8 \sqrt{a b c}\left(\sum \sqrt{a}\right) \\
\Leftrightarrow \sum a^{2}+2 \sqrt{(a+b)(b+c)(c+a)}\left(\sum \sqrt{a+b}\right) \stackrel{(2)}{\geq} \sum a b+8 \sqrt{a b c}\left(\sum \sqrt{a}\right)
\end{array}
\end{gathered}
$$

$$
\text { Let } a+b=x, b+c=y, c+a=z
$$

Then, $\boldsymbol{x}+\boldsymbol{y}>z, y+z>x, z+x>y \Rightarrow x, y, z \rightarrow$ sides of a Δ
we have $\sqrt{x}+\sqrt{y}+\sqrt{z} \stackrel{(a)}{\geq} \sqrt{y+z-x}+\sqrt{z+x-y}+\sqrt{x+y-z}$
When, x, y, z are sides of a triangle, Re-substituting the values of $x, y, z,(a) \Rightarrow$

$$
\begin{aligned}
& \sum \sqrt{a+b} \geq \sum \sqrt{(b+c)+(c+a)-(a+b)}=\sum \sqrt{2 c} \Rightarrow \sum \sqrt{a+b} \stackrel{(i)}{\geq} \sqrt{2} \sum \sqrt{a} \\
& \text { Also, } 2 \sqrt{(a+b)(b+c)(c+a)} \underset{(i i i)}{\substack{A-G}} 2 \sqrt{8 a b c} \\
& \text { (i).(ii) } \Rightarrow 2 \sqrt{(a+b)(b+c)(c+a)}\left(\sum \sqrt{a+b}\right) \stackrel{(i i i)}{\geq} 2 \sqrt{8 a b c} \cdot \sqrt{2} \sum \sqrt{a}=8 \sqrt{a b c}\left(\sum \sqrt{a}\right)
\end{aligned}
$$

Moreover, $\sum a^{2} \stackrel{(i v)}{\geq} \sum a b$
(iii) $+(\mathrm{iv}) \Rightarrow(2)$ is true (Hence proved)

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
1057. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{h_{a}+h_{b}}+\sqrt{h_{b}+h_{c}}+\sqrt{h_{c}+h_{a}} \leq \frac{a+b+c}{\sqrt{R}}
$$

Proposed by Bogdan Fustei - Romania
Solution 1 by Ertan Yildirim-Turkey

$$
\begin{gathered}
\sqrt{h_{a}+h_{b}}+\sqrt{h_{a}+h_{c}}+\sqrt{h_{b}+h_{c}} \leq \frac{a+b+c}{\sqrt{R}} \\
\sqrt{\frac{b c+a c}{2 R}}+\sqrt{\frac{b c+a b}{2 R}}+\sqrt{\frac{a c+a b}{2 R}} \leq \frac{a+b+c}{\sqrt{R}} \\
\sqrt{c(a+b)}+\sqrt{b(a+c)}+\sqrt{a(b+c)} \stackrel{?}{\leq} \sqrt{2}(a+b+c) \\
\operatorname{CSE}:(\sqrt{c} \cdot \sqrt{a+b}+\sqrt{b} \cdot \sqrt{a+c}+\sqrt{a} \cdot \sqrt{b+c})^{2} \leq \\
(c+b+a) \cdot 2(a+b+c)=2(a+b+c)^{2} \\
\Rightarrow \sqrt{c(a+b)}+\sqrt{b(a+c)}+\sqrt{a(b+c)} \leq \sqrt{2}(a+b+c)(\text { true })
\end{gathered}
$$

Solution 2 by Marian Ursărescu-Romania

$$
\begin{equation*}
\text { Inequality } \Leftrightarrow\left(\sqrt{h_{a}+h_{b}}+\sqrt{h_{b}+h_{c}}+\sqrt{h_{c}+h_{a}}\right)^{2} \leq \frac{4 s^{2}}{R} \tag{1}
\end{equation*}
$$

From Cauchy's Inequality $\Rightarrow\left(\sqrt{h_{a}+h_{b}}+\sqrt{h_{b}+h_{c}}+\sqrt{h_{c}+h_{a}}\right)^{2} \leq 6\left(h_{a}+h_{b}+h_{c}\right)$ (2)
From (1)+ (2) we must show: $3\left(h_{a}+h_{b}+h_{c}\right) \leq \frac{2 s^{2}}{R}$
But $h_{a}+h_{b}+h_{c}=\frac{s^{2}+r^{2}+4 R r}{2 R}$ (4) From (3)+ (4) we must show:

$$
\begin{gather*}
\frac{3\left(s^{2}+r^{2}+4 R r\right)}{2 R} \leq \frac{2 s^{2}}{R} \Leftrightarrow 3\left(s^{2}+r^{2}+4 R r\right) \leq 4 s^{2} \Leftrightarrow \\
s^{2} \geq 3 r^{2}+12 R r \text { (5) } \tag{6}
\end{gather*}
$$

From Gerretsen's inequality we have: $s^{2} \geq 16 R r-5 r^{2}$
From (5)+ (6) we must show: $16 R r-5 r^{2} \geq 3 r^{2}+12 R r \Leftrightarrow 4 R r \geq 8 r^{2} \Leftrightarrow$ $R \geq 2 r$, true because it's Euler's inequality.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

Solution 3 by Vo Thanh Long-Vietnam

$$
\begin{aligned}
& \text { We have } \sum \sqrt{h_{a}+h_{b}}=\sum \sqrt{\frac{2 S}{a}+\frac{2 S}{b}}=\sum \sqrt{\frac{2 S(a+b)}{a b}} \stackrel{\text { Bunhiakovsky }}{\leq} \sqrt{6 S \sum \frac{a+b}{a b}} \\
&=\sqrt{\frac{12 S(a b+b c+c a)}{a b c}} \leq \sqrt{\frac{(a+b+c)^{2}}{R}}=\frac{a+b+c}{\sqrt{R}} \\
& \text { " }=\text { " when } \triangle A B C \text { is equilateral triangle. }
\end{aligned}
$$

1058. In $\triangle A B C$ the following relationship holds:

$$
\begin{array}{r}
a(2 s-a) \cos \frac{A}{2}+b(2 s-b) \cos \frac{B}{2}+c(2 s-c) \cos \frac{C}{2} \geq 36 \sqrt{3} r^{2} \\
\quad \text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

Solution 1 by Marian Ursărescu-Romania

We must show: $a(b+c) \cos \frac{A}{2}+b(a+c) \cos \frac{B}{2}+c(a+b) \cos \frac{C}{2} \geq 36 \sqrt{3} r^{2}$
But $a(b+c) \cos \frac{A}{2}+b(a+c) \cos \frac{B}{2}+c(a+b) \cos \frac{c}{2} \geq 3 \sqrt[3]{a b c(a+b)(b+c)(a+c) \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{c}{2}}(2)$
From (1)+ (2) we must show:

$$
\begin{equation*}
\sqrt[3]{a b c(a+b)(b+c)(a+c) \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{c}{2}} \geq 12 \sqrt{3} r^{2} \tag{3}
\end{equation*}
$$

But $a b c=4 s R r(4),(a+b)(b+c)(a+c)=2 s\left(s^{2}+r^{2}+2 R r\right)$
and $\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}=\frac{s}{4 R}$ (6). From (4)+(5)+(6) we must show:

$$
\left.\begin{array}{c}
\sqrt[3]{4 s R r \cdot 2 s\left(s^{2}+r^{2}+2 R r\right) \cdot \frac{s}{4 R}} \geq 12 \sqrt{3} r^{2} \Leftrightarrow \\
s_{3}^{2 r\left(s^{2}+r^{2}+2 R r\right)} \geq 12 \sqrt{3} r^{2}(7) \\
\text { From Mitrinovic } s \geq 3 \sqrt{3} r(8)
\end{array}\right\} \text { we must show }
$$

From Gerretsen we have $s^{2} \geq 16 R r-5 r^{2}$ (10)
From (9)+ (10) we must show: $18 R r-4 r^{2} \geq 32 r^{2} \Leftrightarrow$

$$
\Leftrightarrow 18 R r \geq 36 r^{2} \Leftrightarrow R \geq 2 r \text { true (Euler) }
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro

Solution 2 by Soumava Chakraborty-Kolkata-India
By Bogdan Fustei, $\frac{b+c}{2} \stackrel{(1)}{\geq} \sqrt{2 r\left(r_{b}+r_{c}\right)}=\sqrt{2 r s\left(\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}+\frac{\sin \frac{C}{2}}{\cos \frac{C}{2}}\right)}=\sqrt{2 r s\left(\frac{\cos \frac{A}{2}}{\cos \frac{B}{2} \cos \frac{C}{2}}\right)}$

$$
\begin{aligned}
&=\sqrt{\frac{2 r s \cos ^{2} \frac{A}{2}}{\frac{s}{4 R}}}=\sqrt{8 R r \cos ^{2} \frac{A}{2}}=2 \sqrt{2 R r} \cos \frac{A}{2} . \text { Now, } \sum a(2 s-a) \cos \frac{A}{2}=\sum a(b+c) \cos \frac{A}{2} \\
& \geq \sum a\left(4 \sqrt{2 R r} \cos ^{2} \frac{A}{2}\right)=4 \sqrt{2 R r} \sum a \frac{s(s-a)}{b c} \\
&=\frac{4 s \sqrt{2 R r}}{4 R r s} \sum a^{2}(s-a)=\frac{\sqrt{2 R r}}{R r}\left(s \sum a^{2}-\sum a^{3}\right) \\
&=\frac{\sqrt{2 R r}}{R r}\left\{s \sum a^{2}-3 a b c-2 s\left(\sum a^{2}-\sum a b\right)\right\} \\
&= \frac{\sqrt{2 R r}}{R r}\left\{2 s\left(\sum a b\right)-2 s\left(s^{2}-4 R r-r^{2}\right)-12 R r s\right\} \\
&=\frac{2 s \sqrt{2 R r}}{R r}\left(s^{2}+4 R r+r^{2}-s^{2}+4 R r+r^{2}-6 R r\right)
\end{aligned}
$$

$$
=\frac{2 s \sqrt{2 R r}}{R r}\left(2 R r+2 r^{2}\right)=\frac{4 s \sqrt{2 R r}(R+r)}{R} \stackrel{?}{\geq} 36 \sqrt{3} r^{2} \Leftrightarrow \frac{s^{2} \cdot 2 R r(R+r)^{2}}{R^{2}} \underset{(2)}{?} 243 r^{4}
$$

$$
\text { Now, LHS of (2) } \stackrel{s \geq 3 \sqrt{3} r}{\geq} \frac{27 \cdot 2 r^{3}(R+r)^{2}}{R} \sum_{(2)}^{?} 243 r^{4}
$$

$$
\Leftrightarrow 2(R+r)^{2} \stackrel{?}{\geq} 9 R r \Leftrightarrow 2 R^{2}-5 R r+2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(2 R-r) \stackrel{?}{\geq} 0 \rightarrow \text { true }
$$

$$
\because R \stackrel{\text { Euler }}{\gtrless} 2 r \Rightarrow(2) \text { is true (Proved) }
$$

1059. In $\triangle A B C$ the following relationship holds:

$$
\left(1+\frac{1}{\sin A}+\frac{1}{\sin B+\sin C}\right)\left(1+\frac{1}{\sin B}+\frac{1}{\sin A+\sin C}\right)\left(1+\frac{1}{\sin C}+\frac{1}{\sin A+\sin B}\right) \geq(1+\sqrt{3})^{3}
$$

Proposed by Nguyen Van Nho-Nghe An-Vietnam

Solution 1 by Soumitra Mandal-Chandar Nagore-India

We know, $\frac{3 \sqrt{3}}{2} \geq \sum_{c y c} \sin A$ and $\frac{3 \sqrt{3}}{8} \geq \prod_{c y c} \sin A$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\prod_{c y c}\left(1+\frac{1}{\sin A}+\frac{1}{\sin B+\sin C}\right) \stackrel{\substack{\text { HOLDER'S } \\ \text { INEQUALITY }}}{\geq}\left(1+\frac{1}{\sqrt[3]{\sin A \sin B \sin C}}+\frac{1}{\sqrt[3]{\prod_{c y c}(\sin A+\sin B)}}\right)^{3}
$$

$$
\stackrel{\substack{\text { REVERSE } \\ \geq}}{\geq}\left(1+\frac{2}{\sqrt{3}}+\frac{3}{2 \sum_{c y c} \sin A}\right)^{3} \geq\left(1+\frac{2}{\sqrt{3}}+\frac{3}{3 \sqrt{3}}\right)^{3}=(1+\sqrt{3})^{3}
$$

(proved)

Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand

In a triangle we have: $\sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2}$ and we get $\frac{1}{\sqrt[3]{\sin A \sin B \sin C}} \geq \frac{2}{\sqrt{3}}$

$$
\text { and } \frac{1}{\sqrt[3]{(\sin A+\sin B)(\sin B+\sin C)(\sin C+\sin A)}} \geq \frac{1}{\sqrt{3}}
$$

$$
\begin{gathered}
\text { Hence }\left(1+\frac{1}{\sqrt[3]{\sin A \sin B \sin C}}+\frac{1}{\sqrt[3]{(\sin A+\sin B)(\sin B+\sin C)(\sin C+\sin A)}}\right) \geq 1+\sqrt{3} \\
\Rightarrow\left(1+\frac{1}{\sqrt[3]{\sin A \sin B \sin C}}+\frac{1}{\sqrt[3]{(\sin A+\sin B)(\sin B+\sin C)(\sin C+\sin A)}}\right)^{3} \geq(1+\sqrt{3})^{3} \\
\Rightarrow\left(1+\frac{1}{\sin A}+\frac{1}{\sin B+\sin C}\right)\left(1+\frac{1}{\sin B}+\frac{1}{\sin C+\sin A}\right)\left(1+\frac{1}{\sin C}+\frac{1}{\sin A+\sin B}\right) \geq(1+\sqrt{3})^{3}
\end{gathered}
$$

Therefore, it's true.
1060. If in $\triangle A B C: a b=12 R^{2} \sin ^{2} \frac{C}{2}$ then:

$$
r \leq \frac{c \sqrt{3}}{6}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Lahiru Samarakoon-Sri Lanka

$$
\begin{gathered}
a b=12\left(\frac{a b c}{4 \Delta}\right)^{2} \times \frac{(s-a)(s-b)}{a b} ; 16 \Delta^{2}=12 c^{2}(s-a)(s-b) \\
\text { So, } 2 \Delta=\sqrt{3} c \sqrt{(s-a)(s-b)} ; \frac{\sqrt{3} c}{6}=\frac{2 \Delta}{3 \sqrt{(s-a)(s-b)}}
\end{gathered}
$$

but, $r=\frac{\Delta}{s}$ so, consider $\frac{\sqrt{3} c}{6}-r=\frac{2 \Delta}{3 \sqrt{(s-a)(s-b)}}-\frac{\Delta}{s}=\frac{\Delta}{3 s \sqrt{(s-a)(s-b)}}[2 s-3 \sqrt{(s-a)(s-b)}]$

$$
\text { but, } \mathrm{AM} \geq \mathrm{GM}: \frac{(s-a)+(s-b)}{2} \geq \sqrt{(s-a)(s-b)} ; \frac{c}{2} \geq \sqrt{(s-a)(s-b)}
$$

$$
\begin{gathered}
\text { ROMANIAN MATHEMATICAL MAGAZINE } \\
\text { So, } \frac{\Delta}{3 \boldsymbol{s} \sqrt{(s-a)(s-b)}}\left[2 \boldsymbol{s}-\frac{3 \boldsymbol{c}}{2}\right] ; \underbrace{\frac{\Delta}{3 \boldsymbol{s} \sqrt{(s-a)(s-b)}}}_{(+)} \underbrace{\left[\boldsymbol{a}+\boldsymbol{b}-\frac{c}{2}\right]}_{(+)} . \text {So, } \frac{\sqrt{3} \boldsymbol{c}}{6}-\boldsymbol{r} \geq \boldsymbol{c} ; \boldsymbol{r} \leq \frac{c \sqrt{3}}{6}
\end{gathered}
$$

Solution 2 by Soumava Chakraborty-Kolkata-India

$$
\begin{gathered}
a b=12 R^{2} \sin ^{2} \frac{C}{2} \Rightarrow a b=12\left(\frac{a b c}{4 \Delta}\right)^{2} \frac{(s-a)(s-b)}{a b} \\
\Rightarrow a^{2} b^{2}=\frac{3}{4} \cdot \frac{a^{2} b^{2} c^{2}(s-a)(s-b)}{s(s-a)(s-b)(s-c)} \\
\Rightarrow 4 s(s-c)=3 c^{2} \Rightarrow(a+b+c)(a+b-c)=3 c^{2} \\
\Rightarrow(a+b)^{2}-c^{2}=3 c^{2} \Rightarrow a+b=2 c \Rightarrow a+b+c=3 c \\
\Rightarrow s=\frac{3 c}{2} \stackrel{s \geq 3 \sqrt{3} r}{\geq} 3 \sqrt{3} r \Rightarrow c \geq 2 \sqrt{3} r \Rightarrow \frac{c \sqrt{3}}{6} \geq r \Rightarrow r \leq \frac{c \sqrt{3}}{6} \text { (proved) }
\end{gathered}
$$

1061. In $\triangle A B C$ the following relationship holds:

$$
27 a^{2} b^{2} c^{2} \leq(8 R-10 r)^{6}
$$

Proposed by Daniel Sitaru - Romania

Solution 1 by Marian Ursărescu-Romania
We must show: $3 \sqrt[3]{a^{2} b^{2} c^{2}} \leq(8 R-10 r)^{2}$

$$
\begin{equation*}
\text { But } \sqrt[3]{a^{2} b^{2} c^{2}} \leq \frac{a^{2}+b^{2}+c^{2}}{3} \tag{1}
\end{equation*}
$$

Form (1)+(2) we must show: $a^{2}+b^{2}+c^{2} \leq(8 R-10 r)^{2}$

$$
\begin{equation*}
\text { But } a^{2}+b^{2}+c^{2}=2\left(s^{2}-r^{2}-4 R r\right) \tag{3}
\end{equation*}
$$

From (3)+ (4) we must show: $s^{2}-r^{2}-4 R r \leq 2(4 R-5 r)^{2}$
From Gerretsen's inequality: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$
From (5)+ (6) we must show: $4 R^{2}+2 r^{2} \leq 2(4 R-5 r)^{2} \Leftrightarrow$

$$
\Leftrightarrow 2 R^{2}+r^{2} \leq 16 R^{2}-40 R r+25 r^{2} \Leftrightarrow
$$

$$
\Leftrightarrow 14 R^{2}-40 R r+24 r^{2} \geq 0 \Leftrightarrow 7 R^{2}-20 R r+12 r^{2} \geq 0
$$

Which is true because $R \geq 2 r \Rightarrow$

$$
7 R^{2}-20 R r+12 r^{2} \geq 28 r^{2}-40 r^{2}+12 r^{2}=0
$$

