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PROBLEM TRIANGLE INEQUALITY- 499

ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1) In ∆ABC

8
mambmc

hahbhc

+ 1 ≥
(a+ b+ c)3

3abc
Proposed by Adil Abdullayev - Baku - Azerbaidian

Proof.
We prove the following Lemma

Lemma
2) In ∆ABC

mambmc

hahbhc

≥
R

2r
.

Proof.

From ma ≥
√
p(p− a) and ha =

2S

a
we have mambmc ≥ Sp and hahbhc =

2S2

R

wherefrom
mambmc

hahbhc
≥ R

2r
.

�

Let’s pass to solving the inequality from enunciation.

Using the Lemma and a+ b+ c = 2p, abc = 4Rrp it suffices to prove that:

8 · R
2r

+ 1 ≥ 8p3

3 · 4Rrp
⇔ 4R+ r

r
≥ 2p2

3Rr
⇔ 2p2 ≤ 3R(4R+ r),

which follows from Gerretsen’s inequality: p2 ≤ 4R2+4Rr+3r2. It remains to prove that:

2(4R2+4Rr+3r2) ≤ 3R(4R+ r)⇔ 4R2−5Rr−6r2 ≥ 0⇔ (R−2r)(4R+3r) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

�

Remark 1.

The inequality can be developed:
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2 MARIN CHIRCIU

3) In ∆ABC

λ ·
mambmc

hahbhc

+ 9− λ ≥
(a+ b+ c)3

3abc
, where λ ≥

16

3

Proposed by Marin Chirciu - Romania

Proof.

Using Lemma and a+ b+ c = 2p, abc = 4Rrp it suffices to prove that:

λ · R
2r

+9−λ ≥ 8p3

3 · 4Rrp
⇔ λR+ (18− 2λ)r

2r
≥ 2p2

3Rr
⇔ 4p2 ≤ 3λR2 +(54− 6λ)Rr

which follows from Gerretsen’s inequality: p2 ≤ 4R2+4Rr+3r2. It remains to prove that:

4(4R2+4Rr+3r2) ≤ 3λR2+(54−6λ)Rr ⇔ (3λ−16)R2+(38−6λ)Rr−12r2 ≥ 0⇔

(R− 2r)[(3λ− 16)R+ 6r] ≥ 0, obviously from Euler’s inequality R ≥ 2r

and the condition 3λ− 16 ≥ 0.

Equality holds if and only if the triangle is equilateral.

�

Note

For λ = 8 we obtain inequality 1.

Remark 2.

The best inequality having the form of 3) is:

4) In ∆ABC

16
mambmc

hahchc

+ 11 ≥
(a+ b+ c)3

abc
.

Proof.

We have
(a+ b+ c)3

3abc
≤ 16

3
· mambmc

hahbhc
+

11

3

(1)︷︸︸︷
≤ λ · mambmc

hahbhc
+ 9− λ,

where (1) ⇔
(
λ− 16

3

)mambmc

hahbhc
≥ λ− 16

3
, obviously from λ ≥ 16

3
is
mambmc

hahbhc
≥ 1.

Equality holds if and only if the triangle is equilateral.

�

Remark 3.

In the same way we can propose:

5) In ∆ABC

λ ·
mambmc

hahbhc

+ 1− λ ≥
a3 + b3 + c3

3abc
, where λ ≥

4

3
.

Proposed by Marin Chirciu - Romania
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Proof.

Using the Lemma and a3+b3+c3 = 2p(p2−3r2−6Rr), abc = 4Rrp it suffices to prove that:

λ · R
2r

+ 1− λ ≥ 2p(p2 − 3r2 − 6Rr)

3 · 4Rrp
⇔ λR+ (2− 2λ)r

2r
≥ p2 − 3r2 − 6Rr

6Rr
⇔

⇔ p2 ≤ 3λR2 + (12− 6λ)Rr + 3r2, which follows from Gerretsen’s inequality:

p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

4R2 + 4Rr + 3r2 ≤ 3λR2 + (12− 6λ)Rr + 3r2 ⇔ (3λ− 4)R2 ≥ (6λ− 8)Rr

(3λ−4)(R−2r) ≥ 0, obviously from Euler’s inequality R ≥ 2r and the condition 3λ−4 ≥ 0.

Equality holds if and only if the triangle is equilateral.

�

Remark 4.
The best inequality having the form of 5 is:

6) In ∆ABC

4
mambmc

hahbhc

− 1 ≥
a3 + b3 + c3

abc
.

Proof.
See solution from Remark 2.

�

7) In ∆ABC

λ ·
mambmc

hahbhc

+ 1− λ ≥
(a+ b+ c)2

3(ab+ bc+ ca)
, where λ ≥

4

9
.

Proposed by Marin Chirciu - Romania

Proof.

Using Lemma and a+b+c = 2p, ab+bc+ca = p2+r2+4Rr it suffices to prove that:

λ · R
2r

+ 1− λ ≥ 4p2

3(p2 + r2 + 4Rr)
⇔ λR+ (2− 2λ)r

2r
≥ 4p2

3(p2 + r2 + 4Rr)
⇔

⇔ 8rp2 ≤ (p2 + r2 + 4Rr)[3λR+ (6− 6λ)r]⇔
⇔ p2[4λR− (6λ+ 2)r] + r(4R+ r)[3λR+ (6− 6λ)r] ≥ 0.

We distinguish the cases:

Case 1). If 3λR− (6λ+ 2)r ≥ 0 the inequality is obvious.

Case 2). If 3λR− (6λ+ 2)r < 0 the inequality can be rewritten

p2[(6λ+ 2)r − 3λR] ≤ r(4R+ r)[3λR+ (6− 6λ)r],

which follows from Gerretsen’s inequality: p2 ≤ 4R2+4Rr+3r2. It remains to prove that:

(4R2 + 4Rr + 3r2)[(6λ+ 2)r − 3λR] ≤ r(4R+ r)[3λR+ (6− 6λ)r]

⇔ 3λR3 − 2R2r + (4− 9λ)Rr2 − 6λr3 ≥ 0⇔
⇔ (R− 2r)[3λR2 + (6λ− 2)Rr + 3λr2] ≥ 0

obviously from Euler’s inequality R ≥ 2r and the condition n ≥ 4

3
.

Equality holds if and only if the triangle is equilateral.

�
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Remark 5.

The best inequality having the form of 7) is:

8) In ∆ABC

4
mambmc

hahbhc

+ 5 ≥
3(a+ b+ c)2

ab+ bc+ ca

Proof.

See solution from Remark 2.

�

9) In ∆ABC

λ ·
mambmc

hahbhc

+ 1− λ ≥
a2 + b2 + c2

ab+ bc+ ca
, where λ ≥

4

9

Proposed by Marin Chirciu - Romania

Proof.

Using the Lemma and a2+ b2+ c2 = 2(p2− r2−4Rr), ab+ bc+ ca = p2+ r2+4Rr

it suffices to prove that:

λ · R
2r

+ 1− λ ≥ 2(p2 − r2 −Rr)
p2 + r2 +Rr

⇔ λR+ (2− 2λ)r

2r
≥ 2(p2 − r2 −Rr)

p2 + r2 +Rr
⇔

⇔ p2[λR− (2λ+ 2)r] + r[4λR2 + (24− 7λ)Rr + (6− 2λ)r2] ≥ 0

We distinguish the cases:

Case 1). If λR−(2λ+2)r ≥ 0 we use Gerretsen’s inequality. It remains to prove that:

(16Rr − 5r2)[λR− (2λ+ 2)r] + r[4λR2 + (24− 7λ)Rr + (6− 2λ)r2] ≥ 0⇔
⇔ 5λR2 − (11λ+ 2)Rr + (2λ+ 4)r2 ≥ 0⇔ (R− 2r)[5λR− (λ+ 2)r] ≥ 0

obviously from Euler’s inequality R ≥ 2r and the condition n ≥ 2

9
.

Case 2). If λR− (2λ+ 2)r < 0 we rewrite the inequality

p2[(2λ+ 2)r − λR] ≤ r[4λR2 + (24− 7λ)Rr + (6− 2λ)r2],

which follows from Gerretsen’s inequality: p2 ≤ 4R2+4Rr+3r2. It remains to prove that:

(4R2 + 4Rr + 3r2)[(2λ+ 2)r − λR] ≤ r[4λR2 + (24− 7λ)Rr + (6− 2λ)r2]

⇔ λR3 − 2R2r + (4− 3λ)Rr2 − λr3 ≥ 0⇔ (R− 2r)[λR2 + (2λ− 2)Rr + λr2] ≥ 0

obviously from Euler’s inequality R ≥ 2r and the condition n ≥ 4

9
.

Equality holds if and only if the triangle is equilateral.

�

Remark 5.

The best inequality having the form of 9) is:

10) In ∆ABC

4
mambmc

hahbhc

+ 5 ≥
9(a2 + b2 + c2)

ab+ bc+ ca
.
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Proof.

See solution from Remark 2.

�

11) In ∆ABC

λ ·
mambmc

hahbhc

+ 1− λ ≥
3(a2 + b2 + c2)

(a+ b+ c)2
, where λ ≥

1

3

Proposed by Marin Chirciu - Romania

Proof.

Using the Lemma and a2 + b2 + c2 = 2(p2 − r2 − 4Rr), a+ b+ c = 2p

it suffices to prove that:

λ · R
2r

+ 1− λ ≥ 6(p2 − r2 −Rr)
4p2

⇔ λR+ (2− 2λ)r

2r
≥ 3(p2 − r2 −Rr)

2p2
⇔

⇔ p2[λR− (2λ+ 1)r] + 3r2(4R+ r) ≥ 0.

We distinguish the cases:

Case 1). If λR− (2λ+ 1)r ≥ 0 obviously inequality.

Case 2). If λR− (λ+ 1)r < 0 we rewrite the inequality

p2[(2λ+ 1)r − λR] ≤ 3r2(4R+ r), which follows from Gerretsen’s inequality:

p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

(4R2 + 4Rr + 3r2)[(2λ+ 1)r − λR] ≤ 3r2(4R+ r)⇔
⇔ 4λR3−(4λ+4)R2r+(8−5λ)Rr2−6λr3 ≥ 0⇔ (R−2r)[4λR2+(4λ−4)Rr+3λr2] ≥ 0

obviously from Euler’s inequality R ≥ 2r and the condition n ≥ 1

3
.

Equality holds if and only if the triangle is equilateral.

�

Remark 5.

The best inequality having the form 11) is:

12) In ∆ABC

mambmc

hahbhc

+ 2 ≥
9(a2 + b2 + c2)

(a+ b+ c)2
.

Proof.

See the solution from Remark 2.

�

13) In ∆ABC

λ ·
mambmc

hahbhc

+ 2− λ ≥
√

3(a+ b+ c)

ha + hb + hc

, where λ ≥
8

5
.

Proposed by Marin Chirciu - Romania
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Proof.

Using the Lemma and a+b+c = 2p, ha+hb+hc =
p2 + r2 + 4Rr

2R
it suffices to prove that:

λ · R
2r

+ 2− λ ≥
√
3 · 2p · 2R

p2 + r2 + 4Rr
⇔ λR+ (4− 2λ)r

2r
≥ 4R · p

√
3

2p2
⇔

⇔ p2[λR− (2λ+ 1)r] + 3r2(4R+ r) ≥ 0.

We distinguish the cases:

Case 1). If λR− (2λ+ 1)r ≥ 0 the inequality is obvious.

Case 2). If λR− (2λ+ 1)r < 0 we rewrite the inequality

p2[(2λ+ 1)r − λR] ≤ 3r2(4R+ r), which follows from Gerretsen’s inequality:

p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

(4R2 + 4Rr + 3r2)[(2λ+ 1)r − λR] ≤ 3r2(4R+ r)⇔
⇔ 4λR3−(4λ+4)R2r+(8−5λ)Rr2−6λr3 ≥ 0⇔ (R−2r)[4λR2+(4λ−4)Rr+3λr2] ≥ 0

obviously from Euler’s inequality R ≥ 2r and the condition n ≥ 1

3
.

Equality holds if and only if the triangle is equilateral.

�

Remark 5.

The best inequality having the form of 11) is:

14) In ∆ABC
mambmc

hahbhc

+ 2 ≥
9(a2 + b2 + c2)

(a+ b+ c)2

Proof.
See the solution from Remark 2.

�

Mathematics Department, ”Theodor Costescu” National Economic College, Drobeta

Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com
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MARIN CHIRCIU

1) In ∆ABC∑
ra(rb − rc)

2 ≥
2p2(p2 − 3r2 − 12Rr)

4R+ r

Proposed by Mihály Bencze - Romania

Proof.

We prove the following lemma:

Lemma 1.
2) In ∆ABC ∑

ra(rb − rc)
2 = 4p2(R− 2r).

Proof.

We have∑
ra(rb − rc)2 =

∑
ra(r

2
b + r2c − 2rbrc) =

∑
ra(r

2
b + r2c )− 6rarbrc =

=
∑

ra(r
2
a + r2b + r2c − r2a)− 6rarbrc =

=
∑

ra
∑

r2a−
∑

r3a−6rarbrc = (4R+r)
[
(4R+r)2−2p2

]
−
[
(4R+r)3−12Rrp2

]
= 4p2(R−2r)

�

Let’s solve the inequality in the statement.

Using Lemma 1 the inequality can be written:

4p2(R− 2r) ≥ 2p2(p2 − 3r2 − 12Rr)

4R+ r
⇔ p2 ≤ 8R2 − 2Rr − r2

which follows from Gerretsen’s inequality: p2 ≤ 4R2+4Rr+3r2. It remains to prove that:

4R2+4Rr+3r2 ≤ 8R2− 2Rr− r2 ⇔ 2R2− 3Rr− 2r2 ≥ 0⇔ (R− 2r)(2R+ r) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�
1
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Remark 1.
The inequality can be developed:

3) In ∆ABC∑
ra(rb − rc)

2 ≥
np2(p2 − 3r2 − 12Rr)

4R+ r
, where n ≤ 4.

Proof.

If n ≤ 0 the inequality is immediate because p2 − 3r2 − 12Rr ≥ 0

true from Gerretsen’s inequality: p2 ≥ 16Rr − 5r2 and Euler’s inequality R ≥ 2r.

Next we consider n > 0.

Using Lemma 1 we write the inequality:

4p2(R− 2r) ≥ np2(p2 − 3r2 − 12Rr)

4R+ r
⇔ np2 ≤ 16R2 + (12n− 28)Rr + (3n− 8)r2

which follows from Gerretsen’s inequality: p2 ≤ 4R2+4Rr+3r2 and the condition n > 0.

It remains to prove that:

n(4R2+4Rr+3r2) ≤ 16R2+(12n−28)Rr+(3n−8)r2 ⇔ (4−n)R2+(2n−7)Rr−2r2 ≥ 0.

⇔ (R− 2r)
[
(4− n)R+ r

]
≥ 0 obviously from Euler’s inequality R ≥ 2r

and the condition n ≤ 4.

Equality holds if and only if the triangle is equilateral.

�

Note
For n = 2 we obtain inequality 1).

Remark 2.

The best inequality having the form of 3) it’s obtained for n = 4:

4) In ∆ABC∑
ra(rb − rc)

2 ≥
4p2(p2 − 3r2 − 12Rr)

4R+ r
≥
np2(p2 − 3r2 − 12Rr)

4R+ r

Proof.

We use inequality 3) for n = 4 and
4p2(p2 − 3r2 − 12Rr)

4R+ r
≥ np2(p2 − 3r2 − 12Rr)

4R+ r
,

true from p2 − 3r2 − 12Rr ≥ 0 and the condition n ≤ 4.

Equality holds if and only if the triangle is equilateral.

�

Remark 3.
Inequality 3) can also be developed:

5) In ∆ABC∑
ra(rb−rc)2 ≥

np2(p2 + (2λ− 27)r2 − λRr)

4R+ r
, where n ≤ 4 and λ ≥ 11.

Proposed by Marin Chirciu - Romania
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Proof.

If n ≤ 0 the inequality is immediate because p2 + (2λ− 27)r2 − λRr ≥ 0

true from Gerretsen’s inequality: p2 ≥ 16Rr − 5r2, Euler’s inequality R ≥ 2r

and the condition λ ≥ 11.

Next we consider n > 0.

Using Lemma 1 we write the inequality:

4p2(R− 2r) ≥ np2(p2 + (2λ− 27)r2 − λRr)
4R+ r

⇔

⇔ 4(R− 2r)(4R+ r) ≥ n(p2 + (2λ− 27)r2 − λRr)
which follows from Gerretsen’s inequality: p2 ≤ 4R2+4Rr+3r2 and the condition n > 0.

It remains to prove that:

4(R− 2r)(4R+ r) ≥ n(4R2 + 4Rr + 3r2 + (2λ− 27)r2 − λRr)⇔
⇔ (16− 4n)R2 + (λn− 4n− 28)Rr + (24− 2λn− 8)r2 ≥ 0⇔

⇔ (R−2r)
[
(16−4n)R+(4+λn−12n)r

]
≥ 0 obviously from Euler’s inequality R ≥ 2r

and the conditions n ≤ 4, λ ≥ 11.

Equality holds if and only if the triangle is equilateral.

�

Note

For n = 2 and λ = 12 we obtain inequality 1), and for λ = 16 we obtain inequality 5).

Remark 4.

The best inequality having the form of 5) we obtain for n = 4 and λ = 11:

6) In ∆ABC∑
ra(rb−rc)2 ≥

4p2(p2 − 5r2 − 11Rr)

4R+ r
≥
np2(p2 + (2λ− 27)r2 − λRr)

4R+ r

where n ≤ 4 and λ ≥ 11.

Proof.
We use inequality 5) for n = 4 and λ = 11 and

4p2(p2 − 5r2 − 11Rr)

4R+ r
≥ np2(p2 + (2λ− 27)r2 − λRr)

4R+ r
is true from the condition n ≤ 4

and p2 − 5r2 − 11Rr ≥ p2 + (2λ− 27)r2 − λRr ⇔ (λ− 11)(R− 2r) ≥ 0,

and the condition λ ≥ 11.

Equality holds if and only if the triangle is equilateral.

�

Remark 5.
In the same way we can propose:

7) In ∆ABC ∑
a(b− c)2 ≥ nS(R− 2r), where n ≤ 4.

Proposed by Marin Chirciu - Romania
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Proof.

We prove the following lemma:

Lemma 2
8) In ∆ABC ∑

a(b− c)2 = 2p(p2 + r2 − 14Rr).

Proof.

We have∑
a(b−c)2 =

∑
a(b2+c2−2bc) =

∑
a(b2+c2)−6abc =

∑
a(a2+b2+c2−a2)−6abc =

=
∑

a
∑

a2−
∑

a3−6abc = 2p ·2(p2−r2−4Rr)−2p(p2−3r2−6Rr)−6 ·4Rrp =

= 2p(p2 + r2 − 14Rr).

�

Let’s solve the proposed inequality.

Using Lemma 2 we write the inequality:

2p(p2+r2−14Rr) ≥ nrp(R−2r), which follows from Gerretsen’s inequality: p2 ≥ 16Rr−5r2

It remains to prove that:

4r(R−2r) ≥ nr(R−2r)⇔ (4−n)(R−2r) ≥ 0, obviously from Euler’s inequality R ≥ 2r

and the condition n ≤ 4.

Equality holds if and only if the triangle is equilateral.

�

Remark 6.

The best inequality having the form of 7) it’s obtained for n = 4 :

9) In ∆ABC∑
a(b− c)2 ≥ 4S(R− 2r) ≥ nS(R− 2r), where n ≤ 4.

Proof.

See inequality 7) for n = 4, and 4S(R− 2r) ≥ nS(R− 2r)⇔ (4− n)(R− 2r) ≥ 0,

obviously from n ≤ 4 and R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

10) In ∆ABC∑
ha(hb − hc)

2 ≥
nS2(R− 2r)

R2
, where n ≤ 2.

Proposed by Marin Chirciu - Romania
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Proof.
We prove the followin lemma:

Lemma 3.
11) In ∆ABC ∑

ha(hb − hc)
2 =

rp2(p2 + r2 − 14Rr)

R2

Proof.
We have:∑

ha(hb − hc)2 =
∑

ha(h
2
a + h2c − 2hbhc) =

∑
ha(h

2
b + h2c)− 6hahbhc =

=
∑

ha(h
2
a + h2b + h2c − h2a)− 6abc =

=
∑

ha
∑

h2a−
∑

h3a−6hahbhc =
rp2(p2 + r2 − 14Rr)

R2
, the last equality follows from:∑

ha =
p2 + r2 + 4Rr

2R
,
∑

h2a =
(∑

ha

)2
− 2

∑
hbhc,

∑
hbhc =

2rp2

R∑
h3a =

(∑
ha

)3

−3
∏

(hb + hc),
∏

(hb + hc) =
rp2(p2 + r2 + 4Rr)

R2

�

Let’s solve the proposed inequality.

Using Lemma 3 we write the inequality:

rp2(p2 + r2 − 14Rr)

R2
≥ nr2p2(R− 2r)

R2
⇔ p2 + r2 − 14Rr ≥ nr(R− 2r)

which follows from Gerretsen’s inequality: p2 ≥ 16Rr−5r2. It remains to prove that:

16Rr−5r2+r2−14Rr ≥ nr(R−2r)⇔ 2r(R−2r) ≥ nr(R−2r)⇔ (2−n)(R−2r) ≥ 0,

obviously from Euler’s inequality R ≥ 2r and the condition n ≤ 2.

Equality holds if and only if the triangle is equilateral.

�

Remark 7.

The best inequality having the form of 10) it’s obtained for n = 2 :

12. In ∆ABC∑
ha(hb − hc)

2 ≥
2S2(R− 2r)

R2
≥
nS2(R− 2r)

R2
, where n ≤ 4.

Proof.

See inequality 10) for n = 2, and
2S2(R− 2r)

R2
≥ nS2(R− 2r)

R2
⇔ (2−n)(R−2r) ≥ 0,

obviously from n ≤ 2 and R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�
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Mathematics Department, ”Theodor Costescu” National Economic College, Drobeta

Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com



Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

PROBLEMS PP 26038, PP 26039

OCTOGON MATHEMATICAL MAGAZINE

ROMANIAN MATHEMATICAL MAGAZINE 2017
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Problem PP 26038 Octogon Mathematical Magazine
1) In ∆ABC∑

(ma +mb)(mb +mc) ≤
1

2
(11p2 − 9r2 − 36Rr).

Proposed by Mihály Bencze - Romania

Proof.

Using
∑

m2
a =

3

4

∑
a2, 4mbmc ≤ 2a2 + bc,

∑
a2 = 2(p2 − r2 − 4Rr) and∑

bc = p2 + r2 + 4Rr we obtain:∑
(ma+mb)(mb+mc) =

∑
m2
a+3

∑
mbmc ≤

3

4

∑
a2+

3

4

∑
(2a2+bc) =

3

4
(3
∑

a2+
∑

bc) =

=
3

4

[
6(p2 − r2 − 4Rr) + p2 + r2 + 4Rr

]
=

3

4
(7p2 − 5r2 − 20Rr).

The inequality we have to prove can be written:

3

4
(7p2 − 5r2 − 20Rr) ≤ 1

2
(11p2 − 9r2 − 36Rr)⇔ p2 ≥ 3r(4R+ r)

which follows from Gerretsen’s inequality: p2 ≥ 16Rr − 5r2

It remains to prove that: 16Rr − 5r2 ≥ 3r(4R+ r)⇔ R ≥ 2r,

obviously from Euler’s inequality.

Equality holds if and only if the triangle is equilateral.

�

Remark 1.

Inequality 1) can be developed:

2) In ∆ABC∑
(ma + λmb)(mb + λmc) ≤

λ+ 1

4

[
(5λ+ 6)p2 − (λ+ 2) · 3r(4R+ r)

]
where λ ∈ R.

Proposed by Marin Chirciu - Romania
1
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Proof. ∑
(ma + λmb)(mb + λmc) = λ

∑
m2
a + (λ2 + λ+ 1)

∑
mbmc ≤

≤ λ · 3
4

∑
a2 + (λ2 + λ+ 1) · 1

4

∑
(2a2 + bc) =

=
1

4

[
(2λ2 + 5λ+ 2)

∑
a2 + (λ2 + λ+ 1)

∑
bc
]
=

=
1

4

[
(2λ2 + 5λ+ 2) · 2(p2 − r2 − 4Rr) + (λ2 + λ+ 1)(p2 + r2 + 4Rr)

]
=

=
1

4

[
(5λ2 + 11λ+ 5)p2 − (λ2 + 3λ+ 1) · 3r(4R+ r)

]
.

The inequality we have to prove can be written:
1

4

[
(5λ2 + 11λ+ 5)p2 − (λ2 + 3λ+ 1) · 3r(4R+ r)

]
≤

≤ λ+ 1

4

[
(5λ+ 6)p2 − (λ+ 2) · 3r(4R+ r)

]
⇔

⇔ p2 ≥ 3r(4R+r), which follows from p2 ≥ 16Rr−5r2 (Gerretsen) and R ≥ 2r (Euler).

Equality holds if and only if the triangle is equilateral.

�

Note

For λ = 1 we obtain inequality 1).

Problem PP 26039 Octogon Mathematical Magazine
3) In ∆ABC ∑ 1

(ma +mb)2
≥

18

11p2 − 9r2 − 36Rr
.

Proposed by Mihály Bencze - Romania

Proof.

We use the inequality x2+y2+z2 ≥ xy+yz+zx, for x =
1

ma +mb
, y =

1

mb +mc
,

z =
1

mc +ma
and inequality 1). We obtain:∑ 1

(ma +mb)2
≥
∑ 1

(ma +mb)(mb +mc)
≥ 9∑

(ma +mb)(mb +mc)
≥

≥ 9
1
2 (11p

2 − 9r2 − 36Rr)
=

18

11p2 − 9r2 − 36Rr
.

Equality holds if and only if the triangle is equilateral.

�

Remark 2.
Inequality 3) can be developed:

4) In ∆ABC∑ 1

(ma + λmb)2
≥

36

(λ+ 1)[(5λ+ 6)p2 − (λ+ 2) · 3r(4R+ r)]
, where λ ≥ 0.

Proposed by Marin Chirciu - Romania
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Proof.
We use the inequality x2 + y2 + z2 ≥ xy + yz + zx,

for x =
1

ma + λmb
, y =

1

mb + λmc
, z =

1

mc + λma
and inequality 2). We obtain:∑ 1

(ma + λmb)2
≥
∑ 1

(ma + λmb)(mb + λmc)
≥ 9∑

(ma + λmb)(mb + λmc)
≥

≥ 9
λ+1
4 [(5λ+ 6)p2 − (λ+ 2) · 3r(4R+ r)]

=
36

(λ+ 1)[(5λ+ 6)p2 − (λ+ 2) · 3r(4R+ r)]
.

Equality holds if and only if the triangle is equilateral.

�

Note
For λ = 1 we obtain inequality 3).
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1) In ∆ABC

r3a + r3b + r3c + 24rp2 ≤
(9R

2

)3
Proposed by Daniel Sitaru - Romania

Proof.

Using the known identity in triangle r3a + r3b + r3c = (4R+ r)3 − 12Rp2

the desired inequality can be written: (4R+ r)3 − 12Rp2 + 24rp2 ≤
(9R

2

)3
⇔

⇔ (4R+ r)3 ≤ 12p2(R− 2r)+
(9R

2

)3
which follows from Gerretsen’s inequality: p2 ≥ 16Rr−5r2 and the observation that R−2r ≥ 0

It remains to prove that:

(4R+r)3 ≤ 12(16Rr−5r2)(R−2r)+
(9R

2

)3
⇔ 217R3+1152R2r−3648Rr2+952r3 ≥ 0⇔

(R− 2r)(217R2 + 1586Rr − 476r2) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.
The inequality can be developed:

2) In ∆ABC

r3a + r3b + r3c + nrp2 ≤ (n + 3)
(3R

2

)3
, where 16 ≤ n ≤ 24

Proposed by Marin Chirciu - Romania

Proof.

Using the known identity in triangle: r3a + r3b + r3c = (4R+ r)3 − 12Rp2

the requested inequality can be written: (4R+r)3−12Rp2+nrp2 ≤ (n+3)
(3R

2

)3
⇔

⇔ (4R+ r)3 ≤ p2(12R− nr) + (n+ 3)
(3R

2

)3
,

which follows from Gerretsen’s inequality: p2 ≥ 16Rr−5r2 and the observation that

12R− nr ≥ 0, true for n ≤ 24.

It remains to prove that:

(4R+ r)3 ≤ (16Rr − 5r2)(12R− nr) + (n+ 3)
(3R

2

)3
⇔

1
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⇔ (27n− 431)R3 + 1152R2r − (128n+ 576)Rr2 + (40n− 8)r3 ≥ 0⇔
⇔ (R− 2r)[(27n− 431)R2 + (54n+ 290)Rr + (4− 20n)r2] ≥ 0

obviously from Euler’s inequality R ≥ 2r and the condition 27n− 431 ≥ 0

checked by n ≥ 6.

Equality holds if and only if the triangle is equilateral.

�

Note.
For n = 24 we obtain inequality 1).

Remark.

Taking into account that rarbrc = rp2 inequality 2) can be reformulated:

3) In ∆ABC

r3a + r3b + r3c + nrarbrc ≤ (n + 3)
(3R

2

)3
, where 16 ≤ n ≤ 24.
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1) In ∆ABC

cos2 A
2

r2a
+

cos2 B
2

r2b
+

cos2 C
2

r2c
≥

1

2Rr

Proposed by Adil Abdullayev - Baku - Azerbaidian

Proof.

We prove the following lemma:

Lemma 1.
2) In ∆ABC

cos2 A
2

r2a
+

cos2 B
2

r2b
+

cos2 C
2

r2c
=

1

r2
−

1

2Rr

(4R + r

p

)2
.

Proof.

Using the following formulas cos2
A

2
=

p(p− a)

bc
and ra =

S

p− a
we obtain:

∑ cos2 A
2

r2a
=
∑ p(p−a)

bc
S2

(p−a)2

=
p

S2

∑ (p− a)3

bc
=

p

r2p2
·
∑

a(p− a)3

abc
=

=
1

r2p
· 4Rrp2 − 2r2(4R+ r)2

4Rrp
=

1

r2
− 1

2Rr

(4R+ r

p

)2
.

Let’s prove inequality 1).

Using Lemma 1 inequality 1) becomes:

1

r2
− 1

2Rr

(4R+ r

p

)2
≥ 1

2Rr
⇔ p2(2R− r) ≥ r(4R+ r)2, which is true from

Gerretsen’s inequality p2 ≥ 16Rr − 5r2. It remains to prove that

(16Rr−5r2)(2R−r) ≥ r(4R+r)2 ⇔ 8R2−17Rr+2r2 ≥ 0⇔ (R−2r)(8R−r) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

�
1
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Remark.

Let’s find an inequality having an opposite sense:

3) In ∆ABC

cos2 A
2

r2a
+

cos2 B
2

r2b
+

cos2 C
2

r2c
≤
( 1

R
−

1

r

)2
Proposed by Marin Chirciu - Romania

Proof.

Using Lemma 1 inequality 3) can be written:

1

r2
− 1

2Rr

(4R+ r

p

)2
≤
( 1

R
− 1

r

)2
⇔ p2 ≤ R(4R+ r)2

2(2R− r)

(Blundon - Gerretsen’s inequality)

Equality holds if and only if the triangle is equilateral.

�

Remark.

The double inequality can be written:

4. In ∆ABC

1

2Rr
≤

cos2 A
2

r2a
+

cos2 B
2

r2b
+

cos2 C
2

r2c
≤
( 1

R
−

1

r

)2
.

Proof.

See inequalities 1) and 3).

�

Remark.

In the same way we can propose:

5) In ∆ABC

1

R2p
≤

sin2 A
2

r2a
+

sin2 B
2

r2b
+

sin2 C
2

r2c
≤

1

4r2p

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 2.
6) In ∆ABC

sin2 A
2

r2a
+

sin2 B
2

r2b
+

sin2 C
2

r2c
=

1

2Rrp
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Proof.

Using the following formulas sin2
A

2
=

(p− b)(p− c)

bc
and ra =

S

p− a
we obtain:

∑ sin2 A
2

r2a
=
∑ (p−b)(p−c)

bc
S2

(p−a)2

=

∏
(p− a)

S2

∑ 1

bc
=

r2p

r2p2
·
∑

a

abc
=

1

p
· 2p

4Rrp
=

1

2Rrp
.

�

Let’s prove the double inequality 5).

Using Lemma 2 double inequality 5) can be written:
1

R2p
≤ 1

2Rrp
≤ 1

4r2p
⇔ 4r2 ≤ 2Rr ≤ R2 ⇔ 2r ≤ R (Euler’s inequality).

Equality holds if and only if the triangle is equilateral.

�

7) In ∆ABC

4

9R2
≤

tan2 A
2

r2a
+

tan2 B
2

r2b
+

tan2 C
2

r2c
≤

1

9r2

Proposed by Marin Chirciu - Romania

Proof.
We prove the following lemma:

Lemma 3.
8) In ∆ABC

tan2 A
2

r2a
+

tan2 B
2

r2b
+

tan2 C
2

r2c
=

3

p2

Proof.

Using the following formulas tan2
A

2
=

(p− b)(p− c)

p(p− a)
and ra =

S

p− a
we obtain:

∑ tan2 A
2

r2a
=
∑ (p−b)(p−c)

p(p−a)

S2

(p−a)2

=

∏
(p− a)

S2p

∑
1 =

r2p

r2p3
· 3 =

3

p2
.

�

Let’s prove the double inequality 7).

Using Lemma 3 the double inequality 7) can be written:

4

9R2
≤ 3

p2
≤ 1

9r2
⇔ 27r2 ≤ p2 ≤ 27R2

4
(Mitrinović’s inequality).

Equality holds if and only if the triangle is equilateral.

�
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9) In ∆ABC

1

r2
≤

cot2 A
2

r2a
+

cot2 B
2

r2b
+

cot2 C
2

r2c
≤

4R2 − 10Rr + 5r2

r4

Proposed by Marin Chirciu - Romania

Proof.
We prove the following Lemma:

10) In ∆ABC

cot2 A
2

r2a
+

cot2 B
2

r2b
+

cot2 C
2

r2c
=

p4 − 16Rrp2 + 2r2(4R + r)2

r4p2

Proof.

Using the following formulas cot2
A

2
=

p(p− a)

(p− b)(p− c)
and ra =

S

p− a
we obtain:

∑ cot2 A
2

r2a
=
∑ p(p−a)

(p−b)(p−c)

S2

(p−a)2

=
p

S2

∑ (p− a)3

(p− b)(p− c)
=

p

r2p2
·

∑
(p− a)4

(p− a)(p− b)(p− c)
=

1

r2p
·
∑

(p− a)4∏
(p− a)

=
1

r2p
·p

4 − 16Rrp2 + 2r2(4R+ r)2

r2p
=

p4 − 16Rrp2 + 2r2(4R+ r)2

r4p2
.

�

Let’s prove the double inequality 9.

Using Lemma 3 the double inequality 9) can be written:

1

r2
≤ p4 − 16Rrp2 + 2r2(4R+ r)2

r4p2
≤ 4R2 − 10Rr + 5r2

r4
.

The first inequality can be transformed equivalently:

1

r2
≤ p4 − 16rp2 + 2r2(4R+ r)2

r4p2
⇔ p4 − 16Rrp2 + 2r2(4R+ r)2 ≥ r2p2 ⇔

⇔ p2(p2 − 16Rr − r2) + 2r2(4R+ r)2 ≥ 0.

We distinguish the following cases:

Case 1). If p2 − 16Rr − r2 ≥ 0, the inequality is equivalent.

Case 2). If p2 − 16Rr − r2 < 0, the inequality can be rewritten:

p2(16Rr + r2 − p2) ≤ 2r2(4R+ r)2, which follows from Gerretsen’s inequality:

16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

(4R2+4Rr+3r2)(16Rr+ r2−16Rr+5r2) ≤ 2r2(4R+ r)2 ⇔ R2−Rr−2r2 ≥ 0⇔
⇔ (R− 2r)(R+ r) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

Let’s prove the second inequality.

We have
p4 − 16Rrp2 + 2r2(4R+ r)2

r4p2
=

1

r4

[
p2 − 16Rr +

2r2(4R+ r)2

p2

]
≤

≤ 1

r4

[
4R2+4Rr+3r2−16Rr+

2r2(4R+ r)2

r(4R+r)2

R+r

]
=

1

r4
[4R2−12Rr+3r2+2r(R+r)] =
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=
4R2 − 10Rr + 5r2

r4
, where, above were used inequalities p2 ≤ 4R2+4Rr+4r2 and

p2 ≥ r(4R+ r)2

R+ r
, true from Gerretsen’s inequality.

Equality holds if and only if the triangle is equilateral.

�
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1) In ∆ABC
bc

rbrc
+

ca

rcra
+

ab

rarb
≥ 5 −

2r

R

Proposed by Adil Abdullayev - Baku - Azerbaidian

Proof.

We prove the following lemma:

Lemma 1.
2) In ∆ABC

bc

rbrc
+

ca

rcra
+

ab

rarb
= 1+

(4R + r

p

)2
.

Proof.

Using the formula ra =
S

p− a
we obtain:

∑ bc

rbrc
=
∑ bc

S
p−b ·

S
p−c

=
1

S2

∑
bc(p−b)(p−c) = 1

r2p2
·r2[p2+(4R+r)2] = 1+

(4R+ r

p

)2
�

Let’s prove inequality 1).

Using Lemma 1 inequality 1) can be written:

1+
(4R+ r

p

)2
≥ 5−2r

R
⇔ p2 ≤ R(4R+ r)2

2(2R− r)
, which is Blundon-Gerretsen’s inequality.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Let’s find an inequality having on opposite sense:

3) In ∆ABC
bc

rbrc
+

ca

rcra
+

ab

rarb
≤ 2 +

R

r

Proposed by Marin Chirciu - Romania
1
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Proof.

Using Lemma 1 inequality 3) can be written:

1+
(4R+ r

p

)2
≤ 2 +

R

r
⇒ p2 ≥ r(4R+ r)2

R+ r

which follows from Gerretsen’s inequality p2 ≥ 16Rr − 5r2.

Equality holds if and only if the triangle is equilateral.

�

Remark.

The double inequality can be written:

4) In ∆ABC

5 −
2r

R
≤

bc

rbrc
+

ca

rcra
+

ab

rarb
≤ 2 +

R

r
.

Proof.

See inequalities 1) and 3).

Equality holds if and only if the triangle is equilateral.

�

Remark.

In the same way we can propose:

5) In ∆ABC

4 ≤
bc

hbhc

+
ca

hcha

+
ab

hahb

≤ 4
(R
r

)2
−

3

4
·
R

r
+

3

2

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 2.
6) In ∆ABC

bc

hbhc

+
ca

hcha

+
ab

hahb

=
p4 + p2(2r2 − 8Rr) + r2(4R + r)2

4r2p2

Proof.

Using the formula ha =
2S

a
we obtain:∑ bc

hbhc
=
∑ bc

2S
b ·

2S
c

=
1

4S2

∑
b2c2 =

1

4r2p2
[p4+p2(2r2−8Rr)+r2(4R+r)2] =

=
p4 + p2(2r2 − 8Rr) + r2(4R+ r)2

4r2p2
.

�
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Let’s prove the double inequality 5).

Using Lemma 2 the left inequality from 5) can be written:

4 ≤ p4 + p2(2r2 − 8Rr) + r2(4R+ r)2

4r2p2
⇔ p4+p2(2r2−8Rr)+r2(4R+r)2 ≥ 16r2p2 ⇔

p4 − p2(14r2 + 8Rr) + r2(4R+ r)2 ≥ 0⇔ p2(p2 − 14r2 − 8Rr) + r2(4R+ r)2 ≥ 0.

We distinguish the following cases:

Case 1). If p2 − 14r2 − 8Rr ≥ 0, the inequality is obvious.

Case 2). If p2 − 14r2 − 8Rr < 0, inequality can be rewritten:

p2(8Rr + 14r2 − p2) ≤ r2(4R+ r)2, which follows from Gerretsen’s inequality

16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

(4R2 + 4Rr + 3r2)(8Rr + 14r2 − 16Rr + 5r2) ≤ r2(4R+ r)2 ⇔
⇔ (4R2+4Rr+3r2)(19r− 8R) ≤ r(4R+ r)2 ⇔ 8R3− 7R2r− 11Rr2− 14r3 ≥ 0⇔
⇔ (R− 2r)(8R2 + 9Rr + 7r2) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

Let’s prove the right inequality from 5):

We have

bc

hbhc
+

ca

hcha
+

ab

hahb
=

p4 + p2(2r2 − 8Rr) + r2(4R+ r)2

4r2p2
=

=
1

4r2

[
p2+2r2−8Rr+

r2(4R+ r)2

p2

]
≤ 1

4r2

[
4R2+4Rr+3r2+2r2−8Rr+

r2(4R+ r)2

r(4R+r)2

R+r

]
=

=
1

4r2
(4R2 − 4Rr + 5r2 + r(R+ r)) =

4R2 − 3Rr + 6r2

4r2
= 4
(R
r

)2
− 3

4
· R
r
+

3

2
.

In the above inequality we’ve used p2 ≤ 4R2 + 4Rr + 3r2 and p2 ≥ r(4R+ r)2

R+ r

which follows from Gerretsen’s inequality.

Equality holds if and only if the triangle is equilateral.

�

7) In ∆ABC

2+
( r

R

)2
≤

hbhc

bc
+

hcha

ca
+

hahb

ab
≤

3r

R

(
2 −

r

R

)
.

Proposed by Marin Chirciu - Romania

Proof.

Let’s prove the following lemma:

Lemma 3.
8) In ∆ABC

hbhc

bc
+

hcha

ca
+

hahb

ab
=

p2 − r2 − 4Rr

2R2
.
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Proof.

Using the formula ha =
2S

a
we obtain:∑ hbhc

bc
=
∑ 2S

b ·
2S
c

bc
= 4S2

∑ 1

b2c2
= 4r2p2 ·

∑
a2

a2b2c2
=

= 4r2p2 · 2(p
2 − r2 − 4Rr)

16R2r2p2
=

p2 − r2 − 4Rr

2R2

�

Let’s prove the double inequality 7).

Using Lemma 3 the double inequality 7) can be written:

2+
( r

R

)2
≤ p2 − r2 − 4Rr

2R2
≤ 3r

R

(
2− r

R

)
which follows from Gerretsen’s inequality 16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2.

Equality holds if and only if the triangle is equilateral.

�

9) In ∆ABC
9r

2R
≤

rbrc

bc
+

rcra

ca
+

rarb

ab
≤

9

4
Proposed by Marin Chirciu - Romania

Proof.
We prove the following lemma:

Lemma 4.
10) In ∆ABC

rbrc

bc
+

rcra

ca
+

rarb

ab
= 2 +

r

2R

Proof.

Using the formula ra =
S

p− a
we obtain:

∑ rbrc
bc

=
∑ S

p−b ·
S

p−c

bc
= S2

∑ 1

bc(p− b)(p− c)
= r2p2 · 4R+ r

2Rr2p2
=

4R+ r

2R
.

�

Let’s prove the double inequality 9).

Using Lemma 4 the double inequality 9) can be written:
9r

2R
≤ 2 +

r

2R
≤ 9

4
⇔ 2r ≤ R (Euler’s inequality).

Equality holds if and only if the triangle is equilateral.

�
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1) In ∆ABC

a3b3 + b3c3 + c3a3 ≥ 648R3r3.

Proposed by Seyram Ibrahimov - Maasilli - Azerbaidian

Proof.

We prove the following lemma:

Lemma 1.
2) In ∆ABC

a3b3 + b3c3 + c3a3 = p6 + p4(3r2 − 12Rr) + 3p2r4 + r3(4R + r)3.

Proof.

Using the identity
∑

b2c2
∑

bc =
∑

b3c3 + abc
(∑

a
∑

bc− abc
)

and the known relationships in triangle:
∑

a = 2p,
∑

bc = p2 + r2 + 4Rr,∑
b2c2 = p4 + p2(2r2 − 8Rr) + r2(4R+ r)2 and abc = 4Rrp we obtain∑

b3c3 = p6 + p4(3r2 − 12Rr) + 3p2r4 + r3(4R+ r)3.

�

Lemma 2.
3) In ∆ABC

a3b3 + b3c3 + c3a3 ≥ 16r3(68R3 − 69R2r + 30Rr2 − 4r3).

Proof.

Using Lemma 1 we have

p6+p4(3r2−12Rr)+3p2r4+r3(4R+r)3 = p4(p2+3r2−12Rr)+3p2r4+r3(4R+r)3 ≥

≥ (16Rr − 5r2)2(16Rr − 5r2 + 3r2 − 12Rr) + 3(16Rr − 5r2)r4 + r3(4R+ r)3 =

= r3[(16R−5r)2(4R−2r)+3r2(16R−5r)+(4R+r)3] = 16r3(68R3−69R2r+30Rr2−4r3).
�

1
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Let’s pass to solving inequality 1).

Using Lemma 2 it suffices to prove that:

16r3(68R3−69R2r+30Rr2−4r3) ≥ 648R3r3 ⇔ 55R3−138R2r+60Rr2−8r3 ≥ 0⇔
⇔ (R− 2r)(55R2 − 28Rr + 4r2) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�
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1) In ∆ABC

cotA

p − a
+

cotB

p − b
+

cotC

p − c
≤

1

r
−

R − 2r

2Rr

Proposed by Adil Abdullayev - Baku - Azerbaidian

Proof.

Let’s prove the following lemma:

Lemma 1.
2) In ∆ABC

cotA

p − a
+

cotB

p − b
+

cotC

p − c
=

5p2 − (4R + r)2

2rp2
.

Proof.

We have:∑ cotA

p− a
=
∑ cosA

sinA

p− a
=
∑ b2+c2−a2

2bc · 2Ra
p− a

=
R

abc

∑ b2 + c2 − a2

p− a
=

=
R

4Rrp
· 10p

2 − 2(4R+ r)2

p
=

5p2 − (4R+ r)2

2rp2
.

�

Let’s pass to solving inequality 1).

Using Lemma 1 the inequality can be written
5p2 − (4R+ r)2

2rp2
≤ 1

r
− R− 2r

2Rr
⇔

⇔ p2 ≤ R(4R+ r)2

2(2R− r)
, which is Blundon’s-Gerretsen’s inequality.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Let’s find an inequality having an opposite sense:

3) In ∆ABC
cotA

p − a
+

cotB

p − b
+

cotC

p − c
≥

4r − R

2r2
.

1
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Proof.

Using Lemma 1 the inequality can be written:

5p2 − (4R+ r)2

2rp2
≥ 4r −R

2r2
⇔ p2 ≥ r(4R+ r)2

R+ r

which follows from Gerretsen’s inequality p2 ≥ 16Rr − 5r2.

Equality holds if and only if the triangle is equilateral.

�

Remark.

The double inequality can be written:

4) In ∆ABC

4r − R

2r2
≤

cotA

p − a
+

cotB

p − b
+

cotC

p − c
≤

R + 2r

2Rr
.

Proof.

See inequalities 1) and 3).

Equality holds if and only if the triangle is equilateral.

�

Remark.

In the same way we can propose:

5) In ∆ABC

1

p

(
15 −

5r

R
−

4R

r

)
≤

cosA

p − a
+

cosB

p − b
+

cosC

p − c
≤

1

p

(
1 +

r

R

)
.

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 2.
6) In ∆ABC

cosA

p − a
+

cosB

p − b
+

cosC

p − c
=

p2 − Rr − 4R2

Rrp

Proof.

We have
∑ cosA

p− a
=
∑ b2+c2−a2

2bc

p− a
=
∑ b2 + c2 − a2

2(p− a)bc
=

p2 −Rr − 4R2

Rrp

�
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Let’s pass to solve the double inequality 5).

Using Lemma 2 the double inequality 5) can be written

1

p

(
15− 5r

R
− 4R

r

)
≤ p2 −Rr − 4r2

Rrp
≤ 1

p

(
1 +

r

R

)
,

which follows from Gerretsen’s inequality 16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2.

Equality holds if and only if the triangle is equilateral.

�

7) In ∆ABC

5

2r
−

1

R
≤

cscA

p − a
+

cscB

p − b
+

cscC

p − c
≤

1

2r

(
2 +

R

r

)
.

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 3.
8) In ∆ABC

cscA

p − a
+

cscB

p − b
+

cscC

p − c
=

1

2r

[
1+
(4R + r

p

)2]
.

Proof.

We have:∑ cscA

p− a
=
∑ 1

sinA

p− a
=
∑ 2R

a

p− a
= 2R

∑ 1

a(p− a)
= 2R · p

2 + (4R+ r)2

4Rrp2
=

=
1

2r

[
1+
(4R+ r

p

)2]
�

Let’s pass to solve the double inequality 7).

Using Lemma 3 the double inequality 7) can be written

5

2r
− 1

R
≤ 1

2r

[
1+
(4R+ r

p

)2]
≤ 1

2r

(
2 +

R

r

)
which follows from Blundon’s Gerretsen’s inequality

r(4R+ r)2

R+ r
≤ p2 ≤ R(4R+ r)2

2(2R− r)
.

Equality holds if and only if the triangle is equilateral.

�

9) In ∆ABC

12

p
≤

csc2 A

p − a
+

csc2 B

p − b
+

csc2 C

p − c
≤

1

p

(2R2

r2
+

5R

4r
+

3

2

)
.

Proposed by Marin Chirciu - Romania
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Proof.
We prove the following lemma:

Lemma 4
10) In ∆ABC

csc2 A

p − a
+

csc2 B

p − b
+

csc2 C

p − c
=

p4 + p2(2r2 − 4Rr) + r(4R + r)3

4r2p3
.

Proof.
We have∑ csc2 A

p− a
=
∑ 1

sin2 A

p− a
=
∑ 4R2

a2

p− a
= 4R2

∑ 1

a2(p− a)
=

= 4R2 · p
4 + p2(2r2 − 4Rr) + r(4R+ r)3

16R2r2p3
=

p4 + p2(2r2 − 4Rr) + r(4R+ r)3

4r2p3
.

�

Let’s pass to solve the double inequality 9).

Using Lemma 4 the double inequality 7) can be written

12

p
≤ p4 + p2(2r2 − 4Rr) + r(4R+ r)3

4r2p3
≤ 1

p

(2R2

r2
+

5R

4r
+

3

2

)
.

The left inequality is equivalent with:

p4 + p2(2r2− 4Rr)+ r(4R+ r)3 ≥ 48r2p2 ⇔ p2(p2− 46r2− 4Rr)+ r(4R+ r)3 ≥ 0.

We distinguish the following cases:

Case 1). If p2 − 46r2 − 4Rr ≥ 0, the inequality becomes obviously.

Case 2). If p2 − 46r2 − 4Rr < 0, the inequality can be rewritten:

p2(46r2 + 4Rr − p2) ≤ r(4R+ r)3 it follows from Blundon-Gerretsen’s inequality

16Rr − 5r2 ≤ p2 ≤ R(4R+ r)2

2(2R− r)
. It remains to prove that:

R(4R+ r)2

2(2R− r)
· (46r2 +4Rr− 16Rr+5r2) ≤ r(4R+ r)3 ⇔ 28R2− 55Rr− 2r2 ≥ 0⇔

⇔ (R− 2r)(28R+ r) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

Let’s solve the inequality from the right:

We have
p4 + p2(2r2 − 4Rr) + r(4R+ r)3

4r2p3
=

1

4r2p

[
p2+2r2−4Rr+

r(4R+ r)3

p2

]
≤

≤ 1

4r2p

[
4R2+4Rr+3r2+2r2−4Rr+

r(4R+ r)3

r(4R+r)
R+r

]
=

1

4r2p
[4R2+5r2+(4R+r)(R+r)] =

=
8R2 + 5Rr + 6r2

4r2p
=

1

p

(2R2

r2
+

5R

4r
+

3

2

)
.

In the above inequality we’ve used p2 ≤ 4R2 + 4Rr + 3r2 and
r(4R+ r)2

R+ r
≤ p2

it follows from Gerretsen’s inequality 16Rr − 5r2 ≤ p2.

Equality holds if and only if the triangle is equilateral.
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1) In ∆ABC

y + z

x
· a2 +

z + x

y
· b2 +

x + y

z
· c2 ≥ 8

√
3 · S

where, x, y, z > 0.

Proposed by D.M. Bătineţu-Giurgiu, Neculai Stanciu - Romania

Proof.

Using the means inequality we obtain

y + z

x
· a2 + z + x

y
· b2 + x+ y

z
· c2 =

(y
x
a2 +

x

y
b2
)
+
(z
y
b2 +

y

z
c2
)
+
(x
z
c2 +

z

x
a2
)
≥

≥ 2

√
y

x
a2 · x

y
b2 + 2

√
z

y
b2 · y

z
c2 + 2

√
x

z
c2 · z

x
a2 = 2(ab+ bc+ ca) ≥ 8

√
3 · S

where the last inequality is true from ab+bc+ca ≥ 4
√
3S ⇔ p2+r2+4Rr ≥ 4

√
3rp

which follows from Gerretsen’s inequality p2 ≥ 16Rr − 5r2 and Doucet’s inequality

4R+ r ≥ p
√
3. It remains to prove that:

16Rr − 5r2 + r2 + 4Rr ≥ 4r(4R+ r)⇔ R ≥ 2r (Euler’s inequality).

Equality holds if and only if the triangle is equilateral and x = y = z.

�

Remark.

The inequality can be developed:

2) In ∆ABC

y + z

x
· a4 +

z + x

y
· b4 +

x + y

z
· c4 ≥ 32S2.

Proof.

Using the means inequality we obtain:

y + z

x
· a4 + z + x

y
· b4 + x+ y

z
· c4 =

(y
x
a4 +

x

y
b4
)
+
(z
y
b4 +

y

z
c4
)
+
(x
z
c4 +

z

x
a4
)
≥

≥ 2

√
y

x
a4 · x

y
b4+2

√
z

y
b4 · y

z
c4+2

√
x

z
c4 · z

x
a4 = 2(a2b2+b2c2+c2a2) ≥ 2·16S2 = 32S2

where the last inequality is true from a2b2+b2c2+c2a2 ≥ 16S2 (F. Goldner’s inequality, 1949)
1
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Proof.

We use the formulas a2b2 + b2c2 + c2a2 = p4 + p2(2r2 − 8Rr) + r2(4R+ r)2

and S2 = r2p2. We write the inequality:

p4+p2(2r2−8Rr)+ r2(4R+ r)2 ≥ 16r2p2 ⇔ p2(p2−14r2−8Rr)+ r2(4R+ r)2 ≥ 0

We distinguish the cases:

Case 1). If p2 − 14r2 − 8Rr ≥ 0, the inequality is obvious.

Case 2). If p2 − 14r2 − 8Rr < 0, the inequality can be rewritten

p2(8Rr + 14r2 − p2) ≤ r2(4R+ r)2 which follows from Gerretsen’s inequality

16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

(4R2 + 4Rr + 3r2)(8Rr + 14r2 − 16Rr + 5r2) ≤ r2(4R+ r)2 ⇔
⇔ (4R2+4Rr+3r2)(19r− 8R) ≤ r(4R+ r)2 ⇔ 8R3− 7R2r− 11Rr2− 14r3 ≥ 0⇔
⇔ (R− 2r)(8R2 + 9Rr + 7r2) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

Equality, for Goldner’s inequality holds if and only if the triangle is equilateral.

Equality in 2) holds if and only if the triangle is equilateral and x = y = z.

�

�

Remark.
The inequality can be generalized:

3) In ∆ABC

y + z

x
· a2n +

z + x

y
· b2n +

x + y

z
· c2n ≥ 6

( 4S
√

3

)n
where n ∈ N.

Proposed by Marin Chirciu - Romania

Proof.
Using means inequality we obtain

y + z

x
·a2n+z + x

y
·b2n+x+ y

z
·c2n =

(y
x
a2n+

x

y
b2n
)
+
(z
y
b2n+

y

z
c2n
)
+
(x
z
c2n+

z

x
a2n
)
≥

≥ 2

√
y

x
a2n · x

y
b2n + 2

√
z

y
b2n · y

z
c2n + 2

√
x

z
c2n · z

x
a2n =

= 2(anbn + bncn + cnan) ≥ 2 · (ab+ bc+ ca)n

3n−1
≥ 2 · (4

√
3S)n

3n−1
= 6
( 4S√

3

)n
where the penultimate inequality follows from Hölder’s inequality,

Xn

A
+

Y n

B
+

Zn

C
≥ (X + Y + Z)n

3(A+B + C)
, X, Y, Z,A,B,C > 0, n ∈ N, n ≥ 2

and the last inequality is true from ab+ bc+ ca ≥ 4
√
3S

see the solution from inequality 1) from above.

Equality holds if and only if the triangle is equilateral and x = y = z, for n ≥ 1.

For n = 0 we obtain the known inequality
y + z

x
+

z + x

y
+

x+ y

z
≥ 6.

For n = 1 we obtain inequality 1).

For n = 2 we obtain inequality 2).
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1) In ∆ABC

r2a
hbmc

+
r2b

hcmc

+
r2c

hamb

≥
54r2

p2 − r2 − 4Rr

Proposed by D.M. Bătineţu-Giurgiu - Romania, Martin Lukarevski - Skopje

Proof.
We prove the following lemma:

Lemma 1.
2) In ∆ABC

r2a
hbmc

+
r2b

hcma
+

r2c
hamb

≥ 4(4R + r)2

5p2 − 3r(4R + r)

Proposed by Marin Chirciu - Romania

Proof.

Using the fact that ha ≤ ma and Bergström inequality we obtain:∑ r2a
hbmc

≥
∑ r2a

mbmc
≥ (

∑
ra)2∑

mbmc
≥ (4R + r)2

1
4

∑
(2a2 + bc)

=
4(4R + r)2

2
∑

a2 +
∑

bc
=

=
4(4R + r)2

2 · 2(p2 − r2 − 4Rr) + p2 + r2 + 4Rr
=

4(4R + r)2

5p2 − 3r(4R + r)

Equality holds if and only if the triangle is equilateral.

�

Let’s pass to solving the inequality from the enunciation.

Using Lemma 1 it’s enough to prove that
4(4R + r)2

5p2 − 3r(4R + r)
≥ 54r2

p2 − r2 − 4Rr
.

This inequality can be transformed equivalently:

2(4R + r)2(p2 − r2 − 4Rr) ≥ 27r2(5p2 − 3r2 − 12Rr)⇔
⇔ p2(32R2 + 16Rr − 133r2) ≥ 2r(4R + r)3 − 81r3(4R + r)

which follows from Gerretsen’s inequality p2 ≥ 16Rr − 5r2

and from the observation that 32R2+16Rr−133r2 > 0 (see Euler’s inequality R ≥ 2r).

It remains to prove that:

(16Rr − 5r2)(32R2 + 16Rr − 133r2) ≥ 2r(4R + r)3 − 81r3(4R + r)⇔
⇔ 32R3 − 159Rr2 + 62r3 ≥ 0⇔ (R− 2r)(32R2 + 64Rr − 31r2) ≥ 0

obviously from Euler’s inequality.
1
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Equality holds if and only if the triangle is equilateral.

�

Remark.

Inequality 1) can be rewritten:

1) In ∆ABC

r2a
hbmc

+
r2b

hcma

+
r2c

hamb

≥
108r2

a2 + b2 + c2

Proof.

Using Lemma 1 and the identity ab+bc+ca = p2+r2+4Rr it suffices to prove that

4(4R + r)2

5p2 − 3r(4R + r)
≥ 108r2

p2 + r2 + 4Rr

This inequality transformed equivalently:

(4R + r)2(p2 + r2 + 4Rr) ≥ 27r2(5p2 − 3r2 − 12Rr)⇔

⇔ p2(16R2 + 8Rr + r2 − 135r2) + r(4R + r)3 + 81r3(4R + r) ≥ 0⇔

⇔ p2(8R2 + 4Rr − 67r2) + 32R3r + 24R2r2 + 168Rr3 + 41r4 ≥ 0

We distinguish the following cases:

Case 1). If 8R2 + 4Rr − 67r2 ≥ 0, the inequality is obvious.

Case 2). If 8R2 + 4Rr − 67r2 < 0, the inequality can be rewritten:

32R3r + 24R2r2 + 168Rr3 + 41r4 ≥ p2(67r2 − 4Rr − 8r2)

which follows from Gerretsen’s inequality p2 ≤ 4R2+4Rr+3r2. It remains to prove that:

32R3r + 24R2r2 + 168Rr3 + 41r4 ≥ (4R2 + 4Rr + 3r2)(67r2 − 4Rr − 8R2)⇔

⇔ 8R4+20R3r−51R2r2−22Rr3−40r4 ≥ 0⇔ (R−2r)(8R3+36R2r+21Rr2+20r3) ≥ 0,

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.
5. In ∆ABC

r2a
hbmc

+
r2b

hcma

+
r2c

hamb

≥
108r2

ab + bc + ca
≥

108r2

a2 + b2 + c2
.

Proof.

We use inequality 4) and inequality a2 + b2 + c2 ≥ ab + bc + ca.

Equality holds if and only if the triangle is equilateral.

�
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Remark.

Inequality 4) can also be strengthened:

6) In ∆ABC

r2a
hbmc

+
r2b

hcma

+
r2c

hamb

≥
9r
√

3

p

Proof.

Using Lemma 1 it suffices to prove that
4(4R + r)2

5p2 − 3r(4R + r)
≥ 9r

√
3

p
.

This inequality can be transformed equivalently:

4p(4R+r)2 ≥ 9r
√

3(5p2−3r2−12Rr), which follows from Mitrinović’s inequality p ≥ 3r
√

3.

It suffices to prove that

4 · 3r
√

3(4R + r)2 ≥ 9r
√

3(5p2 − 3r2 − 12Rr)⇔ 4(4R + r)2 ≥ 15p2 − 9r(4R + r)⇔

⇔ 4(4R + r)2 + 9r(4R + r) ≥ 15p2, true from Gerretsen’s inequality

p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

4(4R+r)2+9r(4R+r) ≥ 15(4R2+4Rr+3r2)⇔ R2+2Rr−8r2 ≥ 0⇔ (R−2r)(R+4r) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Inequality 6) is stronger than inequality 4).

7) In ∆ABC

r2a
hbmc

+
r2b

hcma

+
r2c

hamb

≥
9r
√

3

p
≥

108r2

ab + bc + ca

Proof.

We use inequality 6) and the known inequality in triangle ab + bc + ca ≥ 4
√

3S

�

Remark.

Inequality 6) can also be strengthened:

8) In ∆ABC

r2a
hbmc

+
r2b

hcma

+
r2c

hamb

≥
2p
√

3

3R
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Proof.

Using Lemma 1 it suffices to prove that
4(4R + r)2

5p2 − 3r(4R + r)
≥ 2p

√
3

3R
.

This inequality can be transformed equivalently:

6R(4R + r)2 ≥ p
√

3(5p2 − 3r2 − 12Rr), which follows from Doucet’s inequality

4R + r ≥ p
√

3. It remains to prove that

6R(4R + r)2 ≥ (4R + r)(5p2 − 3r2 − 12Rr)⇔ 6R(4R + r) ≥ 5p2 − 3r2 − 12Rr

true from Gerretsen’s inequality p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

6R(4R+r) ≥ 5(4R2+4Rr+3r2)−3r2−12Rr ⇔ 2R2−Rr−6r2 ≥ 0⇔ (R−r)(2R+3r) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Inequality 8) is stronger than inequality 6).

9) In ∆ABC

r2a
hbmc

+
r2b

hcma

+
r2c

hamb

≥
2p
√

3

3R
≥

9r
√

3

p
.

Remark.

We use inequality 8) and the known inequality in triangle 2p2 ≥ 27Rr

(true from Gerretsen’s inequality p2 ≥ 16Rr − 5r2 and Euler’s inequality R ≥ 2r).

Remark.

We can write the following inequalities:

10) In ∆ABC

r2a
hbmc

+
r2b

hcma

+
r2c

hamb

≥
4(4R + r)2

5p2 − 3r(4R + r)
≥

9r
√

3

p
≥

108r2

p2 + r2 + 4Rr
≥

54r2

p2 − r2 − 4Rr

Proof.

We use Lemma 1 and the above inequalities.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Let’s find an inequality having an apposite sense:

11) In ∆ABC

r2a
hbmc

+
r2b

hcma

+
r2c

hamb

≤
(R
r

)2
−

3

4
·
R

r
+

1

2
.
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Proof.
Let’s prove the following lemma:

Lemma 2.
12) In ∆ABC

r2a
hbmc

+
r2b

hcma

+
r2c

hamb

≤
p2(r − 8R) + (4R + r)3

4rp2

Proposed by Marin Chirciu - Romania

Proof.
Using the fact that ha ≤ ma we obtain:∑ r2a

hbmc
≤
∑ r2a

hbhc
=
∑ S2

(p−a)2

2S
b ·

2S
c

=
1

4

∑ bc

(p− a)2
=

1

4
det

p2(r − 8R) + (4R + r)3

rp2
=

=
p2(r − 8R) + (4R + r)3

4rp2

The equality holds if and only if the triangle is equilateral.

�

Let’s pass to solving inequality 11).

Using Lemma 2 it suffices to prove that
p2(r − 8R) + (4R + r)3

4rp2
≤
(R
r

)2
−3

4
·R
r

+
1

2
This inequality can be transformed equivalently:

p2(r− 8R) + (4R+ r)3 ≤ p2(4R2− 3Rr + 2r2)⇔ p2(4R2 + 5Rr + r2) ≥ r(4R+ r)3

which follows from inequality p2 ≥ r(4R + r)2

R + r

(true from Gerretsen’s inequality p2 ≥ 16Rr − 5r2 and Euler’s inequality R ≥ 2r).

The equality holds if and only if the triangle is equilateral.

�

Remark.
The double inequality can be written:

1) In ∆ABC

4(4R + r)2

5p2 − 3r(4R + r)
≤

r2a
hbmc

+
r2b

hcma

+
r2c

hamb

≤
p2(r − 8R) + (4R + r)3

4rp2

Proof.
See Lemma 1 and Lemma 2

The equality holds if and only if the triangle is equilateral.

�

Mathematics Department, ”Theodor Costescu” National Economic College, Drobeta

Turnu - Severin, MEHEDINTI.
E-mail address: dansitaru63@yahoo.com
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MARIN CHIRCIU

1) In ∆ABC

m4
a

hbhc
+

m4
b

hcha
+

m4
c

hahb
≥ 3

4
(p2 + r2 + 4Rr).

Proposed by Boris Colakovic - Belgrade - Serbia

Proof.

Using Bergström inequality we obtain:∑ m4
a

hbhc
≥ (
∑

m2
a)2∑

hbhc
=

( 3
4

∑
a2)2

2rp2

R

=
9
16 (
∑

a2)2

2rp2

R

≥ 9R(
∑

bc)2

32rp2
=

=
9R(p2 + r2 + 4Rr)2

32rp2
≥ 3

4
(p2 + r2 + 4Rr)

where the last inequality is equivalent with:

3R(p2 + r2 + 4Rr) ≥ 8rp2 ⇔ p2(3R− 8r) + 3Rr(4R + r) ≥ 0.

We distinguish the cases:

Case 1). If 3R− 8r ≥ 0, the inequality is obvious.

Case 2). If 3R−8r < 0, the inequality can be rewritten 3Rr(4R+r) ≥ p2(8r−3R)

which is true from Gerretsen’s inequality p2 ≥ 16Rr−5r2. It remains to prove that:

3Rr(4R + r) ≥ (16Rr − 5r2)(8r − 3R)⇔ 3R2 − 2R2r − 5Rr2 − 6r3 ≥ 0⇔

⇔ (R− 2r)(3R2 + 4Rr + 3r2) ≥ 0 obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Inequality 1) can be written:

2) In ∆ABC

m4
a

hbhc

+
m4

b

hcha

+
m4

c

hahb

≥
3

4
(ab + bc + ca).

Proof.

We use the identity ab + bc + ca = p2 + r2 + 4Rr.

�
1



2 MARIN CHIRCIU

Remark.
Inequality 2) can be strengthened:

3) In ∆ABC

m4
a

hbhc

+
m4

b

hcha

+
m4

c

hahb

≥
3

4
(a2 + b2 + c2)

Proof.
Using Bergström’s inequality, we obtain:∑ m4

a

hbhc
≥ (
∑

m2
a)2∑

hbhc
=

( 3
4

∑
a2)2

2rp2

R

=
9
16 (
∑

a2)2

2rp2

R

≥ 9R(
∑

a2)2

32rp2
≥ 3

4
∑

a2

where the last inequality is equivalent with:

3R
∑

a2 ≥ 8rp2 ⇔ 3R · 2(p2 − r2 − 4Rr) ≥ 8rp2 ⇔ p2(3R− 4r) ≥ 3Rr(4Rr + r)

which is true from Gerretsen’s inequality p2 ≥ 16Rr−5r2. It remains to prove that:

(16Rr−5r2)(3R−4r) ≥ 3Rr(4R+r)⇔ 18R2−41Rr+10r2 ≥ 0⇔ (R−2r)(18R−5r) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.
Inequality 3) is stronger than inequality 2):

4) In ∆ABC

m4
a

hbhc

+
m4

b

hcha

+
m4

c

hahb

≥
3

4
(a2 + b2 + c2) ≥

3

4
(ab + bc + ca).

Proof.
See inequality 3) and a2 + b2 + c2 ≥ ab + bc + ca.

Equality holds if and only if the triangle is equilateral.

�

Remark.
Inequality 3) can be also strengthened:

5) In ∆ABC

m4
a

hbhc

+
m4

b

hcha

+
m4

c

hahb

≥
9

4
·
a3 + b3 + c3

a + b + c

Proposed by Marin Chirciu - Romania

Proof.
We prove the following lemmas:

Lemma 1.
6) In ∆ABC

m4
a

hbhc

+
m4

b

hcha

+
m4

c

hahb

=
2p6 − p4(23Rr + 2r2) + p2(10R2r2 − 19Rr3 − 2r4) + 2r3(4R + r)3

8r2p2
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Proof.∑ m4
a

hbhc
=
∑ (m2

a)2

2S
b ·

2S
c

=
1

4S2

∑
bc
(2b2 + 2c2 − a2

4

)2
=

1

64S2

∑
bc(E − 3a2)2 =

=
2p6 − p4(23Rr + 2r2) + p2(10R2r2 − 19Rr3 − 2r4) + 2r3(4R + r)3

8r2p2
, where E = 2

∑
a2.

�

Lemma 2.
7) In ∆ABC

m4
a

hbhc

+
m4

b

hcha

+
m4

c

hahb

≥
77R3 − 112R2r + 25Rr2 − 2r3

4R
.

Proof.

Using Lemma 1 we obtain:

m4
a

hbhc
+

m4
b

hcha
+

m4
c

hahb
=

2p6 − p4(23Rr + 2r2) + p2(10R2r2 − 19Rr3 − 2r4) + 2r3(4Rr + r)3

8r2p2
=

=
1

8r2

[
2p4 − p2(23Rr + 2r2) + 10R2r2 − 19Rr3 − 2r4 +

2r3(4R + r)3

p2

]
=

=
1

8r2

[
p2(2p2 − 23Rr − 2r2) + 10R2r2 − 19Rr3 − 2r4 +

2r3(4R + r)3

p

]
≥

≥ 1

8r2

[
(16Rr−5r2)

(
2(16Rr−5r2)−23Rr−2r2

)
+10R2r2−19Rr3−2r4+

2r3(4R + r)3

R(4R+r)2

2(2R−r)

]
=

=
77R3 − 112R2r + 25Rr2 − 2r3

4R
, where the last inequality follows from

Gerretsen’s inequality p2 ≥ 16Rr− 5r2 and Blundon’s inequality p2 ≤ R(4R + r)2

2(2R− r)
.

�

Let’s pass to solving inequality 5).

Using Lemma 2 and the identities a3+b3+c3 = 2p(p2−3r2−6Rr) and a+b+c = 2p

It suffices to prove that
77R3 − 112R2r + 25Rr2 − 2r3

4R
≥ 9

4
·2p(p2 − 3r2 − 6Rr)

2p
⇔

77R3 − 112R2r + 25Rr2 − 2r3 ≥ 9R(p2 − 3r2 − 6Rr)

which follows from Gerretsen’s inequality p2 ≤ 4R2+4Rr+3r2. It remains to prove that:

77R3 − 112R2r + 25Rr2 − 2r3 ≥ 9R(4R2 + 4Rr + 3r2 − 3r2 − 6Rr)⇔
41R3 − 94R2r + 25Rr2 − 2r3 ≥ 0⇔ (R− 2r)(41R2 − 12Rr + r2) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�
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Remark.
Inequality 5) is stronger than inequality 3):

8) In ∆ABC

m4
a

hbhc

+
m4

b

hcha

+
m4

c

hahb

≥
9

4
·
a3 + b3 + c3

a + b + c
≥

3

4
(a2 + b2 + c2).

Proof.
See inequality 5) and

9

4
· a

3 + b3 + c3

a + b + c
≥ 3

4
(a2 + b2 + c2)⇔ a3 + b3 + c3 ≥ 1

3
(a + b + c)(a2 + b2 + c2)

true from Chebysev’s inequality.

Equality holds if and only if the triangle is equilateral.

�

Remark.
The following inequalities can be written:

9. In ∆ABC

m4
a

hbhc

+
m4

b

hcha

+
m4

c

hahb

≥
77R3 − 112R2r + 25Rr2 − 2r3

4R
≥

9

4
·
a3 + b3 + c3

a + b + c
≥

≥
3

4
(a2 + b2 + c2) ≥

3

4
(ab + bc + ca)

Proof.
See inequalities 7), 8), and 4).

Equality holds if and only if the triangle is equilateral.

�

Remark.

Let’s find an inequality having an apposite sense.

10) In ∆ABC

m4
a

hbhc

+
m4

b

hcha

+
m4

c

hbha

≤
4R4 − 37r4

r2
.

Proof.
Using Lemma 1 we obtain:

m4
a

hbhc
+

m4
b

hcha
+

m4
c

hahb
=

2p6 − p4(23Rr + 2r2) + p2(10R2r2 − 19Rr3 − 2r4) + 2r3(4R + r)3

8r2p2
=

=
1

8r2

[
2p4 − p2(23Rr + 2r2) + 10R2r2 − 19Rr3 − 2r4 +

2r3(4R + r)3

p2

]
=

=
1

8r2

[
p2(2p2 − 23Rr − 2r2) + 10R2r2 − 19Rr3 − 2r4 +

2r3(4R + r)3

p2

]
≤

≤ 1

8r2

[
(4R2+4Rr+3r2)

(
2(4R2+4Rr+3r2)−23Rr−2r2

)
+10R2r2−19Rr3−2r4+

2r3(4R + r)3

r(4R+r)2

R+r

]
=



WWW.SSMRMH.RO 5

=
16R4 − 14R3r −R2r2 − 19Rr3 + 6r4

4r2
≤ 4R4 − 37r4

r2
where the last inequality follows from

Euler’s inequality R ≥ 2r and the penultimate from Gerretsen’s inequality

p2 ≤ 4R2 + 4Rr + 3r2 and p2 ≥ r(4R + r)2

R + r

true from Gerretsen’s inequality p2 ≥ 16Rr − 5r2.

Equality holds if and only if the triangle is equilateral.

�

Remark.
The double inequality can be written:

11) In ∆ABC

21R3 + 48r3

4R
≤

m4
a

hbhc

+
m4

b

hcha

+
m4

c

hahb

≤
4R4 − 37r4

r2
.

Proposed by Marin Chirciu - Romania

Proof.
See inequalities 10), 7) and Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Mathematics Department, ”Theodor Costescu” National Economic College, Drobeta

Turnu - Severin, MEHEDINTI.
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MARIN CHIRCIU

1) In ∆ABC ∑( 1

b2
+

1

c2

)
≥

27

2
·

1

r2a + r2b + r2c
Proposed by Seyran Ibrahimov - Maasilli - Azerbaidian

Remark.
Inequality can be strengthened:

2) In ∆ABC ∑( 1

b2
+

1

c2

)
≥

27

2
·

1

rarb + rbrc + rcra

Proof.
We prove the following lemma:

Lemma.
3) In ∆ABC∑( 1

b2
+

1

c2

)
=

p4 + p2(2r2 − 8Rr) + r2(4R + r)2

8p2R2r2
.

Proof.

We have
∑( 1

b2
+

1

c2

)
= 2

∑ 1

a2
=

2
∑

b2c2

a2b2c2
=

2[p4 + p2(2r2 − 8Rr) + r2(4R+ r)2

16p2R2r2
=

=
p4 + p2(2r2 − 8Rr) + r2(4R+ r)2

8p2R2r2
.

�

Let’s pass to solving inequality 2).

Using Lemma and the known identity in triangle rarb + rbrc + rcra = p2

we write the inequality
p4 + p2(2r2 − 8Rr) + r2(4R+ r)2

8p2R2r2
≥ 27

2p2
⇔

⇔ p4 + p2(2r2 − 8Rr) + r2(4R+ r)2 ≥ 108R2r2 ⇔
⇔ p2(p2+2r2−8Rr)+r2(4R+r)2 ≤ 108R2r2, which follows from Gerretsen’s inequality

p2 ≥ 16Rr − 5r2 and from the observation that p2 + 2r2 − 8Rr > 0.

It suffices to prove that: (16Rr−5r2)(16Rr−5r2+2r2−8Rr)+r2(4R+r)2 ≥ 108R2r2 ⇔
⇔ 9R2 − 20Rr + 4r2 ≥ 0⇔ (R− 2r)(9R− 2r) ≥ 0

1
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obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Inequality 2) is stronger than inequality 1):

4) In ∆ABC∑( 1

b2
+

1

c2

)
≥

27

2
·

1

rarb + rbrc + rcra
≥

27

2
·

1

r2a + r2b + r2c
.

Proof.

See inequality 2) and r2a + r2b + r2c ≥ rarb + rbrc + rcra.

Equality holds if and only if the triangle is equilateral.

�

Inequality 2) can be strengthened:

5) In ∆ABC ∑( 1

b2
+

1

c2

)
≥

8R2 + Rr − 2r2

8R3r

Proof.

Using Lemma the inequality can be written

p4 + p2(2r2 − 8Rr) + r2(4R+ r)2

8p2R2r2
≥ 8R2 +Rr − 2r2

8R3r
which follows from

p4 + p2(2r2 − 8Rr) + r2(4Rr + r)2

8p2R2r2
=

1

8R2r2

[
p2+2r2−8Rr+

r2(4R+ r)2

p2

]
≥ 8R2 +Rr − 2r2

8R3r
.

where the last inequality follows from Gerretsen’s inequality p2 ≥ 16Rr − 5r2

and Blundon’s inequality p2 ≤ R(4R+ r)2

2(2R− r)
.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Inequality 5) is stronger than inequality 2):

6) In ∆ABC∑( 1

b2
+

1

c2

)
≥

8R2 + Rr − 2r2

8R3r
≥

27

2
·

1

rarb + rbrc + rcra
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Proof.

See inequality 5), identity rarb + rbrc + rcra = p2 and
8R2 +Rr − 2r2

8R3r
≥ 27

2p2

which follows from Gerretsen’s inequality p2 ≥ 16Rr−5r2. It remains to prove that:

74R3 − 14R2r − 37Rr2 + 10r3 ≥ 0⇔ (R− 2r)(20R2 + 16Rr − 5r2) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

We can write the following inequalities:

7) In ∆ABC∑( 1

b2
+

1

c2

)
≥

8R2 + Rr − 2r2

8R3r
≥

1

2Rr
≥

27

2
·

1

rarb + rbrc + rcra
≥

≥
17R − 2r

8R3
≥

2

R2
≥

27

2
·

1

r2a + r2b + r2c

Proof.

See inequalities 5), Euler’s inequality 2p2 ≥ 27Rr and Gerretsen’s inequality p2 ≥ 16Rr−5r2.
Equality holds if and only if the triangle is equilateral.

�

Remark.

Let’s find an inequality having an opposite sense:

8) In ∆ABC ∑( 1

b2
+

1

c2

)
≤

4R2 − 3Rr + 6r2

8R2r2
.

Proof.
Using Lemma the inequality can be be written:

p4 + p2(2r2 − 8Rr) + r2(4R+ r)2

8p2R2r2
≤ 4R2 − 3Rr + 6r2

8R2r2
, which follows from writing:

p4 + p2(2r2 − 8Rr) + r2(4R+ r)2

8p2R2r2
=

1

8R2r2

[
p2 + 2r2 − 8Rr +

r2(4R+ r)2

p2

]
and the Gerretsen’s inequality:

r(4R+ r)2

R+ r
≤ 16Rr− 5r2 ≤ p2 ≤ 4R2 + 4Rr+ 3r2.

Equality holds if and only if the triangle is equilateral.

�

Remark.
We can write the double inequality:

9) In ∆ABC

8R2 + Rr − 2r2

8R3r
≤
∑( 1

b2
+

1

c2

)
≤

4R2 − 3Rr + 6r2

8R2r2
.
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Proposed by Marin Chirciu - Romania

Proof.
See inequalities 5) and 8).

Equality holds if and only if the triangle is equilateral.

�

Mathematics Department, ”Theodor Costescu” National Economic College, Drobeta

Turnu - Severin, MEHEDINTI.
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MARIN CHIRCIU

1) In ∆ABC

r2a
tan B

2
tan C

2

+
r2b

tan C
2

tan A
2

+
r2c

tan A
2

tan B
2

≥
9(a2 + b2 + c2)

4

Proposed by Hoang Le Nhat Tung - Hanoi -Vietnam

Proof.
We prove the following lemma:
Lemma:
2) In ∆ABC

r2a
tan B

2
tan C

2

+
r2b

tan C
2

tan A
2

+
r2c

tan A
2

tan B
2

=
(4R + r)3 − 12Rp2

r

Proof.

Using ra =
S

s− a
and

B

2
tan

C

2
=

s− a

s
we obtain:

∑ r2a
tan B

2 tan C
2

=
∑ S2

(s−a)2

s−a
s

= S2s
∑ 1

(s− a)3
= S2 · s · (4R+ r)3 − 12Rs2

S3
=

=
(4R+ r)3 − 12Rs2

r
�

Back to the main problem:

Using the Lemma and a2 + b2 + c2 = 2(s2 − r2 − 4Rr) we write the inequality:

(4R+ r)3 − 12Rs2

r
≥ 9

4
·2(s2−r2−4Rr)⇔ 2(4R+r)3+9r2(4R+r) ≥ 3s2(8R+3r)

which follows from Gerretsen’s inequality: s2 ≤ 4R2 + 4Rr + 3r2.

It remains to prove that:

2(4R+r)3+9r2(4R+r) ≥ 3(4R2+4Rr+3r2)(8R+3r)⇔ 8R3−9R2r−12Rr2−4r3 ≥ 0⇔
⇔ (R− 2r)(8R2 + 7Rr + 2r2) ≥ 0 obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�
1
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Remark.

Inequality can be strengthened:

3) In ∆ABC

r2a
tan B

2
tan C

2

+
r2b

tan C
2

tan A
2

+
r2c

tan A
2

tan B
2

≥
27

4
·
a3 + b3 + c3

a + b + c

Proposed by Marin Chirciu - Romania

Proof.

Using Lemma and a3 + b3 + c3 = 2s(s2 − 3r2 − 6Rr) the inequality can be written:

(4R+ r)3 − 12Rs2

r
≥ 27

4
· 2s(s

2 − 3r2 − 6Rr)

2s
⇔ 4(4R+ r)3 + 27r2(6R+ 3r) ≥

≥ 3s2(16R+9r) which follows from Gerrentsen’s inequality: s2 ≤ 4R2+4Rr+3r2.

It remains to prove that:

4(4R+ r)3 + 27r2(6R+ 3r) ≥ 3(4R2 + 4Rr + 3r2)(16R+ 9r)⇔

⇔ 32R3 − 54R2r − 21Rr2 + 2r3 ≥ 0⇔ (R− 2r)(32R2 + 10Rr − r2) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Inequality 3) is stronger then inequality 1):

4) In ∆ABC:

r2a
tan B

2
tan C

2

+
r2b

tan C
2

tan A
2

+
r2c

tan A
2

tan B
2

≥
27

4
·
a3 + b3 + c3

a + b + c
≥

9

4
(a2+b2+c2).

Proof.

We use inequality 3) and:

27

4
· a

3 + b3 + c3

a+ b+ c
≥ 9

4
(a2 + b2 + c2)⇔ 3(a3 + b3 + c3) ≥ (a+ b+ c)(a2 + b2 + c2)⇔

⇔ 2
∑

a3 ≥
∑

ab(a+b), which follows from a3+b3 ≥ ab(a+b)⇔ (a+b)(a−b)2 ≥ 0

and the analogs. The equality holds if and only if the triangle is equilateral.

�

Remark.

Let’s obtain an inequality of opposite sense:

5) In ∆ABC:

r2a
tan B

2
tan C

2

+
r2b

tan C
2

tan A
2

+
r2c

tan A
2

tan B
2

≤
81R

8r
(9r2 − 32r2)

Proposed by Marin Chirciu - Romania
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Proof.

Using the Lemma we write the inequality:

(4R+ r)3 − 12Rs2

r
≤ 81R

8r
(9R2 − 32r2), which follows from Euler’s inequality

r ≤ R

2
and Mitrinovic̈’s inequality: s2 ≥ 27r2.

Equality holds if and only if the triangle is equilateral.

�

Remark.

We can write the double inequality:

6) In ∆ABC:

27

2
(5Rr−4r2) ≤

r2a
tan B

2
tan C

2

+
r2b

tan C
2

tan A
2

+
r2c

tan A
2

tan B
2

≤
81R

8r
(9R2−32r2)

Proposed by Marin Chirciu - Romania

Proof.

We use 3), 5) and Gerretsen’s inequality s2 ≥ 16Rr − 5r2.

Equality holds if and only if the triangle is equilateral.

�

Remark.

In the same way we can propose:

7) In ∆ABC:

r2a
cot B

2
cot C

2

+
r2b

cot C
2

cot A
2

+
r2c

cot A
2

cot B
2

= r(4Rr + r)

Proof.

Using ra =
S

s− a
and cot

B

2
cot

C

2
=

s

s− a
we obtain:

∑ r2a
cot B

2 cot C
2

=
∑ S2

(s−a)2

s
s−a

=
S2

s

∑ 1

s− a
=

S2

s
· 4R+ r

S
= r(4R+ r).

�

8) In ∆ABC:

9r2 ≤
r2a

cot B
2

cot C
2

+
r2b

cot C
2

cot A
2

+
r2c

cot A
2

cot B
2

≤
9Rr

2
.

Proposed by Marin Chirciu - Romania

Proof.

Using the inequality
∑ r2a

cot B
2 cot C

2

= r(4R+ r) and Euler’s inequality R ≥ 2.

Equality holds if and only if the triangle is equilateral.

�
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9) In ∆ABC:

r2a
tan2 A

2

+
r2b

tan2 B
2

+
r2c

tan2 C
2

= 3s2

Proof.

Using ra =
S

s− a
and tan2

A

2
=

(s− b)(s− c)

s(s− a)
we obtain:

∑ r2a
tan2 A

2

=
∑ S2

(s−a)2

(s−b)(s−c)
s(s−a)

= S2s
∑ 1

(s− a)(s− b)(s− c)
= r2s3 · 3

r2s
= 3s2.

�

10) In ∆ABC:

81r2 ≤
r2a

tan2 A
2

+
r2b

tan2 B
2

+
r2c

tan2 C
2

≤
81R2

4

Proposed by Marin Chirciu - Romania

Proof.

Using the identity
∑ r2a

tan2 A
2

= 3p2 and Mitrinovic̈’s inequality 27r2 ≤ s2 ≤ 27R2

4
.

Equality holds if and only if the triangle is equilateral.

�

11) In ∆ABC:

r2a
cot2 A

2

+
r2b

cot2 B
2

+
r2c

cot2 C
2

=
2s4 − 16s2R(4R + r) + (4R + r)4

s2

Proof.

Using ra =
S

s− a
and cot2

A

2
=

s(s− a)

(s− b)(s− c)
we obtain:

∑ r2a
cot2 A

2

=
∑ S2

(s−a)2

s(s−a)
(s−b)(s−c)

=
S2

s

∑ (s− b)(s− c)

(s− a)3
=

=
r2s2

s
· 2s

4 − 16s2R(4R+ r) + (4R+ r)4

r2s3
=

2s4 − 16s2R(4R+ r) + (4R+ r)4

s2
.

�

12) In ∆ABC:

r2a
cot2 A

2

+
r2b

cot2 B
2

+
r2c

cot2 C
2

≥
9Rr

2
.

Proposed by Marin Chirciu - Romania
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Proof.

Using the identity
r2a

cot2 A
2

+
r2b

cot2 B
2

+
r2c

cot2 C
2

=
2s4 − 16s2R(4R+ r) + (4R+ r)4

s2

we write the inequality:

2s4 − 16s2R(4R+ r) + (4R+ r)4

s2
≥ 9Rr

2
⇔ 2(4R+ r)4 ≥ s2(128R2 + 41Rr− 4s2)

which follows from Blundon-Gerretsen inequality 16Rr − 5r2 ≤ s2 ≤ R(4R+ r)2

2(2R− r)
.

It remains to prove that:

2(4R+r)4 ≥ R(4R+ r)2

2(2R− r)
[128R2+41Rr−4(16Rr−5r2)]⇔ 23R2−44Rr−4r2 ≥ 0⇔

⇔ (R− 2R)(23R+ 2r) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�
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PROBLEM X.31

ROMANIAN MATHEMATICAL MAGAZINE

NO. 21/2018

MARIN CHIRCIU

1. In ∆ABC the following relationship holds:

a2

bc
+

b2

ca
+

c2

ab
+

2r

R
≥ 4

Proposed by Marian Ursărescu - Romania

Proof.

We have
∑ a2

bc
=

∑
a3

abc
=

2s(s2 − 3r2 − 6Rr)

4Rrs
=

s2 − 3r2 − 6Rr

2Rr

The inequality can be written:
s2 − 3r2 − 6Rr

2Rr
+

2r

R
≥ 4⇔ s2 ≥ 14Rr − r2

which follows from Gerretsen’s inequality: s2 ≥ 16Rr − 5r2

It remains to prove that: 16Rr − 5r2 ≥ 14Rr − r2 ⇔ R ≥ 2r (Euler’s inequality).

Equality holds if and only if the triangle is equilateral.

�

Remark.

The inequality can be extended:

2) In ∆ABC:

a2

bc
+

b2

ca
+

c2

ab
+ n · r

R
≥ 3 +

n

2
, where n ≤ 4.

Proposed by Marin Chirciu - Romania

Proof.

If n < 0, the inequality is banal, because
a2

bc
+

b2

ca
+

c2

ab
≥ 3, from means inequality,

and n · r
R
≥ n

2
⇔ R ≥ 2r (Euler’s inequality). Next, we use n ≥ 0.

Using the following identity:
∑ a2

bc
=

s2 − 3r2 − 6Rr

2Rr
, we write the inequality:

s2 − 3r2 − 6Rr

2Rr
+

nr

R
≥ n+ 6

3
⇔ s2 ≥ Rr(n+ 12) + r2(3− 2n) which follows from

Gerretsen’s inequality: s2 ≥ 16Rr − 5r2. It remains to prove that:

16Rr − 5r2 ≥ Rr(n+ 12) + r2(3− 2n)⇔
⇔ 16Rr − 5r2 ≥ Rr(n+ 12) + r2(3− 2n)⇔ R(4− n) ≥ 2r(4− n),

1
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true from Euler’s inequality R ≥ 2r and the condition from hypothesis n ≤ 4

Equality holds if and only if the triangle is equilateral.

�

Remark.

For n = 2 we obtain Problem X.31 from RMM 21/2018.

Remark.

In the same way we can propose:

3) In ∆ABC:

bc

a2
+

ca

b2
+

ab

c2
+ n · r

R
≥ 3 +

n

2
, where n ≤ 8

5
.

Proposed by Marin Chirciu - Romania

Proof.

If n < 0, the inequality is banal, because
bc

a2
+

ca

b2
+

ab

c2
≥ 3, from means inequality,

and n · r
R
≥ n

2
⇔ R ≥ 2r (Euler’s inequality). Next we use n ≥ 0.

We have
∑ bc

a2
=

∑
(bc)3

(abc)2
=

s6 + s4(3r2 − 12Rr) + 3s2r4 + r3(4R+ r)3

(4Rrs)2

Using the identity
∑ bc

a2
=

s6 + s4(3r2 − 12Rr) + 3s2r4 + r3(4Rr + r)3

(4Rrs)2

we write the inequality:
s6 + s4(3r2 − 12Rr) + 3s2r4 + r3(4R+ r)3

(4Rrs)2
+
nr

R
≥ n+ 6

3
⇔

s2[s4 + s2(3r2 − 12Rr) + 3r4 + 16nRr3 − (8n+ 48)R2r2] + r3(4R+ r)3 ≥ 0

We distinguish the following cases:

Case 1). If [s4 + s2(3r2 − 12Rr) + 3r4 + 16nRr3 − (8n+ 48)R2r2] ≥ 0,

the inequality is obvious.

Case 2). If [s4 + s2(3r2 − 12Rr) + 3r4 + 16nRr3 − (8n+ 48)R2r2] < 0,

The inequality can be rewritten:

r3(4R+ r)3 ≥ s2[(8n+ 48)R2r2 − 16nRr3 − 3r4 + s2(12Rr − 3r2 − s2)],

which follows from Blundon-Gerretsen’s inequality: 16Rr−5r2 ≤ s2 ≤ R(4R+ r)2

2(2Rr − r)

and the observation that: 12Rr−3r2−s2 < 0. It remains to prove that: r3(4R+r)3 ≥

≥ R(4R+ r)2

2(2R− r)
[(8n+48)R2r2−16nRr3−3r4+(16Rr−5r2)(12Rr−3r2−(16Rr−5r2))]

⇔ 2r(4R+ r)(2R− r) ≥ R[R2(8n− 16) +Rr(52− 16n)− 13r2]⇔
⇔ R3(16−8n)+R2r(16n−36)+9Rr2−2r3 ≥ 0⇔ (R−2r)[R2(16−8n)−4Rr+r2] ≥ 0,

true from Euler’s inequality R ≥ 2r and the condition from hypothesis n ≤ 8

5
.

Equality holds if and only if the triangle is equilateral.

�
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4) In ∆ABC:
a

b
+

b

c
+

c

a
+ n · r

R
≥ 3 +

n

2
, where n ≤ 2

5
Proposed by Marin Chirciu - Romania

Proof.

If n < 0, the inequality is banal, because
a

b
+

b

c
+

c

a
≥ 3, from means inequality

and n · r
R
≥ n

2
⇔ R ≥ 2r(Euler’s inequality). Next, we use n ≥ 0.

Using Bergström’s inequality, we obtain:∑ a

b
=
∑ a2

ab
≥ (a+ b+ c)2

ab+ bc+ ca
=

4s2

s2 + r2 + 4Rr
.

It suffices to prove that:

4s2

s2 + r2 + 4Rr
+
nr

R
≥ n+ 6

3
⇔ s2[(2−n)R+2nr] ≥ R2r(4n+24)+Rr(6−7n)−2r3,

which follows from Gerretsen’s inequality: s2 ≥ 16Rr − 5r2 and the remark that

2− n > 0. It remains to prove that:

(16Rr − 5r2)[(2− n)R+ 2nr] ≥ R2r(4n+ 24) +Rr(6− 7n)− 2r3 ⇔
R2(2− 5n) +Rr(11n− 4)− 2nr2 ≥ 0⇔ (R− 2r)[R(2− 5n) + nr] ≥ 0,

true from Euler’s inequality R ≥ 2r and the condition from hypothesis n ≤ 2

5
.

Equality holds if and only if the triangle is equilateral.

�

5) In ∆ABC:

a

b+ c
+

b

c+ a
+

c

a+ b
+ n · r

R
≥ 3

2
+

n

2
, where n ≤ 1

3
.

Proposed by Marin Chirciu - Romania

Proof.

If n < 0, the inequality is banal, because
a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
, (Nesbitt’s inequality),

and n · r
R
≥ n

2
⇔ R ≥ 2r (Euler’s inequality). Next, we use n ≥ 0.

Using the identity
∑ a

b+ c
=

2(s2 − r2 −Rr)

s2 + r2 + 2Rr
, we write the inequality:

2(s2 − r2 −Rr)

s2 + r2 + 2Rr
+
nr

R
≥ n+ 3

2
⇔ s2[R(1−n)+2nr] ≥ r[(2n+10)R2+(7−3n)Rr−2nr2],

which follows from Gerretsen’s inequality: s2 ≥ 16Rr−5r2. It remains to prove that:

(16Rr − 5r2)[R(1− n) + 2nr] ≥ r[(2n+ 10)R2 + (7− 3n)Rr − 2nr2]⇔
(3− 9n)R2 + (20n− 6)Rr − 4nr2 ≥ 0⇔ (R− 2r)[R(3− 9n) + 2nr] ≥ 0,

true, from Euler’s inequality R ≥ 2r and the condition from hypothesis n ≤ 1

3
.

Equality holds if and only if the triangle is equilateral.

�
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6) Prove that in any triangle ABC the following inequality holds:( a

b+ c

)2
+
( b

c+ a

)2
+
( c

a+ b

)2
+ n

r

R
≥ 3

4
+

n

2
, where n ≤ 9

10
.

Proposed by Marin Chirciu - Romania

Proof.

If n < 0, the inequality is banal, because
( a

b+ c

)2
+
( b

c+ a

)2
+
( c

a+ b

)2
≥ 3

4
, from

the inequality x2 + y2 + z2 ≥ (x+ y + z)2

3
, where x =

a

b+ c
, y =

b

c+ a
, z =

c

a+ b

and Nesbitt’s inequality
a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
, and n · r

R
≥ n

2
⇔ R ≥ 2r

(Euler’s inequality). Next, we use n ≥ 0. We have:∑( a

b+ c

)2
=

∑
a2(a+ b)2(a+ c)2∏

(b+ c)2
.

Using
∑

a2(a+ b)2(a+ c)2 = 8s2[s4 − s2(4Rr + 6r2) + r2(6R2 + 4Rr + r2)] and∏
(b+ c) = 2s(s2 + r2 + 2Rr), we have:∑( a

b+ c

)2
=

2[s4 − s2(4Rr + 6r2) + r2(6R2 + 4Rr + r2)]

(s2 + r2 + 2Rr)2
.

The inequality is written:

2[s4 − s2(4Rr + 6r2) + r2(6R2 + 4Rr + r2)]

(s2 + r2 + 2Rr)2
+ n

r

R
≥ 3

4
+

n

2
⇔

⇔ 8R[s4−s2(4Rr+6r2)+r2(6R2+4Rr+r2)] ≥ ((2n+3)R−4nr)(s2+r2+2Rr)2 ⇔
⇔ s2[((5− 2n)R+ 4nr)s2 − (8n+ 44)R2r + (12n− 54)Rr2 + 8nr3]+

+r2[(36− 8n)R3 + (8n+ 20)R2r + (14n+ 5)Rr2 + 4nr3] ≥ 0

We distinguish the following cases:

Case 1). If ((5− 2n)R+ 4nr)s2 − (8n+ 44)R2r + (12n− 54)Rr2 + 8nr3 ≥ 0,

the inequality is obvious.

Case 2). If ((5− 2n)R+ 4nr)s2 − (8n+ 44)R2r + (12n− 54)Rr2 + 8nr3 < 0,

the inequality is written:

r2[(36− 8n)R3 + (8n+ 20)R2r + (14n+ 5)Rr2 + 4nr3] ≥
≥ s2[(8n+ 44)R2r + (54− 12n)Rr2 − 8nr3 − ((5− 2n)R+ 4nr)s2]

resulting from Gerretsen’s inequality 16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2.

It remains to show that:

r2[(36− 8n)R3 + (8n+ 20)R2r + (14n+ 5)Rr2 + 4nr3] ≥
≥ (4R2+4Rr+3r2)[(8n+44)R2r+(54−12n)Rr2−8nr3−((5−2n)R+4nr)(16Rr−5r2)]
⇔ (144−160n)R4+(176n−136)R3r+(184n−188)R2r2+(224n−232)Rr3−32nr4 ≥ 0

⇔ (36− 40n)R4 + (44− 34)R3r + (46n− 47)R2r2 + (56n− 58)Rr3 − 8nr4 ≥ 0⇔
(R− 2r)[(36− 40n)R3 + (38− 36n)R2r + (29− 26n)Rr2 + 4nr3] ≥ 0

true from Euler’s inequality. Equality holds if and only if the triangle is equilateral.

�
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PROBLEM JP.152

ROMANIAN MATHEMATICAL MAGAZINE

NO. 11, WINTER EDITION 2018

MARIN CHIRCIU

1. Let ABC be a triangle, ha, hb, hc denote the lengths of altitudes,
la, lb, lc denote the lengths of inner bisectors, and ra, rb, rc be its exradii.
Prove that:

hara

l2a
+

hbrb

l2b
+

hcrc

l2c
≥ 3

Proposed by Hoang Le Nhat Tung - Hanoi - Vietnam

Proof.

We prove the following lemma:

Lemma.
2) In ∆ABC:

hara
l2a

+
hbrb
l2b

+
hcrc
l2c

=
8R2 + 8Rr + 3r2 − s2

4Rr

Proof.

Using ha =
2S

a
, ra =

S

s− a
, la =

2bc

b+ c
cos

A

2
, cos2

A

2
=

s(s− a)

bc
, we obtain:

∑ hara
l2a

=
∑ 2S

a ·
S

s−a

( 2bc
b+c cos

A
2 )

2
=

2S2

4abcs

∑ (b+ c)2

(s− a)2
=

=
r

8R
· 2(8R

2 + 8Rr + 3r2 − s2)

r2
=

8R2 + 8Rr + 3r2 − s2

4Rr
�

Let’s return to the main problem:

The inequality we have to prove:
8R2 + 8Rr + 3r2 − s2

4Rr
≥ 3⇔ s2 ≤ 8R2−4Rr+3r2

which follows from Gerretsen’s inequality: s2 ≤ 4R2 + 4Rr + 3r2

It remains to prove that:

4R2 + 4Rr + 3r2 ≤ 8R2 − 4Rr + 3r2 ⇔ 4R2 ≥ 8Rr ⇔ R ≥ 2r (Euler’s inequality).

�
1
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Remark.

The inequality can be strengthened.

3) In ∆ABC :
hara
l2a

+
hbrb
l2b

+
hcrc
l2c
≥ R

r
+ 1

Proposed by Marin Chirciu - Romania

Proof.

Using Lemma and Gerretsen’s inequality: s2 ≤ 4R2 + 4Rr + 3r2 we obtain:∑ hara
l2a

=
8R2 + 8Rr + 3r2 − s2

4Rr
≥ 8R2 + 8Rr + 3r2 − 4R2 − 4Rr − 3r2

4Rr
=

=
4R2 + 4Rr

4Rr
=

R

r
+ 1

Equality holds if and only if the triangle is equilateral.

�

Remark.

Inequality 3) is stronger than inequality 1):

4) In ∆ABC:
hara
l2a

+
hbrb
l2b

+
hcrc
l2c
≥ R

r
+ 1 ≥ 3.

Proof.

See inequality 3) is
R

r
+ 1 ≥ 3⇔ R ≥ 2r (Euler’s inequality).

Equality holds if and only if the triangle is equilateral.

�

Remark.

Let’s emphasises an inequality having an opposite sense:

5) In ∆ABC :
hara
l2a

+
hbrb
l2b

+
hcrc
l2c
≤ 2
(R
2
− r

R

)
Proof.

Using Lemma and Gerretsen’s inequality: s2 ≥ 16Rr − 5r2 we obtain:∑ hara
l2a

=
8R2 + 8Rr + 3r2 − s2

4Rr
≤ 8R2 + 8Rr + 3r2 − 16Rr + 5r2

4Rr
=

=
8R2 − 8Rr + 8r2

4Rr
=

2(R2 −Rr + r2)

Rr
≤ 2(R2 − r2)

Rr
= 2
(R
r
− r

R

)
.

Equality holds if and only if the triangle is equilateral.

�
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Remark.
We can write the double inequality:

6) In ∆ABC:

R

r
+ 1 ≤ hara

l2a
+

hbrb
l2b

+
hcrc
l2c
≤ 2
(R
r
− r

R

)
Proposed by Marin Chirciu - Romania

Proof.
See inequalities 3) and 5).

Equality holds if and only if the triangle is equilateral.

�
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INEQUALITY IN TRIANGLE 867

ROMANIAN MATHEMATICAL MAGAZINE

MARIN CHIRCIU

1. Let ABC be a triangle. Prove that:∑
ra(hb + hc)

2 ≥ 12sS.

Proposed by Mehmet Şahin - Ankara - Turkey

Proof.

We prove the following lemma:

Lemma 1.
2) In ∆ABC :

∑
ra(hb + hc)

2 = s2(s2−3r2)
R

.

Proof.

Using ra =
S

s− a
and ha =

2S

a
we obtain:∑

ra(hb+hc)
2 =

∑ S

s− a

(2S
b
+
2S

c

)2
= 4S3

∑ (b+ c)2

b2c2(s− a)
= 4r3s3 · s

2 − 3r2

4sRr3
=

=
s2(s2 − 3r2)

R
.

In the above equality we’ve used:
∑ (b+ c)2

b2c2(s− a)
=

s2 − 3r2

4sRr3
, which follows from:∑

a2(b+ c)2(s− b)(s− c) = 4s2Rr(s2 − 3r2), abc = 4Rrs and
∏

(s− a) = r2s.

�

Let’s get back to the main problem:

Using Lemma 1 the inequality can be written:

s2(s2 − 3r2)

R
≥ 12rs2 ⇔ s2 ≥ 12Rr+3r2, which follows from Gerretsen’s inequality

s2 ≥ 16Rr − 5r2 and Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Let’s emphasises an inequality having an opposite sense.

3) In ∆ABC :
∑

ra(hb + hc)
2 ≤ 6Rs2

Proposed by Marin Chirciu - Romania
1
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Proof.

Using Lemma 1 we write the inequality:

s2(s2 − 3r2)

R
≤ 6Rs2 ⇔ s2 ≤ 6R2 + 3r2, which follows from Gerretsen’s inequality

s2 ≤ 4R2 + 4Rr + 3r2 and Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.

We can write the double inequality:

4) In ∆ABC : 12rs2 ≤
∑

ra(hb + hc)
2 ≤ 6Rs2.

Proof.

See inequalities 1) and 3).

Equality holds if and only if the triangle is equilateral.

�

Remark.

Changing ra with ha we can build inequalities similar to those above.

5) In ∆ABC :
∑

ha(ra + rc)
2 ≥ 12sS

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 2.
6) In ∆ABC :

∑
ha(rb + rc)

2 = 4s2(2R − r).

Proof.

Using ra =
S

s− a
and ha =

2S

a
we obtain:∑

ha(rb + rc)
2 =

∑ 2S

a

( S

s− b
+

S

s− c

)2
= 2S3

∑ a

(s− b)2(s− c)2
=

= 2r3s3 · 2(2R− r)

sr3
= 4s2(2R− r)

In the above inequality we’ve used:
∑ a

(s− b)2(s− c)2
=

2(2R− r)

sr3

which follows from:
∑

a(s− a)2 = 2sr(2R− r) and
∏

(s− a) = r2s.

�

Let’s get back to the main problem:

Using Lemma 2 we write the inequality:

4s2(2R− r) ≥ 12rs2 ⇔ R ≥ 2r (Euler’s inequality R ≥ 2r).

Equality holds if and only if the triangle is equilateral.

�
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Remark.

Let’s emphasises an inequality having an opposite sense.

7) In ∆ABC :
∑

ha(rb + rc)
2 ≤ 2R(4R + r)2.

Proposed by Marin Chirciu - Romania

Proof.

Using Lemma 2 we write the inequality:

4s2(2R−r) ≤ 2R(4R+r)2 ⇔ s2 ≤ R(4R+ r)2

2(2R− r)
, which is Blundon-Gerretsen’s inequality.

Equality holds if and only if the triangle is equilateral.

�

Remark.

We can write the double inequality:

8) In ∆ABC : 12rs2 ≤
∑

ha(rb + rc)
2 ≤ 2R(4R + r)2.

Proof.

See inequalities 5) and 7).

Equality holds if and only if the triangle is equilateral.

�

9) In ∆ABC : 324r3 ≤
∑

ra(rb + rc)
2 ≤ 81R3

2

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 3.
10) In ∆ABC :

∑
ra(rb + rc)

2 = 4s2(R + r).

Proof.

Using ra =
S

s− a
we obtain:

∑
ra(rb + rc)

2 =
∑ S

s− a

( S

s− b
+

S

s− c

)2
= S3

∑ 1

s− a
· a2

(s− b)2(s− c)2
=

=
S3∏
(s− a)

∑ a2

(s− b)(s− c)
=

r3s3

r2s
· 4(R+ r)

r
= 4s2(R+ r).

In the above inequality we’ve used:
∑ a2

(s− b)(s− c)
=

4(R+ r)

r

which follows from:
∑

a2(s− a) = 2sr(R+ r) and
∏

(s− a) = r2s.

�
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Let’s get back to the main problem:

Using Lemma 3 the double inequality can be written:

324r3 ≤ 4s2(R+ r) ≤ 81R3

2
, which follows from Gerretsen’s inequality:

16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2 and Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

11) In ∆ABC : 48s2 · r3

R2 ≤
∑

ha(hb + hc)
2 ≤ 12s2r.

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma 4.
12) In ∆ABC :

∑
ha(hb + hc)

2 = r
R2 · s2(s2 + r2 + 10Rr).

Proof.

Using ha =
2S

a
we obtain:

∑
ha(hb+hc)

2 =
∑ 2S

a

(2S
b

+
2S

c

)2
= 8S3

∑ 1

a
· (b+ c)2

b2c2
=

8S3

abc

∑ (b+ c)2

bc
=

=
8r3s3

4Rrs
· s

2 + r2 + 10Rr

2Rr
=

r

R2
· s2(s2 + r2 + 10Rr).

In the above equality we’ve used:
∑ (b+ c)2

bc
=

s2 + r2 + 10Rr

2Rr

which follows from:
∑

a(b+ c)2 = 2s(s2 + r2 + 10Rr) and abc = 4Rrs.

�

Let’s get back to the main problem:

Using Lemma 4 the double inequality can be written:

48s2· r
3

R2
≤ r

R2
·s2(s2+r2+10Rr) ≤ 12s2r, which follows from Gerretsen’s inequality

16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2 and Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

13) In ∆ABC :
∑

r2a(hb + hc)
2 ≥ 36S2

Proposed by Marin Chirciu - Romania



WWW.SSMRMH.RO 5

Proof.

With means inequality we have:

(1)
∑

r2a(hb + hc)
2 ≥

∑
r2a · 4hbhc = 4

∑
r2ahbhc =

8r

R
· s2(8R2 + 2Rr − s2)

which follows from:
∑

r2ahbhc =
2r

R
· s2(8R2 + 2Rr − s2), because:∑

r2ahbhc =
∑( S

s− a

)2
· 2S
b
· 2S
c

= 4S4
∑ 1

bc(s− a)2
,

∑ 1

bc(s− a)2
=

∑
a(s− b)2(s− c)2

abc
∏
(s− a)

,∑
a(s− b)2(s− c)2 = 2sr2(8R2 + 2Rr − s2), abc = 4Rrs,

∏
(s− a) = sr2.

In order to prove
∑

r2a(hb + hc)
2 ≥ 36S2 using (1) it suffices to prove that:

8r

R
· s2(8R2 + 2Rr − s2) ≥ 36S2 ⇔ 2s2 ≤ 16R2 − 5Rr, true from

Gerretsen’s inequality s2 ≤ 4R2 + 4Rr + 3r2 and Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

14) In ∆ABC :
∑

h2
a(rb + rc)

2 ≥ 36S2

Proposed by Marin Chirciu - Romania

Proof.

With means inequality we have:

(1)∑
h2
a(rb+rc)

2 ≥
∑

h2
a·4rbrc = 4

∑
h2
arbrc =

s2

R2
·[s4+s2(2r2−12Rr)+r3(4Rr+r)]

which follows from:
∑

h2
arbrc =

s2

4R2
· [s4 + s2(2r2− 12Rr) + r3(4R+ r)], because∑

h2
arbrc =

∑(2S
a

)2
· S

s− b
· S

s− c
= 4S4

∑ 1

a2(s− b)(s− c)
,

∑ 1

a2(s− b)(s− c)
=

∑
b2c2(s− a)

(abc)2
∏
(s− a)

,∑
b2c2(s−a) = s[s4+ s2(2r2−12Rr)+ r3(4Rr+ r)], abc = 4Rrs,

∏
(s−a) = sr2.

In order to prove
∑

h2
a(rb + rc)

2 ≥ 36S2 using (1) it suffices to prove that:

s2

R2
· [s4 + s2(2r2 − 12Rr) + r3(4R+ r)] ≥ 36S2 ⇔

s4 + s2(2R2 − 12Rr) + r3(4R+ r) ≥ 36R2r2, true from Gerretsen’s inequality

s2 ≥ 16Rr − 5r2 and Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

15) In ∆ABC :
∑

r2a(rb + rc)
2 ≥ 36Sr2.
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Proof.
With means inequality we have:∑

r2a(rb+rc)
2 ≥

∑
r2a·4rbrc = 4rarbrc

∑
ra = 4·s2r(4R+r) ≥ 4·s2r·9r = 36Sr2.

Equality holds if and only if the triangle is equilateral.

�

16) In ∆ABC :
∑

h2
a(hb + hc)

2 ≥
(

12Sr
R

)2
Proof.

With means inequality we have:∑
h2
a(hb + hc)

2 ≥
∑

h2
a · 4hbhc = 4hahbhc

∑
ha = 4 · s

2r2

R
· s

2 + r2 + 4Rr

2r
≥

≥ 4 · s
2r2

R
· 36r

2

2R
=

144S2r2

R2
=
(12Sr

R

)2
.

Equality holds if and only if the triangle is equilateral.

�
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1. In ∆ABC the following relationship holds:

m2
a

bc
+

m2
b

ca
+

m2
c

ab
≥ 2 +

r

2R

Proposed by Adil Abdullayev - Baku - Azerbaijan

Proof.

We prove the following lemma:

Lemma.
2) In ∆ABC:

m2
a

bc
+

m2
b

ca
+

m2
c

ab
=

s2 + 5r2 + 2Rr

8Rr

Proof.

Using m2
a =

2b2 + 2c2 − a2

4
we obtain:

∑ m2
a

bc
=
∑ 2b2+2c2−a2

4

bc
=

1

4

∑ 2b2 + 2c2 − a2

bc
=

s2 + 5r2 + 2Rr

8Rr
, because

∑ 2b2 + 2c2 − a2

bc
=

∑
a(2b2 + 2c2 − a2)

abc
, and

∑
a(2b2 + 2c2 − a2) =

= 2
∑

a2
∑

a− 3
∑

a3,
∑

a = 2s,
∑

a2 = 2(s2 − r2 − 4Rr),∑
a3 = 2s(s2 − 3r2 − 6Rr), abc = 4Rrs.

�

Let’s return to the main problem:

Using Lemma the inequality that we have to prove can be written:

s2 + 5r2 + 2Rr

8Rr
≥ 2 +

r

2R
⇔ s2 ≥ 14Rr − r2, which follows from Gerretsen’s

inequality: s2 ≥ 16Rr − 5r2. It remains to prove that: 16Rr − 5r2 ≥ 14Rr − r2 ⇔

⇔ R ≥ 2r (Euler’s inequality).

Equality holds if and only if the triangle is equilateral.

�
1
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Remark.

The inequality can be strengthened:

3) In ∆ABC:

m2
a

bc
+

m2
b

ca
+

m2
c

ab
≥ 9

4

Proof.

Using Lemma we write the inequality:

s2 + 5r2 + 2Rr

8Rr
≥ 9

4
⇔ s2 ≥ 16Rr − 5r2 (Gerretsen’s inequality)

Equality holds if and only if the triangle is equilateral.

�

Remark.

Inequality 3) is stronger than inequality 1):

4) In ∆ABC:

m2
a

bc
+

m2
b

ca
+

m2
c

ab
≥ 9

4
≥ 2 +

r

2R

Proof.

See 3) and Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Let’s emphasises an inequality having an opposite sense:

5) In ∆ABC:

m2
a

bc
+

m2
b

ca
+

m2
c

ab
≤ 9R

8r
Proposed by Marin Chirciu - Romania

Using Lemma the inequality we have to prove can be written:

s2 + 5r2 + 2Rr

8Rr
≤ 9R

8r
⇔ s2 ≤ 9R2 − 2Rr − 5r2, which follows from Gerretsen’s

inequality: s2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

4R2+4Rr+3r2 ≤ 9R2−2Rr−5r2 ⇔ 5R2−6Rr−8r2 ≥ 0⇔ (R−2r)(5R+4r) ≥ 0,

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

Remark.
6) In ∆ABC:

9

4
≤ m2

a

bc
+

m2
b

ca
+

m2
c

ab
≤ 9R

8r
.

Proof.

See inequalities 3) and 5).

Equality holds if and only if the triangle is equilateral.

�
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1. In ∆ABC:
bc

ala
+

ca

blb
+

ab

clc
≤

9R2

2S
Proposed by Mehmet Şahin - Ankara - Turkey

Proof.

Using la =
2bc

b+ c
cos

A

2
we obtain:

1

ala
=

1

a · 2bc
b+c cos

A
2

=
b+ c

2abc · cos A
2

=
2R(sinB + sinC)

2abc · cos A
2

=
R · 2 sin B+C

2 cos B−C
2

4RS · A2
=

=
R · 2 cos A

2 cos B−C
2

4RS · cos A
2

=
cos B−C

2

2S
, wherefrom

bc

ala
=

bc · cos B−C
2

2S
.

Because cos
B − C

2
≤ 1 and

∑
bc ≤

∑
a2 ≤ 9R2 (Leibniz’s inequality), it follows:∑ bc

ala
=
∑ bc · cos B−C

2

2S
≤
∑ bc

2S
≤ 9R2

2S
.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Let’s emphasises an inequality having an opposite sense.

2) In ∆ABC:
bc

ala
+

ca

blb
+

ab

clc
≥ 18r

s
Proposed by Marin Chirciu - Romania

Proof.

Using
bc

ala
=

bc · cos B−C
2

2S
we obtain

(1)
∑ bc

ala
=
∑ bc · cos B−C

2

2S
=

1

2S

∑
bc · cos B − C

2

With means inequality and abc = 4RS,
∏

cos
B − C

2
=

s2 + r2 + 2Rr

8R2
we obtain:

∑
bc · cos B − C

2
≥ 3

3

√∏
bc · cos B − C

2
= 3

3

√
(abc)2

∏
cos

B − C

2
=

1



2 MARIN CHIRCIU

(2)

= 3
3

√
(4RS)2 · s

2 + r2 + 2Rr

8R2
= 3 3

√
2s2r2(s2 + r2 + 2Rr) ≥ 3 3

√
(12r2)3 = 3·12r2 = 36r2

We’ve used above s2 ≥ 16Rr − 5r2 (Gerretsen) s ≥ 3r
√
3 (Mitrinovic)

and R ≥ 2r (Euler). From (1) and (2) it follows the conclusion.

Equality holds if and only if the triangle is equilateral.

�

Remark.
We can write the double inequality:

3) In ∆ABC:
18r

s
≤ bc

ala
+

ca

blb
+

ab

clc
≤ 9R2

2S

Proof.
See inequalities 1) and 2).

Equality holds if and only if the triangle is equilateral.

Remark.
The double inequality can be strengthened:

4) In ∆ABC:

2
√
3 ≤ bc

ala
+

ca

blb
+

ab

clc
≤ 2(R+ r)2

S

Proposed by Marin Chirciu - Romania

Proof.

Inequality from the left side:
bc

ala
+

ca

blb
+

ab

clc
≥ 2
√
3 it follows from:

(1) The proof of 2) implies
∑ bc

ala
≥ 3

2S
3
√
2s2r2(s2 + r2 + 2Rr)

(2) Then
3

2S
3
√
2s2r2(s2 + r2 + 2Rr) ≥ 2

√
3

⇔ 3 3
√
2s2r2(s2 + r2 + 2Rr) ≥ 4rs

√
3⇔

⇔ 27 · 2s2r2(s2 + r2 + 2Rr) ≥ 64r3s3 · 3
√
3⇔ 9(s2 + r2 + 2Rr) ≥ 32rs

√
3

which follows from Doucet’s inequality 4R+ r ≥ s
√
3. It remains to prove that:

9(s2 + r2 + 2Rr) ≥ 32r(4R+ r)⇔ 9s2 ≥ 110Rr + 23r2,

true from Gerretsen’s inequality: s2 ≥ 16Rr − 5r2 and Euler’s inequality R ≥ 2r.

It suffices to prove that:

9(16Rr − 5r2) ≥ 110Rr + 23r2 ⇔ R ≥ 2r.

From (1) and (2) we obtain
bc

ala
+

ca

blb
+

ab

clc
≥ 2
√
3.

Inequality from the right side:
bc

ala
+

ca

blb
+

ab

clc
≤ 2(R+ r)2

S
.

The proof of 1) implies:
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(1)
∑ bc

ala
=
∑ bc · cos B−C

2

2S
≤
∑ bc

2S

With identity
∑

bc = s2+r2+4Rr and Gerretsen’s inequality s2 ≤ 4R2+4Rr+3r2 we have:

(2)∑
bc = s2+r2+4Rr ≤ 4R2+4Rr+3r2+r2+4Rr = 4R2+8Rr+4r2 = 4(R+r)2

From (1) and (2) it follows
bc

ala
+

ca

blb
+

ab

clc
≤ 1

2S
· 4(R+ r)2 =

2(R+ r)2

S
.

�

Equality holds if and only if the triangle is equilateral. �

Remark.
The double inequality 4) is stronger than 3).

5) In ∆ABC:

18r

s
≤ 2
√
3 ≤ bc

ala
+

ca

blb
+

ab

clc
≤ 2(R+ r)2

S
≤ 9R2

2S

Proposed by Mehmet Şahin - Turkey, Marin Chirciu - Romania

Proof.

See 4), Euler’s inequality R ≥ 2r and Mitrinovic’s inequality s ≥ 3r
√
3.

Equality holds if and only if the triangle is equilateral.
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1. In ∆ABC

4(ma + mb + mc) ≥
∑ ra + r

ra − r
(hb + hc).

Proposed by Bogdan Fustei - Romania

Proof.
We prove the following lemma:

Lemma.
1) In ∆ABC ∑ ra + r

ra − r
(hb + hc) =

3s2 − r2 − 4Rr

R

Using ra =
S

s− a
, r =

S

s
and ha =

2S

a
we obtain:

∑ ra + r

ra − r
(hb + hc) =

∑ S
s−a + S

s
S

s−a −
S
s

(2S
b

+
2S

c

)
=

2S

abc

∑
(b+ c)2 =

=
1

2R
· 2(3s2 − r2 − 4Rr) =

3s2 − r2 − 4Rr

R
Let’s get back to the main problem:

With Tereshin’s inequality ma ≥
b2 + c2

4R
we obtain:∑

ma ≥
∑ b2 + c2

4R
=

2
∑

a2

4R
=

2(s2 − r2 − 4Rr)

2R
=

s2 − r2 − 4Rr

R
.

Using Lemma and
∑

ma ≥
s2 − r2 − 4Rr

R
It suffices to prove that:

4 · s
2 − r2 − 4Rr

R
≥ 3s2 − r2 − 4Rr

R
⇔ s2 ≥ 12Rr + 3r2,

which follows from Gerretsen’s inequality: s2 ≥ 16Rr−5r2 and Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.

Let’s emphasises an inequality having an opposite sense.

2) In ∆ABC:

4(ha + hb + hc) ≤
∑ ra + r

ra − r
(ha + hc).

1
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Proof.

Using Lemma and
∑

ha =
s2 + r2 + 4Rr

2R
we write the inequality:

4 · s
2 + r2 + 4Rr

2R
≤ 3s2 − r2 − 4Rr

R
⇔ s2 ≥ 12Rr + 3r2,

which follows from Gerretsen’s inequality: s2 ≥ 16Rr−5r2 and Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Remark.
We can write the double inequality:

3) In ∆ABC:

4(ha + hb + hc) ≤
∑ ra + r

ra − r
(hb + hc) ≤ 4(ma +mb +mc).

Proof.
See inequalities 1) and 2).

Equality holds if and only if the triangle is equilateral.
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