RMM Commented Problems Marathon

$$
21=40
$$

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor DANIEL SITARU

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.
INEQUALITY IN TRIANGLE 305 ROMANIAN MATHEMATICAL MAGAZINE

2017

MARIN CHIRCIU

1. In $\Delta A B C$

$$
\frac{R}{2 r}+\frac{3 p^{2}}{(4 R+r)^{2}} \geq 2
$$

Proposed by Adil Abdullayev - Baku - Azerbaidian
Proof.
Using Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$, it's enough to prove that:

$$
\frac{R}{2 r}+\frac{3\left(16 R r-5 r^{2}\right)}{(4 R+r)^{2}} \geq \Leftrightarrow 16 R^{3}-56 R^{2} r+65 R r^{2}-34 R r^{2} \geq 0 \Leftrightarrow
$$

$$
\Leftrightarrow(R-2 r)\left(16 R^{2}-24 R r+17 r^{2}\right) \geq 0, \text { obviously from Euler's inequality } R \geq 2 r \text {. }
$$

The equality holds if and only if the triangle is equilateral.

Remark

> The inequality can be developed:

2. In $\triangle A B C$

$$
n \cdot \frac{R}{r}+k \cdot \frac{p^{2}}{(4 R+r)^{2}} \geq 2 n+\frac{k}{3}, \text { where } 15 n \geq 2 k \geq 0
$$

Proposed by Marin Chirciu - Romania
Proof.

Using Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$ and the conditions $n \geq 0, k \geq 0$ it's enough to prove that:
$n \cdot \frac{R}{r}+k \cdot \frac{16 R r-5 r^{2}}{(4 R+r)^{2}} \geq 2 n+\frac{k}{3} \Leftrightarrow$
$48 n R^{3}-(72 n+16 k) R^{2} r+(40 k-45 n) R r^{2}-(6 n+18 k) r^{3} \geq 0$
$\Leftrightarrow(R-2 r)\left(48 n R^{2}+(24 n-16 k) R r+(3 n+8 k) r^{2}\right) \geq 0$, obviously from Euler's inequality $R \geq 2$ rand the observation that $48 n R^{2}+(24 n-16 k) R r+(3 n+8 k) r^{2} \geq 0$ for $15 n \geq 2 k \geq 0$.

The equality holds if and only if the triangle is equilateral or $n=k=0$.

Remark

The inequality can be reformulated:
3. In $\triangle A B C$

$$
\frac{R}{r}+\lambda \cdot \frac{p^{2}}{(4 R+r)^{2}} \geq 2+\frac{\lambda}{3}, \text { where } 0 \leq \lambda \leq \frac{15}{2}
$$

Proof.
In 2. we divide with n and we denote $\frac{k}{n}=\lambda$.
The equality holds if and only if the triangle is equilateral.
For $\lambda=6$ we obtain inequality 1.

Remark

> The inequality can be reformulated:

4. In $\Delta A B C$

$$
\lambda \cdot \frac{R}{r}+\frac{p^{2}}{(4 R+r)^{2}} \geq 2 \lambda+\frac{1}{3}, \lambda \geq \frac{2}{15}
$$

Proof.
In 2. we divide with k and we denote $\frac{n}{k}=\lambda$.
The equality holds if and only if the triangle is equilateral.

$$
\text { For } \lambda=\frac{1}{6} \text { we obtain inequality } 1
$$

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, mEhedinti.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

INEQUALITY IN TRIANGLE 295
 ROMANIAN MATHEMATICAL MAGAZINE
 2017

MARIN CHIRCIU

1. In $\triangle A B C$

$$
\sum(b+c-a) m_{a}^{2} \geq 18 p r(R-r)
$$

Proposed by Abdikadir Altintas - Afyon - Turkey

Proof.
Using the known identity in triangle $\sum(p-a) m_{a}^{2}=p\left(p^{2}-4 r^{2}-7 R r\right)$ the inequality that we have to prove can be written:
$2 p\left(p^{2}-4 r^{2}-7 R r\right) \geq 18 p r(R-r) \Leftrightarrow p^{2} \geq 16 R r-5 r^{2}$ (Gerretsen's inequality) The equality holds if and only if the triangle is equilateral.

Remark

> The inequality can be developed:

2. In $\Delta A B C$

$$
\sum(b+c-n a) m_{a}^{2} \geq 9 p r[(3-n) R-2 r], \text { where } n \leq 5
$$

Proof.
Using the known identity in triangle $\sum a m_{a}^{2}=\frac{1}{2} \cdot p\left(p^{2}+5 r^{2}+2 R r\right)$, we obtain:

$$
\begin{gathered}
\sum(b+c-n a) m_{a}^{2}=\sum[2 p-(n+1) a] m_{a}^{2}=2 p \sum m_{a}^{2}-(n+1) \sum a m_{a}^{2}= \\
=2 p \sum m_{a}^{2}-(n+1) \cdot \frac{1}{2} \cdot p\left(p^{2}+5 r^{2}+2 R r\right)= \\
=2 p \cdot \frac{3}{4} \cdot 2\left(p^{2}-r^{2}-4 R r\right)-(n+1) \cdot \frac{1}{2} \cdot p\left(p^{2}+5 r^{2}+2 R r\right)= \\
=\frac{p}{2}\left[(5-n) p^{2}-(5 n+11) r^{2}-(2 n+26) R r\right]
\end{gathered}
$$

the inequality that we have to prove can be written:

$$
\begin{aligned}
& \frac{p}{2}\left[(5-n) p^{2}-(5 n+11) r^{2}-(2 n+26) R r\right] \geq 9 p r[(3-n) R-2 r] \Leftrightarrow \\
& \quad(5-n) p^{2}-(5 n+11) r^{2}-(2 n+26) R r \geq 18 r[(3-n) R-2 r]
\end{aligned}
$$

which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$ and the condition $5-n \geq 0$.
The equality holds if and only if the triangle is equilateral.

Let's obtain an inequality that have an opposite sense.

3. In $\Delta A B C$

$\sum(b+c-n a) m_{a}^{2} \leq p\left[(10-2 n) R^{2}-(3 n+3) R r+(2-4 n) r^{2}\right]$, where $n \leq 5$.

Proof.
Using the above proved inequality:

$$
\sum(b+c-n a) m_{a}^{2}=\frac{p}{2}\left[(5-n) p^{2}-(5 n+11) r^{2}-(2 n+26) R r\right]
$$

Gerretsen's inequality $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ and the condition $5-n \geq 0$, we obtain: $\sum(b+c-n a) m_{a}^{2} \leq \frac{p}{2}\left[(5-n)\left(4 R^{2}+4 R r+3 r^{2}\right)-(5 n+11) r^{2}-(2 n+26) R r\right]=$ $=p\left[(10-2 n) R^{2}-(3 n+3) R r+(2-4 n) r^{2}\right]$.
The equality holds if and only if the triangle is equilateral.

We can write the following double inequality:

4. In $\triangle A B C$

$9 p r[(3-n) R-2 r] \leq \sum(b+c-n a) m_{a}^{2} \leq p\left[(10-2 n) R^{2}-(3 n+3) R r+(2-4 n) r^{2}\right], n \leq 5$ Proposed by Marin Chirciu - Romania

Proof.
See inequalities 2. and 3.
The equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

INEQUALITY IN TRIANGLE 301

ROMANIAN MATHEMATICAL MAGAZINE
2017

MARIN CHIRCIU

1. In $\Delta A B C$

$$
\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{18 r^{2}}{a b c}
$$

Proposed by Panagiote Ligouras - Florence - Italy
Proof.
We prove the following lemma:

Lemma

2. In $\triangle A B C$

$$
\sum \frac{a}{(b+c)(b+c-a)}=\frac{2 p^{2}(R-r)+R r(4 R+r)}{p r\left(p^{2}+r^{2}+2 R r\right)}
$$

$$
\begin{aligned}
\sum \frac{a}{(b+c)(b+c-a)}= & \sum\left(\frac{1}{b+c-a}-\frac{1}{b+c}\right)=\sum \frac{1}{b+c-a}-\sum \frac{1}{b+c}= \\
= & \frac{4 R+r}{2 p r}-\frac{5 p^{2}+r^{2}+4 R r}{2 p\left(p^{2}+r^{2}+2 R r\right)}= \\
& =\frac{2 p^{2}(R-r)+R r(4 R+r)}{p r\left(p^{2}+r^{2}+2 R r\right)}
\end{aligned}
$$

Let's pass to solving the problem from the enunciation.
Using the Lemma, the inequality that we have to prove can be written:

$$
\begin{gathered}
\frac{2 p^{2}(R-r)+R r(4 R+r)}{p r\left(p^{2}+r^{2}+2 R r\right)} \geq \frac{18 r^{2}}{a b c} \Leftrightarrow \frac{2 p^{2}(R-r)+R r(4 R+r)}{p r\left(p^{2}+r^{2}+2 R r\right)} \geq \frac{18 r^{2}}{4 p R r} \Leftrightarrow \\
p^{2}\left(4 R^{2}-4 R r-9 r^{2}\right)+r\left(8 R^{3}+2 R^{2} r-18 R r^{2}-9 r^{3}\right) \geq 0
\end{gathered}
$$

We distinguish the following cases:

1. If $4 R^{2}-4 R r-9 r^{2} \geq 0$, the inequality is obvious.
2. If $4 R^{2}-4 R r-9 r^{2}<0$, the inequality can be rewritten:

$$
p^{2}\left(9 r^{2}+4 R r-4 R^{2}\right) \leq r\left(8 R^{3}+2 R^{2} r-18 R r^{2}-9 r^{3}\right)
$$

Using Gerretsen's inequality $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ it is enough to prove that:

$$
\begin{gathered}
\quad\left(4 R^{2}+4 R r+3 r^{2}\right)\left(9 r^{2}+4 R r-4 R^{2}\right) \leq r\left(8 R^{3}+2 R^{2} r-18 R r^{2}-9 r^{3}\right) \Leftrightarrow \\
\Leftrightarrow 8 R^{4}+4 R^{3} r-19 R^{2} r^{2}-33 R r^{3}-18 r^{4} \geq 0 \Leftrightarrow(R-2 r)\left(8 R^{3}+20 R^{2} r+21 R r^{2}+9 r^{3}\right) \geq 0
\end{gathered}
$$

$$
\text { which is obviously from Euler's inequality } R \geq 2 r \text {. }
$$

The equality holds if and only if the triangle is equilateral.

Remark

> Inequality 1. can be strengthened:
3. In $\triangle A B C$

$$
\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{9 R r}{a b c}
$$

Proof. Using the Lemma the inequality can be written:

$$
\begin{gathered}
\frac{2 p^{2}(R-r)+R r(4 R+r)}{p r\left(p^{2}+r^{2}+2 R r\right)} \geq \frac{9 R r}{a b c} \Leftrightarrow \frac{2 p^{2}(R-r)+R r(4 R+r)}{p r\left(p^{2}+r^{2}+2 R r\right)} \geq \frac{9 R r}{4 p R r} \Leftrightarrow \\
p^{2}(8 R-17 r)+r\left(16 R^{2}-14 R r-9 r^{2}\right) \geq 0 \\
\text { We distinguish the cases: }
\end{gathered}
$$

1. If $8 R-17 r \geq 0$, the inequality is obvious.
2. If $8 R-17 r<0$, the inequality can be rewritten:

$$
p^{2}(17 r-8 R) \leq r\left(16 R^{2}-14 R r-9 r^{2}\right)
$$

Using Gerretsen's inequality $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ it suffices to prove that:

$$
\begin{gathered}
\left(4 R^{2}+4 R r+3 r^{2}\right)(17 r-8 R) \leq r\left(16 R^{2}-14 R r-9 r^{2}\right) \Leftrightarrow \\
\Leftrightarrow 16 R^{3}-10 R^{2} r-29 R r^{2}-30 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(16 R^{2}+22 R r+15 r^{2}\right) \geq 0, \\
\text { which is obvious from Euler's inequality } R \geq 2 r .
\end{gathered}
$$

The inequality holds if and only if the triangle is equilateral.

Remark.

$$
\text { Inequality 3. is stronger than inequality } 1 .
$$

4. In $\Delta A B C$

$$
\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{9 R r}{a b c} \geq \frac{18 r^{2}}{a b c}
$$

Proof.
See inequality 3. and Euler's inequality $R \geq 2 r$.
The inequality holds if and only if the triangle is equilateral.

Remark.

Also inequality 3. can be developed:

5. In $\Delta A B C$

$$
\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{9 R^{2}}{2 a b c}
$$

Proof.
Using the Lemma, the inequality that we have to prove can be written:

$$
\begin{gathered}
\frac{2 p^{2}(R-r)+R r(4 R+r)}{p r\left(p^{2}+r^{2}+2 R r\right)} \geq \frac{9 R^{2}}{2 a b c} \Leftrightarrow \frac{2 p^{2}(R-r)+R r(4 R+r)}{p r\left(p^{2}+r^{2}+2 R r\right)} \geq \frac{9 R^{2}}{9 p R r} \Leftrightarrow \\
p^{2}(7 R-16 r)+\operatorname{Rr}(14 R-r) \geq 0 .
\end{gathered}
$$

We distinguish the cases:

1. If $7 R-16 r \geq 0$, the inequality is obvious.
2. If $7 R-16 r<0$, the inequality can be rewritten:

$$
p^{2}(16 r-7 R) \leq R r(14 R-r)
$$

Using Gerretsen's inequality $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ it suffices to prove that:

$$
\begin{gathered}
\left(4 R^{2}+4 R r+3 r^{2}\right)(16 r-7 R) \leq R r(14 R-r) \Leftrightarrow \\
\Leftrightarrow 14 R^{3}-11 R^{2} r-22 R r^{2}-24 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(14 R^{2}+17 R r+12 r^{2}\right) \geq 0, \\
\text { which is obvious from Euler's inequality } R \geq 2 r .
\end{gathered}
$$

The inequality holds if and only if the triangle is equilateral.

Remark.

Inequality 5. is stronger than inequality 3.

6. In $\Delta A B C$

$$
\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{9 R^{2}}{2 a b c} \geq \frac{9 R r}{a b c}
$$

Proof.
See inequality 5. and Euler's inequality $R \geq 2 r$.
The inequality holds if and only if the triangle is equilateral.

Remark.

The inequalities can be written:
7. In $\Delta A B C$

$$
\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{9 R^{2}}{2 a b c} \geq \frac{9 R r}{a b c} \geq \frac{18 r^{2}}{a b c}
$$

Remark.

Let's obtain an inequality having an opposite sense.

8. In $\Delta A B C$

$$
\sum \frac{a}{(b+c)(b+c-a)} \leq \frac{9 R^{2}}{16 S r}
$$

Proof.
Using the Lemma, the inequality that we have to prove can be written:

$$
\begin{gathered}
\frac{2 p^{2}(R-r)+R r(4 R+r)}{p r\left(p^{2}+r^{2}+2 R r\right)} \leq \frac{9 R^{2}}{16 S r} \Leftrightarrow \frac{2 p^{2}(R-r)+R r(4 R+r)}{p r\left(p^{2}+r^{2}+2 R r\right)} \leq \frac{9 R^{2}}{16 r^{2} p} \Leftrightarrow \\
p^{2}\left(9 R^{2}-32 R r+32 r^{2}\right)+\operatorname{Rr}\left(18 R^{2}-55 R r-16 r^{2}\right) \geq 0 .
\end{gathered}
$$

Because $9 R^{2}-32 R r+32 r^{2}>0\left(\Delta<0\right.$, for the trinomial $\left.9 x^{2}-32 x+32\right)$, using Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$ is suffices to prove that:

$$
\begin{aligned}
&\left(16 R r-5 r^{2}\right)\left(9 R^{2}-32 R r+32 r^{2}\right)+R r\left(18 R^{2}-55 R r-16 r^{2}\right) \geq 0 \Leftrightarrow \\
& \Leftrightarrow 81 R^{3}-306 R^{2} r+328 R r^{2}-80 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(80 R^{2}-144 R r+40 r^{2}\right) \geq 0
\end{aligned}
$$

which is obviously from Euler's $R \geq 2 r$.
The inequality holds if and only if the triangle is equilateral.

Remark.

> We can write the double inequality:

9. In $\Delta A B C$

$$
\frac{9 R}{8 S} \leq \sum \frac{a}{(b+c)(b+c-a)} \leq \frac{9 R^{2}}{16 S r}
$$

Proposed by Marin Chirciu - Romania
Proof.
See inequalities 2. and 8.
The inequality holds if and only if the triangle is equilateral.
We've obtained a refinement of Euler's inequality.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEhedinti.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

PROBLEM 298

TRIANGLE MARATHON 201-300 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\Delta A B C$

$$
m_{a} \cos \frac{A}{2}+m_{b} \cos \frac{B}{2}+m_{c} \cos \frac{C}{2} \geq \frac{9 r \sqrt{3}}{2}
$$

Proposed by Kevin Soto Palacios - Huarmey - Peru
Remark.

> The inequality can be strengthened:
2. In $\triangle A B C$

$$
m_{a} \cos \frac{A}{2}+m_{b} \cos \frac{B}{2}+m_{c} \cos \frac{C}{2} \geq \frac{3 p}{2}
$$

Proposed by Marin Chirciu - Romania
Proof.

$$
\begin{gathered}
\text { We use the remarkable inequality } m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2} \\
\text { We obtain: } \\
\begin{aligned}
\sum m_{a} \cos \frac{A}{2} \geq \sum m_{a} \cos ^{2} \frac{A}{2} & =\sum \frac{b+c}{2} \cdot \frac{p(p-a)}{b c}=\frac{p}{2} \cdot \frac{a(b+c)(p-a)}{a b c}= \\
= & \frac{p}{2} \cdot \frac{12 p R r}{4 p R r}=\frac{3 p}{2}
\end{aligned}
\end{gathered}
$$

The equality holds if and only if the triangle is equilateral.

Remark.
Inequality 2. is stronger then Inequality 1.:
3. In $\Delta A B C$

$$
m_{a} \cos \frac{A}{2}+m_{b} \cos \frac{B}{2}+m_{c} \cos \frac{C}{2} \geq \frac{3 p}{2} \geq \frac{9 r \sqrt{3}}{2}
$$

Proof.
See inequality 2. and Mitrinović's inequality: $p \geq 3 r \sqrt{3}$.
The equality holds if and only if the triangle is equilateral.

In the same mode can be proposed:

4. In $\Delta A B C$

$$
m_{a} \sin \frac{A}{2}+m_{b} \sin \frac{B}{2}+m_{c} \sin \frac{C}{2} \geq \frac{a b+b c+c a}{4 R}
$$

Proof.
Using the remarkable inequality $m_{a} \geq \frac{b+c}{2} \cos \frac{A}{2}$, we obtain:
$\sum m_{a} \sin \frac{A}{2} \geq \sum \frac{b+c}{2} \cos \frac{A}{2} \sin \frac{A}{2}=\frac{1}{4} \sum(b+c) \sin A=\frac{1}{4} \sum(b+c) \cdot \frac{a}{2 R}=\frac{a b+b c+c a}{4 R}$.
The equality holds if and only if the triangle is equilateral.

5. In $\Delta A B C$

$$
m_{a} \sin \frac{A}{2}+m_{b} \sin \frac{B}{2}+m_{c} \sin \frac{C}{2} \geq \frac{S \sqrt{3}}{R}
$$

Proof.
See 4. and the remarkable inequality $a b+b c+c a \geq 4 S \sqrt{3}$.
The equality holds if and only if the triangle is equilateral.

6. In $\Delta A B C$

$$
m_{a} \sin \frac{A}{2}+m_{b} \sin \frac{B}{2}+m_{c} \sin \frac{C}{2} \geq \frac{r(5 R-r)}{R}
$$

Proof.
See 4., the identity $a b+b c+c a=p^{2}+r^{2}+4 R r$ and Gerretsen's inequality

$$
p^{2} \geq 16 R r-5 r
$$

The equality holds if and only if the triangle is equilateral.

The following inequalities can be written:

7. In $\Delta A B C$
$m_{a} \sin \frac{A}{2}+m_{b} \sin \frac{B}{2}+m_{c} \sin \frac{C}{2} \geq \frac{p^{2}+r^{2}+4 R r}{4 R} \geq \frac{r(5 R-r)}{R} \geq \frac{S \sqrt{3}}{R} \geq \frac{9 r^{2}}{R}$
Proposed by Marin Chirciu - Romania

Proof.
See 4. the identity $a b+b c+c a=p^{2}+r^{2}+4 R r$, Gerretsen's inequality
$p^{2} \geq 16 R r-5 r$, Doucet's inequality $4 R+r \geq p \sqrt{3}$ and Mitrinović's inequality: $p \geq 3 r \sqrt{3}$.

The equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

PROBLEM 296
 TRIANGLE MARATHON 201-300 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle A B C$

$$
\frac{r_{a}}{r_{b}}+\frac{r_{b}}{r_{c}}+\frac{r_{c}}{r_{a}}+\frac{2 r}{R} \geq 4
$$

Proposed by Adil Abdullayev - Baku - Azerbaidian
Proof.
We have $\sum \frac{r_{a}}{r_{b}}=\sum \frac{r_{a}^{2}}{r_{a} r_{b}} \overbrace{\geq}^{\text {Bergstrom }} \frac{\left(r_{a}+r_{b}+r_{c}\right)^{2}}{r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}}=\frac{(4 R+r)^{2}}{p^{2}} \overbrace{\geq}^{(1)} 4-\frac{2 r}{R}$, where (1) follows from Blundon - Gerretsen's inequality $p^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)}$ (true from Gergonne's identity: $H \Gamma^{2}=4 R^{2}\left[1-\frac{2 p^{2}(2 R-r)}{r(4 R+r)^{2}}\right], \Gamma$ is Gergonne's point, namely the lines intersections $A A_{1}, B B_{1}, C C_{1}$, where A_{1}, B_{1}, C_{1} are the tangent point of incircle in $\triangle A B C$ with the sides $B C, C A, A B)$.

The equality holds if and only if the triangle is equilateral.

Remark.

> The inequality can be developed:

2. In $\triangle A B C$

$$
\frac{r_{a}}{r_{b}}+\frac{r_{b}}{r_{c}}+\frac{r_{c}}{r_{a}}+n \cdot \frac{r}{R} \geq 3+\frac{n}{2}, \text { where } n \leq 2
$$

Proposed by Marin Chirciu - Romania
Proof.
We have $\sum \frac{r_{a}}{r_{b}}=\sum \frac{r_{a}^{2}}{r_{a} r_{b}} \overbrace{\geq}^{\text {Bergstrom }} \frac{\left(r_{a}+r_{b}+r_{c}\right)^{2}}{r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}}=\frac{(4 R+r)^{2}}{p^{2}} \overbrace{\geq}^{(1)} 3+\frac{n}{2}-\frac{n r}{R}$, where (1) follows from Blundon-Gerretsen's inequality $p^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)}$ (true from

Gergonne's identity: $H \Gamma^{2}=4 R^{2}\left[1-\frac{2 p^{2}(2 R-r)}{r(4 R+r)^{2}}\right], \Gamma$ is Gergonne's point, namely the intersection lines $A A_{1}, B B_{1}, C C_{1}$, where A_{1}, B_{1}, C_{1} are the tangent points of the incircle in $\triangle A B C$ with the sides $B C, C A, A B)$.
It remains to prove that:

$$
\frac{(4 R+r)^{2}}{\frac{R(4 R+r)^{2}}{2(2 R-r)}} \overbrace{\geq}^{(1)} 3+\frac{n}{2}-\frac{n r}{R} \Leftrightarrow \frac{4 R-2 r}{R}+\frac{n r}{R} \geq \frac{n+6}{2} \Leftrightarrow(2-n)(R-2 r) \geq 0
$$

obviously from Euler's inequality $R \geq 2 r$ and the condition $2-n \geq 0$.
The equality holds if and only if the triangle is equilateral.

Remark.

$$
\text { For } n=2 \text { we obtain inequality } 1 .
$$

For $n=0$ we obtain the well known inequality $\frac{r_{a}}{r_{b}}+\frac{r_{b}}{r_{c}}+\frac{r_{c}}{r_{a}} \geq 3$.
For $n=-2$ we obtain the known inequality $\frac{r_{a}}{r_{b}}+\frac{r_{b}}{r_{c}}+\frac{r_{c}}{r_{a}} \geq 2+\frac{2 r}{R}$.
Let's notice that for $n \leq 0$ the obtained inequalities are very weak, the inequality is interesting for $n>0$, being the strongest for $n=2$.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDinti.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.
PROBLEM 288
TRIANGLE MARATHON 201-300 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\Delta A B C$

$$
\frac{r_{a}^{2}}{h_{a}}+\frac{r_{b}^{2}}{h_{b}}+\frac{r_{c}^{2}}{h_{c}} \geq 9 r
$$

Proposed by Mehmet Şahin - Ankara - Turkey
Proof.
We prove the following lemma:
Lemma.
2. In $\Delta A B C$

$$
\frac{r_{a}^{2}}{h_{a}}+\frac{h_{b}^{2}}{h_{b}}+\frac{r_{c}^{2}}{h_{c}}=\frac{2 R(4 R+r)-p^{2}}{r}
$$

Proof.
We have $\sum \frac{r_{a}^{2}}{h_{a}}=\sum \frac{\left(\frac{S}{p-a}\right)^{2}}{\frac{2 S}{a}}=\frac{S}{2} \sum \frac{a}{(p-a)^{2}}=\frac{r p}{2} \cdot \frac{4 R(4 R+r)-2 p^{2}}{r^{2} p}=\frac{2 R(4 R+r)-p^{2}}{r}$

Let's prove inequality 1.
Using the Lemma, inequality 1, can be written:
$\frac{2 R(4 R+r)-p^{2}}{r} \geq 9 r \Leftrightarrow p^{2} \leq 2 R(4 R+r)-9 r^{2}$, which follows from Gerretsen's inequality:

$$
p^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$

It remains to prove that:
$4 R^{2}+4 R r+3 r^{2} \leq 2 R(4 R+r)-9 r^{2} \Leftrightarrow 2 R^{2}-R r-6 r^{2} \geq 0 \Leftrightarrow(R-2 r)(2 R+3 r) \geq 0$,
obviously from Euler's inequality: $R \geq 2 r$.
The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 1. can be strengthened:
3. In $\Delta A B C$

$$
\begin{aligned}
& \frac{r_{a}^{2}}{h_{a}}+\frac{r_{b}^{2}}{h_{b}}+\frac{r_{c}^{2}}{h_{c}} \geq \frac{9 R}{2} \\
& \quad \text { Proposed by Marin Chirciu - Romania }
\end{aligned}
$$

Proof.
Using the Lemma, inequality 3 can be written:

$$
\begin{gathered}
\frac{2 R(4 R+r)-p^{2}}{r} \geq \frac{9 R}{2} \Leftrightarrow 2 p^{2} \leq 2 R(4 R+r)-9 R r \text {, which follows from Gerretsen's inequality: } \\
p^{2} \leq 4 R^{2}+4 R r+3 r^{2} . \\
\text { It remains to prove that: } \\
2\left(4 R^{2}+4 R r+3 r^{2}\right) \leq 2 R(4 R+r)-9 R r \Leftrightarrow 8 R^{2}-13 R r-6 r^{2} \geq 0 \Leftrightarrow(R-2 r)(8 R+3 r) \geq 0, \\
\text { obviously from Euler's inequality: } R \geq 2 r .
\end{gathered} \text { The equality holds if and only if the triangle is equilateral. }
$$

Remark.

Inequality 3. is stronger than inequality 1.
4. In $\Delta A B C$

$$
\frac{r_{a}^{2}}{h_{a}}+\frac{r_{b}^{2}}{h_{b}}+\frac{r_{c}^{2}}{h_{c}} \geq \frac{9 R}{2} \geq 9 r
$$

Proof.
See inequality 3. and Euler's inequality.
The equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

PROBLEM 354 INEQUALITY IN TRIANGLE ROMANIAN MATHEMATICAL MAGAZINE
 2017

MARIN CHIRCIU

1. In $\triangle A B C$

$$
\sum \frac{a^{3}}{b+c-a} \geq 4 S \sqrt{3}
$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania
Proof.

> We prove that following lemma:

Lemma.
2. In $\triangle A B C$

$$
\sum \frac{a^{3}}{b+c-a}=\frac{p^{2}(2 R-3 r)+r^{2}(4 R+r)}{r} .
$$

Proof.
$\sum \frac{a^{3}}{b+c-a}=\frac{1}{2} \sum \frac{a^{3}}{p-a}=\frac{1}{2} \cdot \frac{2 p^{2}(2 R-3 r)+2 r^{2}(4 R+r)}{r}=\frac{p^{2}(2 R-3 r)+r^{2}(4 R+r)}{r}$.

Let's pass to solving the problem from enunciation.
Base on the Lemma we write the following inequality:

$$
\frac{p^{2}(2 R-3 r)+r^{2}(4 R+r)}{r} \geq 4 r p \sqrt{3} \Leftrightarrow p^{2}(2 R-3 r)+r^{2}(4 R+r) \geq 4 r \cdot p \sqrt{3}
$$

which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$ and Doucet's inequality $4 R+r \geq p \sqrt{3}$ It remains to prove that:
$\left(16 R r-5 r^{2}\right)(2 R-3 r)+r^{2}(4 R+r) \geq 4 r \cdot(4 R+r) \Leftrightarrow 16 R^{2}-35 R r+6 r^{2} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)(16 R-3 r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.

Equality holds if and only if the triangle is equilateral.

Remark.

Inequality 1. can be strengthened:
3. In $\triangle A B C$

$$
\sum \frac{a^{3}}{b+c-a} \geq \frac{4 p^{2}}{3}
$$

Proof.
Base on the Lemma the inequality can be written:

$$
\frac{p^{2}(2 R-3 r)+r^{2}(4 R+r)}{r} \geq \frac{4 p^{2}}{3} \Leftrightarrow p^{2}(6 R-13 r)+3 r^{2}(4 R+r) \geq 0
$$

We distinguish the cases:

1. If $6 R-13 r \geq 0$, the inequality is obvious.
2. If $6 R-13 r<0$, inequality can be rewritten:

$$
p^{2}(13 r-6 R) \leq 3 r^{2}(4 R+r)
$$

which follows from Gerretsen's inequality $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.
It remains to prove that:
$\left(4 R^{2}+4 R r+3 r^{2}\right)(13 r-6 R) \leq 3 r^{2}(4 R+r) \Leftrightarrow 12 R^{3}-14 R^{2} r-11 R r^{2}-18 r^{3} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)\left(12 R^{2}+10 R r+9 r^{2}\right) \geq 0$, obviously from Euler's inequality $R \geq 2 r$. The equality holds if and only if the triangle is equilateral.

Remark.
Inequality 3. is stronger than inequality 1.
4. In $\Delta A B C$

$$
\sum \frac{a^{3}}{b+c-a} \geq \frac{4 p^{2}}{3} \geq 4 S \sqrt{3}
$$

Proof.
See inequality 3. and Mitrinovic's inequality $p \geq 3 r \sqrt{3}$.
The equality holds if and only if the triangle is equilateral.

Inequality 3. can be also strengthened:

5. In $\triangle A B C$

$$
\sum \frac{a^{3}}{b+c-a} \geq 2 R p \sqrt{3}
$$

Proposed by Marin Chirciu - Romania
Proof.
Base on the Lemma we write the inequality:

$$
\frac{p^{2}(2 R-3 r)+r^{2}(4 R+r)}{r} \geq 2 R p \sqrt{3} \Leftrightarrow p^{2}(2 R-3 r)+r^{2}(4 R+r) \geq 2 R \cdot p \sqrt{3}
$$

which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$ and Doucet's inequality $4 R+r \geq p \sqrt{3}$.
It remains to prove that:

$$
\left(16 R r-5 r^{2}\right)(2 R-3 r)+r^{2}(4 R+r) \geq 2 R \cdot(4 R+r) \Leftrightarrow 3 R^{2}-7 R r+2 r^{2} \geq 0 \Leftrightarrow
$$

$$
\Leftrightarrow(R-2 r)(3 R-r) \geq 0, \text { obviously from Euler's inequality } R \geq 2 r .
$$

The equality holds if and only if the triangle is equilateral.

Remark.

> Inequality 5. is stronger than inequality 3.:
6. In $\Delta A B C$

$$
\sum \frac{a^{3}}{b+c-a} \geq 2 R p \sqrt{3} \geq \frac{4 p^{2}}{3}
$$

Proof.
See inequality 5. and Mitrinović's inequality $p \leq \frac{3 R \sqrt{3}}{2}$
The equality holds if and only if the triangle is equilateral.

Remark.

We write the following inequalities:
7. In $\Delta A B C$

$$
\sum \frac{a^{3}}{b+c-a} \geq 2 R p \sqrt{3} \geq \frac{4 p^{2}}{3} \geq 4 S \sqrt{3}
$$

Proof.
See inequality 5. and Mitrinović's inequality $3 r \sqrt{3} \leq p \leq \frac{3 R \sqrt{3}}{2}$
The equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

COMMENTED PROBLEM 30

MARIN CHIRCIU

1. Let be $a, b, c \in(0, \infty)$. Prove that

$$
\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}+\frac{30 a b c}{(a+b)(b+c)(c+a)} \geq \frac{27}{4}
$$

Proposed by Costel Anghel - Romania

Proof.

$$
\text { Denoting } \frac{a}{b}=x, \frac{b}{c}=y, \frac{c}{a}=z \text {, we have } x, y, z>0 \text { and } x y z=1
$$

We write $\frac{a b c}{(a+b)(b+c)(c+a)}=\frac{1}{\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)}=\frac{1}{(x+1)(y+1)(z+1)}$
We reformulate the problem:
If $x, y, z>0$ and $x y z=1$, prove that $x^{2}+y^{2}+z^{2}+\frac{30}{(x+1)(y+1)(z+1)} \geq \frac{27}{4}$.
Denoting $x+y+z=t$, we have $t \geq 3 \sqrt[3]{x y z}=3 ; x^{2}+y^{2}+z^{2} \geq \frac{(x+y+z)^{2}}{3}=\frac{t^{2}}{3}$ $(x+y+z)^{2} \geq 3(x y+y z+z x) \Rightarrow x y+y z+z x \leq \frac{t^{2}}{3} ;(x+y+z)^{3} \geq 27 x y z \Rightarrow x y z \leq \frac{t^{3}}{27} ;$ We have $(x+1)(y+1)(z+1)=x y z+x y+y z+z x+x+y+z+1 \leq \frac{t^{3}}{27}+\frac{t^{2}}{3}+t+1$.

It suffices to prove that:

$$
\begin{gathered}
\frac{t^{2}}{3}+\frac{30}{\frac{t^{3}}{27}+\frac{t^{2}}{3}+t+1} \geq \frac{27}{4} \Leftrightarrow \frac{t^{2}}{3}+\frac{810}{t^{3}+9 t^{2}+27 t+27} \geq \frac{27}{4} \Leftrightarrow \\
4 t^{2}\left(t^{3}+9 t^{2}+27 t+27\right)+9720 \geq 81\left(t^{3}+9 t^{2}+27 t+27\right) \Leftrightarrow \\
4 t^{5}+36 t^{4}+27 t^{3}-621 t^{2}-2187 t+7533 \geq 0 \Leftrightarrow(t-3)\left(4 t^{2}+48 t^{3}+171 t^{2}-108 t-2511\right) \geq 0
\end{gathered}
$$

Which follows from $t-3 \geq 0$ and $4 t^{2}+48 t^{3}+171 t^{2}-108 t-2511 \geq 324>0$. Equality holds for $x=y=z=1$, namely for $a=b=c$.

Remark.

The inequality can be devoloped:
2. Let be $a, b, c \in(0, \infty)$ and $n \leq 32$. Prove that

$$
\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}+n \cdot \frac{a b c}{(a+b)(b+c)(c+a)} \geq 3+\frac{n}{8}
$$

Proposed by Marin Chirciu - Romania

Proof.
Denoting $\frac{a}{b}=x, \frac{b}{c}=y, \frac{c}{a}=z$, we have $x, y, z>0$ and $x y z=1$.
We write $\frac{a b c}{(a+b)(b+c)(c+a)}=\frac{1}{\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)}=\frac{1}{(x+1)(y+1)(z+1)}$.
The problem can be reformulated:
If $x, y, z>0$ and $x y z=1$, prove that $x^{2}+y^{2}+z^{2}+\frac{n}{(x+1)(y+1)(z+1)} \geq 3+\frac{n}{8}$.
Denoting $x+y+z=t$, we have $t \geq 3 \sqrt[3]{x y z}=3 ; x^{2}+y^{2}+z^{2} \geq \frac{(x+y+z)^{2}}{3}=\frac{t^{2}}{3}$
$(x+y+z)^{2} \geq 3(x y+y z+z x) \Rightarrow x y+y z+z x \leq \frac{t^{2}}{3} ;(x+y+z)^{3} \geq 27 x y z \Rightarrow x y z \leq \frac{t^{3}}{27} ;$
We have $(x+1)(y+1)(z+1)=x y z+x y+y z+z x+x+y+z+1 \leq \frac{t^{3}}{27}+\frac{t^{2}}{3}+t+1$.
It suffices to prove that:

$$
\begin{gathered}
\frac{t^{2}}{3}+\frac{n}{\frac{t^{3}}{27}+\frac{t^{2}}{3}+t+1} \geq 3+\frac{n}{8} \Leftrightarrow \frac{t^{2}}{3}+\frac{27 n}{t^{3}+9 t^{2}+27 t+27} \geq \frac{n+24}{8} \Leftrightarrow \\
8 t^{2}\left(t^{3}+9 t^{2}+27 t+27\right)+648 n \geq(3 n+72)\left(t^{3}+9 t^{2}+27 t+27\right) \Leftrightarrow \\
8 t^{5}+72 t^{4}+(144-3 n) t^{3}-(27 n+432) t^{2}-(81 n+1944) t+567 n-1944 \geq 0 \\
\Leftrightarrow(t-3)\left(8 t^{4}+96 t^{3}+(432-3 n) t^{2}+(864-36 n) t+648-189\right) \geq 0,
\end{gathered}
$$

Which follows from $t-3 \geq 0$ and $8 t^{4}+96 t^{3}+(432-3 n) t^{2}+(864-36 n) t+648-189 n \geq 0$, for $n \leq 32$.
The equality holds for $x=y=z=1$, namely for $a=b=c$.

We can formulate the following problem:

3. Let be $a, b, c \in(0, \infty)$. Prove that

$$
\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}+\frac{32 a b c}{(a+b)(b+c)(c+a)} \geq 7
$$

Proof 1.

$$
\text { Denoting } \frac{a}{b}=x, \frac{b}{c}=y, \frac{c}{a}=z \text {, we have } x, y, z>0 \text { and } x y z=1 .
$$

We write $\frac{a b c}{(a+b)(b+c)(c+a)}=\frac{1}{\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)}=\frac{1}{(x+1)(y+1)(z+1)}$.
The problem can be reformulated:
If $x, y, z>0$ and $x y z=1$, prove that $x^{2}+y^{2}+z^{2}+\frac{30}{(x+1)(y+1)(z+1)} \geq \frac{27}{4}$.
Denoting $x+y+z=t$, we have $t \geq 3 \sqrt[3]{x y z}=3 ; x^{2}+y^{2}+z^{2} \geq \frac{(x+y+z)^{2}}{3}=\frac{t^{2}}{3}$
$(x+y+z)^{2} \geq 3(x y+y z+z x) \Rightarrow x y+y z+z x \leq \frac{t^{2}}{3} ;(x+y+z)^{3} \geq 27 x y z \Rightarrow x y z \leq \frac{t^{3}}{27} ;$
We have $(x+1)(y+1)(z+1)=x y z+x y+y z+z x+x+y+z+1 \leq \frac{t^{3}}{27}+\frac{t^{2}}{3}+t+1$

$$
\begin{gathered}
\text { It suffices to prove that: } \\
\begin{array}{c}
t^{2} \\
3
\end{array}+\frac{32}{\frac{t^{3}}{27}+\frac{t^{2}}{3}+t+1} \geq 7 \Leftrightarrow \frac{t^{2}}{3}+\frac{864}{t^{3}+9 t^{2}+27 t+27} \geq 7 \Leftrightarrow \\
t^{2}\left(t^{3}+9 t^{2}+27 t+27\right)+2592 \geq 21\left(t^{3}+9 t^{2}+27 t+27\right) \Leftrightarrow \\
t^{5}+9 t^{4}+6 t^{3}-162 t^{2}-567 t+2025 \geq 0 \Leftrightarrow(t-3)\left(t^{4}+12 t^{3}+42 t^{2}-36 t-675\right) \geq 0, \\
\text { Which follows from } t-3 \geq 0 \text { and } t^{4}+12 t^{3}+42 t^{2}-36 t-675>0 . \\
\text { The equality holds for } x=y=z=1, \text { namely for } a=b=c .
\end{gathered}
$$

Proof 2.
We put $n=32$ in 2.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

PROBLEM 356 INEQUALITY IN TRIANGLE ROMANIAN MATHEMATICAL MAGAZINE
 2017

MARIN CHIRCIU

1. In $\Delta A B C$

$$
\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{m_{a} m_{b}+m_{b} m_{c}+m_{c} m_{a}}+\frac{p^{2}}{p^{2}+r(R-2 r)} \geq 2
$$

Proposed by Adil Abdullayev-Baku - Azerbaidian
Proof.
We prove the following lemma:

Lemma.

2. In $\triangle A B C$

$$
\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{m_{a} m_{b}+m_{b} m_{c}+m_{c} m_{a}} \geq \frac{6\left(p^{2}-r^{2}-4 R r\right)}{5 p^{2}-3 r^{2}-12 R r}
$$

Proof.

$$
\sum m_{a}^{2}=\frac{3}{4} \sum a^{2}=\frac{3}{4} \cdot 2\left(p^{2}-r^{2}-4 R r\right)=\frac{3}{2}\left(p^{2}-r^{2}-4 R r\right)
$$

Using the known inequality in triangle $4 m_{b} m_{c} \leq 2 a^{2}+b c$, wherefrom:

$$
\begin{aligned}
\sum m_{b} m_{c} \leq \frac{1}{4} \sum\left(2 a^{2}+b c\right)= & \frac{1}{4}\left(2 \sum a^{2}+\sum b c\right)=\frac{1}{2} \cdot\left(p^{2}-r^{2}-4 R r\right)+\frac{1}{4} \cdot\left(p^{2}+r^{2}+4 R r\right)= \\
& =\frac{1}{4}\left(5 p^{2}-3 r^{2}-12 R r\right)
\end{aligned}
$$

We obtain $\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{m_{a} m_{b}+m_{b} m_{c}+m_{c} m_{a}} \geq \frac{\frac{3}{2}\left(p^{2}-r^{2}-4 R r\right)}{\frac{1}{4}\left(5 p^{2}-3 r^{2}-12 R r\right)}=\frac{6\left(p^{2}-r^{2}-4 R r\right)}{5 p^{2}-3 r^{2}-12 R r}$

Let's pass to solving the problem from enuntiation.
Based on Lemma it is enough to prove that:

$$
\frac{6\left(p^{2}-r^{2}-4 R r\right)}{5 p^{2}-3 r^{2}-12 R r}+\frac{p^{2}}{p^{2}+r(R-2 r)} \geq 2 \Leftrightarrow p^{4}+5 p^{2} r^{2}-16 p^{2} R r \geq 0 \Leftrightarrow p^{2} \geq 16 R r-5 r^{2}
$$

which is Gerretsen's inequality.
The equality holds if and only if the triangle is equilateral.

Remark.

> Inequality 1. can be devoloped:

3. In $\triangle A B C$

$$
\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{m_{a} m_{b}+m_{b} m_{c}+m_{c} m_{a}}+n \cdot \frac{p^{2}}{p^{2}+r(R-2 r)} \geq n+1, \text { where } n \leq 1
$$

Proposed by Marin Chirciu - Romania
Base on Lemma it is enough to prove that:

$$
\frac{6\left(p^{2}-r^{2}-4 R r\right)}{5 p^{2}-3 r^{2}-12 R r}+\frac{n p^{2}}{p^{2}+r(R-2 r)} \geq n+1 \Leftrightarrow
$$

$$
p^{4}+p^{2}\left[(10 n-5) r^{2}-(5 n+11) R r\right]+(12 n-12) R^{2} r^{2}+(21-21 n) R r^{3}+(6-6 n) r^{4} \geq 0 \Leftrightarrow
$$

$$
p^{2}\left[p^{2}+(10 n-5) r^{2}-(5 n+11) R r\right]+(12 n-12) R^{2} r^{2}+(21-21 n) R r^{3}+(6-6 n) r^{4} \geq 0
$$

We have $p^{2}+(10 n-5) r^{2}-(5 n+11) R r \geq 0$, for $n \leq 1$, because using Gerretsen's inequality

$$
p^{2} \geq 16 R r-5 r^{2}, \text { we obtain }:
$$

$p^{2}+(10 n-5) r^{2}-(5 n+11) R r \geq 16 R r-5 r^{2}+(10 n-5) r^{2}-(5 n+11) R r=$ $=(5-5 n) R r+(10 n-10) r^{2}=5(1-n) r(R-2 r) \geq 0$, obviously from $R-2 r \geq 0$ and $1-n \geq 0$. It suffices to prove that:
$\left(16 R r-5 r^{2}\right) 5(1-n) r(R-2 r)+(12 n-12) R^{2} r^{2}+(21-21 n) R r^{3}+(6-6 n) r^{4} \geq 0 \Leftrightarrow$ $(1-n)\left[(16 R-5 r) 5(R-2 r)+12 R^{2}-21 R r-6 r^{2}\right] \geq \Leftrightarrow(1-n)(R-2 r)(17 R-7 r) \geq 0$,
obviously from Euler's inequality and condition $n \leq 1$.
Equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

SOLUTION
 INEQUALITY IN TRIANGLE - 413 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\Delta A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{27(a+b)(b+c)(c+a)}{8 a b c}
$$

Proposed by Abdullayev - Baku - Azerbaidian
Remark.

> The inequality can be strengthened:
2. In $\triangle A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{2 p^{2}}{R r}
$$

Marin Chirciu - Romania
Proof.

> We prove that following Lemma.

Lemma 1.
3. In $\Delta A B C$

$$
\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \geq \frac{p^{2}+r^{2}-2 R r}{4 R r}
$$

Proof.
Using Teresin's inequality $m_{a} \geq \frac{b^{2}+c^{2}}{4 R}$, formula $h_{a}=\frac{b c}{2 R}$ and the known inequality in triangle $\sum \frac{b^{2}+c^{2}}{b c}=\frac{p^{2}+r^{2}-2 R r}{2 R r}$, we obtain:
$\sum \frac{m_{a}}{h_{a}} \geq \sum \frac{\frac{b^{2}+c^{2}}{4 R}}{\frac{b c}{2 R}}=\frac{1}{2} \sum \frac{b^{2}+c^{2}}{b c}=\frac{p^{2}+r^{2}-2 R r}{4 R r}$
Equality holds if and only if the triangle is equilateral.

Remark.

> We can write the inequalities:

4. In $\triangle A B C$

$$
\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \geq \frac{p^{2}+r^{2}-2 R r}{4 R r} \geq \frac{7 R-2 r}{2 R} \geq 3
$$

Proof.
The first inequality is Lemma 1, the second inequality follows from
Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$, and the third inequality follows from Euler's inequality $R \geq 2 r$.

Equality holds if and only if the triangle is equilateral.

Lemma 2.

5. In $\Delta A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{2} \geq \frac{2 p^{2}}{3 R r}
$$

Proof.
Using Lemma 1, is enough to prove that: $\left(\frac{p^{2}+r^{2}-2 R r}{4 R r}\right)^{2} \geq \frac{2 p^{2}}{3 R r} \Leftrightarrow$
$3 p^{4}+p^{2}\left(6 r^{2}-44 R r\right)+12 R^{2} r^{2}-12 R r^{3}+3 r^{4} \geq 0 \Leftrightarrow p^{2}\left(3 p^{2}+6 r^{2}-44 R r\right)+3 r^{2}(2 R-r)^{2} \geq 0$

We distinguish the cases:

1) If $\mathbf{3} \boldsymbol{p}^{2}+\mathbf{6} \boldsymbol{r}^{\mathbf{2}}-\mathbf{4 4 R r} \geq \mathbf{0}$, the inequality is obvious.
2) If $\mathbf{3} p^{2}+\mathbf{6} r^{2}-\mathbf{4 4 R r}<\mathbf{0}$, inequality we can rewrite:
$p^{2}\left(44 R r-6 r^{2}-3 p^{2}\right) \leq 3 r^{2}(2 R-r)^{2}$, true from Gerretsen's inequality:

$$
\left(4 R^{2}+4 R r+3 r^{2}\right)\left[44 R r-6 r^{2}-3\left(16 R r-5 r^{2}\right)\right] \leq 3 r^{2}(2 R-r)^{2} \Leftrightarrow
$$

$$
\Leftrightarrow 4 R^{3}-2 R^{2} r-9 R r^{2}-6 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(4 R^{2}+6 R r+3 r^{2}\right) \geq 0
$$

obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark 2.

We can rewrite the inequalities:
6. In $\Delta A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{2} \geq \frac{2 p^{2}}{3 R r} \geq \frac{9(a+b)(b+c)(c+a)}{8 a b c} \geq 9
$$

Proof.
First inequality is Lemma 2.
Let's prove the second inequality.
Using the known identities in triangle: $(a+b)(b+c)(c+a)=2 p\left(p^{2}+r^{2}+2 R r\right)$
and $a b c=4 R r p$, the second inequality:
$\frac{2 p^{2}}{3 R r} \geq \frac{9 \cdot 2 p\left(p^{2}+r^{2}+2 R r\right)}{8 \cdot 4 R r p} \Leftrightarrow 32 p^{2} \geq 27\left(p^{2}+r^{2}+2 R r\right) \Leftrightarrow 5 p^{2} \geq 27\left(r^{2}+2 R r\right)$
which follows from Gerretsen's inequality: $p^{2} \geq 16 R r-5 r^{2}$ and Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

The third inequality is the well known inequality $(a+b)(b+c)(c+a) \geq 8 a b c$ (Cesaro)
We've obtained a strengthened inequality in triangle $\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \geq 3$.
Let's pass to solving inquality 2: $\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{2 p^{2}}{R r}$
Base on Lemma 2 and the the last inequality from Remark 1 we obtain:

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3}=\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{2} \cdot\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right) \geq \frac{2 p^{2}}{3 R r} \cdot 3=\frac{2 p^{2}}{R r}
$$

Equality holds if and only if the triangle is equilateral.

Remark 3.

Inequality 2 is stronger then inequality 1:

7. In $\triangle A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{2 p^{2}}{R r} \geq \frac{27(a+b)(b+c)(c+a)}{8 a b c}
$$

Proof.
The first inequality is $\boldsymbol{6}$.
Let's prove the second inequality.
Using the known identities in triangle: $(a+b)(b+c)(c+a)=2 p\left(p^{2}+r^{2}+2 R r\right)$
and $a b c=4 R r p$, the second inequality:
$\frac{2 p^{2}}{R r} \geq \frac{27 \cdot 2 p\left(p^{2}+r^{2}+2 R r\right)}{8 \cdot 4 R r p} \Leftrightarrow 32 p^{2} \geq 27\left(p^{2}+r^{2}+2 R r\right) \Leftrightarrow 5 p^{2} \geq 27\left(r^{2}+2 R r\right)$
which follows from Gerretsen's inequality: $p^{2} \geq 16 R r-5 r^{2}$ and Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark 4.

We can write the inequalities:

8. In $\triangle A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{2 p^{2}}{R r} \geq \frac{27(a+b)(b+c)(c+a)}{8 a b c} \geq 27
$$

Proof.
See 7 and Cesaro's inequality $(a+b)(b+c)(c+a) \geq 8 a b c$

Remark 5.

$$
\text { Inequality } \mathcal{2} \text { can also be strengthened: }
$$

9. In $\Delta A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{p^{2}}{3 R r}\left(7-\frac{2 r}{R}\right)
$$

Proof.
Base on Lemma 2 and on the second inequality from Remark 1 we obtain:

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3}=\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{2} \cdot\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right) \geq \frac{2 p^{2}}{3 R r} \cdot \frac{7 R-2 r}{2 R}=\frac{p^{2}}{3 R r}\left(7-\frac{2 r}{R}\right)
$$

Equality holds if and only if the triangle is equilateral.

Remark 6.

> Inequality 9. is stronger then inequality 2.:
10. In $\triangle A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{p^{2}}{3 R r}\left(7-\frac{2 r}{R}\right) \geq \frac{2 p^{2}}{R r}
$$

Proof.
See inequality 9. and Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark 7.

We can write the inequalities:
11. In $\triangle A B C$
$\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{3} \geq \frac{p^{2}}{3 R r}\left(7-\frac{2 r}{R}\right) \geq \frac{2 p^{2}}{R r} \geq \frac{27(a+b)(b+c)(c+a)}{8 a b c} \geq 27$.

Proof.
See 10. and 8.
Equality holds if and only if the triangle is equilateral.

We've obtained again a strengthening of the well known inequality in triangle

$$
\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}} \geq 3
$$

Finally we can propose a development of inequality 2.:
12. In $\triangle A B C$

$$
\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{n} \geq 3^{n-3} \cdot \frac{2 p^{2}}{R r}, \text { where } n \geq 2
$$

Proof.
Base on Lemma 2 and the last inequality from Remark 1 we obtain:
$\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{n}=\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{2} \cdot\left(\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\right)^{n-2} \geq \frac{2 p^{2}}{3 R r} \cdot 3^{n-2}=3^{n-3} \cdot \frac{2 p^{2}}{R r}$.
Equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

INEQUALITY IN TRIANGLE - 449

 ROMANIAN MATHEMATICAL MAGAZINE 2017
MARIN CHIRCIU

1. In $\Delta A B C$

$$
\frac{1}{a(p-a)}+\frac{1}{b(p-b)}+\frac{1}{c(p-c)} \geq \frac{1}{2 R r}
$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam
We prove the following lemma:

Lemma

2. In $\triangle A B C$

$$
\frac{1}{a(p-a)}+\frac{1}{b(p-b)}+\frac{1}{c(p-c)}=\frac{p^{2}+(4 R+r)^{2}}{4 R r p^{2}}
$$

Proof.
We have $\sum \frac{1}{a(p-a)}=\frac{\sum b c(p-b)(p-c)}{a b c(p-a)(p-b)(p-c)}=\frac{r^{2}\left[p^{2}+(4 R+r)^{2}\right]}{4 R r p \cdot r^{2} p}=\frac{p^{2}+(4 R+r)^{2}}{4 R r p^{2}}$

Let's pass to solving the inequality from enuntiation.
Using the Lemma we write the inequality:

$$
\frac{p^{2}+(4 R+r)^{2}}{4 R r p^{2}} \geq \frac{1}{2 R r} \Leftrightarrow 3 p^{2} \geq(4 R+r)^{2}
$$

(Doucet's inequality, which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$ and Euler's inequality $R \geq 2 r$).

The equality holds if and only if the triangle is equilateral.

Remark 1.

The inequality can be strengthened

3. In $\triangle A B C$

$$
\frac{1}{a(p-a)}+\frac{1}{b(p-b)}+\frac{1}{c(p-c)} \geq \frac{5 R-2 r}{4 R^{2} r}
$$

Proof.
Using the Lemma we write the inequality:

$$
\frac{p^{2}+(4 R+r)^{2}}{4 R r p^{2}} \geq \frac{5 R-2 r}{4 R^{2} r} \Leftrightarrow p^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)}
$$

(Blundon-Gerretsen's inequality, which follows from Gergonne's identity

$$
H \Gamma^{2}=4 R^{2}\left[1-\frac{2 p^{2}(2 R-r)}{R(4 R+r)^{2}}\right] \text {, where Гis Gergonne's point). }
$$

The equality holds if and only if the triangle is equilateral.

Remark 2.

Inequality 3. is stronger then inequality 1.:

4. In $\triangle A B C$

$$
\frac{1}{a(p-a)}+\frac{1}{b(p-b)}+\frac{1}{c(p-c)} \geq \frac{5 R-2 r}{4 R^{2} r} \geq \frac{1}{2 R r}
$$

Proof.
The first inequality is inequality 3.
The second inequality is equivalent with $R \geq 2 r$ (Euler's inequality).
The equality holds if and only if the triangle is equilateral.

Remark 3.

Let's find an inequality having an opposite sense.

5. In $\Delta A B C$

$$
\frac{1}{a(p-a)}+\frac{1}{b(p-b)}+\frac{1}{c(p-c)} \leq \frac{1}{2 r^{2}}
$$

Proof.
Using the Lemma we write the inequality:

$$
\frac{p^{2}+(4 R+r)^{2}}{4 R r p^{2}} \leq \frac{1}{2 r^{2}} \Leftrightarrow p^{2}(2 R-r) \geq r(4 R+r)^{2}
$$

which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$.
It remains to prove that:
$\left(16 R r-5 r^{2}\right)(2 R-r) \geq r(4 R+r)^{2} \Leftrightarrow 16 R^{2}-17 R r+2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(8 R-r) \geq 0$, obviously form Euler's inequality $R \geq 2 r$.

The equality holds if and only if the triangle is equilateral.

Remark 6.

> The double inequality take place:
6. In $\triangle A B C$

$$
\frac{5 R-2 r}{4 R^{2} r} \leq \frac{1}{a(p-a)}+\frac{1}{b(p-b)}+\frac{1}{c(p-c)} \leq \frac{1}{2 r^{2}}
$$

Marin Chirciu - Romania
Proof.
See inequalities 3. and 5.
The equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.
INEQUALITY IN TRIANGLE - 447 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\Delta A B C$

$$
\frac{2 m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}}+1 \geq \frac{\left(r_{a}+r_{b}+r_{c}\right)^{2}}{r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}}
$$

Proposed by Adil Abdullayev - Baku - Azerbaidian
We prove the following lemmas:
Lemma 1.
2. In $\Delta A B C$

$$
\frac{m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}} \geq \frac{R}{2 r}
$$

Proof.

$$
\begin{equation*}
\text { From } m_{a} \geq \sqrt{p(p-a)} \Rightarrow m_{a} m_{b} m_{c} \geq p S=r p^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { and from } h_{a}=\frac{2 S}{a} \Rightarrow h_{a} h_{b} h_{c}=\frac{2 r^{2} p^{2}}{R} \tag{2}
\end{equation*}
$$

From (1) and (2) it follows $\frac{m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}} \geq \frac{r p^{2}}{\frac{2 r^{2} p^{2}}{R}}=\frac{R}{2 r}$.

Lemma 2.

3. In $\triangle A B C$

$$
p^{2} \geq \frac{r(4 R+r)^{2}}{R+r}
$$

Proof.

$$
\text { Using Yang Xue Zhi's inequality } p^{2} \geq 16 R r-5 r^{2}+\frac{r^{2}(R-2 r)}{R-r}
$$

(stronger inequality then Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$), it remains to prove that:
$16 R r-5 r^{2}+\frac{r^{2}(R-2 r)}{R-r} \geq \frac{r(4 R+r)^{2}}{R+r} \Leftrightarrow \frac{r\left(16 R^{2}-20 R r+3 r^{2}\right)}{R-r} \geq \frac{r(4 R+r)^{2}}{R+r} \Leftrightarrow$
$2 R^{2}-5 R r+2 r^{2} \geq 0 \Leftrightarrow(R-2 r)(2 R-r) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.

Let's pass to solving the inequality from enunciation.
Using Lemma 1 and the known identities in triangle
$r_{a}+r_{b}+r_{c}=4 R+r$ and $r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}=p^{2}$ it suffices to prove that
$\frac{R}{r} \geq \frac{(4 R+r)^{2}}{p^{2}} \Leftrightarrow p^{2} \geq p^{2} \geq \frac{r(4 R+r)^{2}}{R+r}$ (Lemma 2).
Equality holds if and only if the triangle is equilateral.

Remark.

Inequality can be devoloped:
4. In $\Delta A B C$

$$
\lambda \cdot \frac{m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}}+3-\lambda \geq \frac{\left(r_{a}+r_{b}+r_{c}\right)^{2}}{r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}}, \text { where } \lambda \geq 2
$$

Proof.
We have $\lambda \cdot \frac{m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}}+3-\lambda \cdot \frac{m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}}+1 \geq \frac{\left(r_{a}+r_{b}+r_{c}\right)^{2}}{r_{a} r_{b}+r_{b} r_{c}+r_{c} r_{a}}$
where the first inequality is equivalent with $(\lambda-2)\left(\frac{m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}}-1\right) \geq 0$
obviously from $\frac{m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}} \geq 1$ and the condition $\lambda \geq 2$, and the second inequality is inequality 1 .
Equality holds if and only if the triangle is equilateral.

Remark.

For $\lambda=2$ in inequality 4. we obtain inequality 1.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

The Author: This article is published with open access.

INEQUALITY IN TRIANGLE - 435

ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. $\triangle A B C$

$$
\sum \frac{a^{2} \sin ^{2} A}{\sin B \sin C} \geq 36 r^{2}
$$

Proposed by D.M. Bătineţu - Giurgiu, Neculai Stanciu - Romania
We prove the following lemma:

Lemma.

2. In $\triangle A B C$

$$
\sum \frac{a^{4}}{b c}=\frac{p^{4}-10 p^{2}\left(r^{2}+R r\right)+5 r^{2}\left(r^{2}+6 R r+8 R^{2}\right)}{2 R r}
$$

Proof.

$$
\begin{gathered}
\sum \frac{a^{4}}{b c}=\frac{\sum a^{5}}{a b c}=\frac{2 p\left[p^{4}-10 p^{2}\left(r^{2}+R r\right)+5 r^{2}\left(r^{2}+6 R r+8 R^{2}\right)\right]}{4 R r p}= \\
=\frac{p^{4}-10 p^{2}\left(r^{2}+R r\right)+5 r^{2}\left(r^{2}+6 R r+8 R^{2}\right)}{2 R r}
\end{gathered}
$$

Let's pass to solving the inequality from enuntiation.
Using the sines theorem and the Lemma above, the inequality from enunciation can be written:

$$
\begin{aligned}
& \frac{p^{4}-10 p^{2}\left(r^{2}+R r\right)+5 r^{2}\left(r^{2}+6 R r+8 R^{2}\right)}{2 R r} \geq 36 r^{2} \Leftrightarrow \\
& \Leftrightarrow p^{2}\left(p^{2}-10 r^{2}-10 R r\right)+r^{2}\left(5 r^{2}-42 R r+40 R^{2}\right) \geq 0
\end{aligned}
$$

We distinguish the following cases:

1. If $p^{2}-10 r^{2}-10 R r \geq 0$, the inequality is obviously.
2. If $p^{2}-10 r^{2}-10 R r<0$, the inequality can be rewritten:
$p^{2}\left(10 R r+10 r^{2}-p^{2}\right) \leq r^{2}\left(5 r^{2}-42 R r+40 R^{2}\right)$, which follows from Gerretsen's inequality: $16 R r-5 r^{2} \leq p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:

$$
\begin{gathered}
\left(4 R^{2}+4 R r+3 r^{2}\right)\left(10 R r+10 r^{2}-16 R r+5 r^{2}\right) \leq r^{2}\left(5 r^{2}-42 R r+40 R^{2}\right) \Leftrightarrow \\
6 R^{3}+R^{2} r-21 R r^{2}-10 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(6 R^{2}+13 R r+5 r^{2}\right) \geq 0
\end{gathered}
$$

obviously from Euler's inequality $R \geq 2 r$.
The inequality holds if and only if the triangle is equilateral.

Remark.

> Inequality can be strengthened:

3. In $\Delta A B C$

$$
\sum \frac{a^{2} \sin ^{2} A}{\sin B \sin C} \geq 18 R r
$$

Marin Chirciu - Romania

Proof. Using the sines theorem and the Lemma above, the inequality from enunciation can be written:

$$
\begin{aligned}
& \frac{p^{2}-10 p^{2}\left(r^{2}+R r\right)+5 r^{2}\left(r^{2}+6 R r+8 R^{2}\right)}{2 R r} \geq 18 R r \Leftrightarrow \\
& \Leftrightarrow p^{2}\left(p^{2}-10 r^{2}-10 R r\right)+r^{2}\left(5 r^{2}+30 R r+4 R^{2}\right) \geq 0 .
\end{aligned}
$$

We distinguish the following cases:

1. If $p^{2}-10 r^{2}-10 R r \geq 0$, the inequality is obviously.
2. If $p^{2}-10 r^{2}-10 R r<0$, inequality can be rewritten:
$p^{2}\left(10 R r+10 r^{2}-p^{2}\right) \leq r^{2}\left(5 r^{2}+30 R r+4 R^{2}\right)$, which follows from Gerretsen's inequality: $16 R r-5 r^{2} \leq p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:
$\left(4 R^{2}+4 R r+3 r^{2}\right)\left(10 R r+10 r^{2}-16 R r+5 r^{2}\right) \leq r^{2}\left(5 r^{2}+30 R r+4 R^{2}\right) \Leftrightarrow$
$6 R^{3}-8 R^{2} r-3 R r^{2}-10 r^{3} \geq 0 \Leftrightarrow(R-2 r)\left(6 R^{2}-4 R r+5 r^{2}\right) \geq 0$, obviously form Euler's inequality $R \geq 2 r$.
The inequality holds if and only if the triangle is equilateral.

Remark.

> Inequality 3. is stronger then inequality 1.:

4. In $\Delta A B C$

$$
\sum \frac{a^{2} \sin ^{2} A}{\sin B \sin C} \geq 18 R r \geq 36 r^{2}
$$

Proof. The first inequality is inequality 3., and the second inequality is equivalent with $R \geq 2 r$ (Euler's inequality).
Equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

PROBLEM TRIANGLE MARATHON - 377 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\Delta A B C$

$$
a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \geq 4 r(4 R+r)
$$

Proposed by Kevin Soto Palacios - Huarmey - Peru

Proof.
Using the means inequality we obtain:

$$
a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \geq 3 \sqrt[3]{(a b c)^{2}}=3 \sqrt[3]{(4 R r p)^{2}} \geq 4 r(4 R+r)
$$

where the last inequality is equivalent with:

$$
27 \cdot(4 R r p)^{2} \geq 64 r^{3}(4 R r+r)^{3} \Leftrightarrow 27 R^{2} p^{2} \geq 4 r(4 R+r)^{3}
$$

which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:
$27 R^{2}\left(16 R r-5 r^{2}\right) \geq 4 r(4 R+r)^{3} \Leftrightarrow 176 R^{3}-327 R^{2} r-48 R r^{2}-4 r^{3} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)\left(176 R^{2}+25 R r+2 r^{2}\right) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.

The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 1. can be strengthened:

2. In $A B C$

$$
a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \geq 18 R r
$$

Proof.
Using means inequality we obtain:

$$
a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \geq 3 \sqrt[3]{(a b c)^{2}}=3 \sqrt[3]{(4 R r p)^{2}} \geq 18 R r
$$

where the last inequality is equivalent with:

$$
(4 R r p)^{2} \geq(6 R r)^{3} \Leftrightarrow 16 R^{2} r^{2} p^{2} \geq 216 R^{3} r^{3} \Leftrightarrow 2 p^{2} \geq 27 R r
$$

which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:

$$
2\left(16 R r-5 r^{2}\right) \geq 27 R r \Leftrightarrow R \geq 2 r \text { (Euler's inequality). }
$$

The equality holds if and only if the triangle is equilateral.

Remark 2.

Inequality 1. is stronger then inequality 2.:

3. In $\triangle A B C$

$$
a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \geq 18 R r \geq 4 r(4 R+r)
$$

Proof.
See inequality 2. and Euler's inequality $R \geq 2 r$.
The equality holds if and only if the triangle is equilateral.

Remark 3.

Inequality 1. can be developed:

4. In $\Delta A B C$

$$
a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \geq r[n R+(36-2 n) r], \text { where } n \leq 19
$$

Proposed by Marin Chirciu - Romania
Proof.
Using the means inequality we obtain:

$$
a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \geq 3 \sqrt[3]{(a b c)^{2}}=3 \sqrt[3]{(4 R r p)^{2}} \geq r[n R+(36-2 n) r]
$$

where the last inequality is equivalent with:
$27 \cdot(4 R r p)^{2} \geq r^{3}[n R+(36-2 n) r]^{3} \Leftrightarrow 27 \cdot 16 R^{2} r^{2} p^{2} \geq 64 r^{3}[n R+(36-2 n) r]^{3} \Leftrightarrow$

$$
432 R^{2} p^{2} \geq r[n R+(36-2 n) r]^{3}
$$

which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that: $432 R^{2}\left(16 R r-5 r^{2}\right) \geq 4[n R+(36-2 n) r]^{3} \Leftrightarrow 432 R^{2}(16 R-5 r) \geq[n R+(36-2 n) r]^{3} \Leftrightarrow$ $6912 R^{3}-2160 R^{2} r \geq(n R)^{3}+3 \cdot(n R)^{2} \cdot(36-2 n) r+3(n R)[(36-2 n) r]^{2}+[(36-2 n) r]^{3} \Leftrightarrow$

$$
\left(6912-n^{3}\right) R^{3}+\left(6 n^{3}-108 n^{2}-2160\right) R^{2} r+\left(-12 n^{3}+432 n^{2}-3888 n\right) R r^{2}+
$$

$$
+\left(8 n^{3}-432 n^{2}+7776 n-46656\right) r^{3} \geq 0 \Leftrightarrow
$$

$\Leftrightarrow(R-2 r)\left[\left(6912-n^{3}\right) R^{2}+\left(4 n^{3}-108 n^{2}+11664\right) R r+\left(-4 n^{3}+216 n^{2}+23328\right) r^{2}\right] \geq 0$
obviously from Euler's inequality $R \geq 2 r$ and the condition $n \geq 19$
which assures the positivity of the right parenthesis.
The equality holds if and only if the triangle is equilateral.

Note.

For $n=16$ we obtain inequality 1., and for $n=18$ we obtain inequality 2.
Let's find an inequality having an opposite sense.

5. In $\triangle A B C$

$$
a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \leq 4(R+r)^{2}
$$

Proof.
Using inequality $x y+y z+z x \leq x^{2}+y^{2}+z^{2}$ for $x=\sqrt{b c}, y=\sqrt{c a}, z=\sqrt{a b}$ we obtain: $a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \leq a b+b c+c a=p^{2}+r^{2}+4 R r \leq 4 R^{2}+4 R r+3 r^{2}+r^{2}+4 R r=4(R+r)^{2}$. where the last inequality follows from Gerretsen's inequality $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.

The equality holds if and only if the triangle is equilateral.

> We can write the double inequality:

6. In $\Delta A B C$

$$
18 R r \leq a \sqrt{b c}+b \sqrt{c a}+c \sqrt{a b} \leq 4(R+r)^{2}
$$

Proof.
See inequalities 2. and 5.
The equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.
PROBLEM JP. 080 RMM
NUMBER 6 AUTUMN 2017
ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. Prove that in any triangle $A B C$,

$$
\begin{aligned}
& \frac{a^{2}+b^{2}+c^{2}}{a+b+c}\left(\frac{1}{m_{a}}+\frac{1}{m_{b}}+\frac{1}{m_{c}}\right) \geq 2 \sqrt{3} \\
& \quad \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

Proof.
We use the following lemma:

Lemma 1.

In $\Delta A B C$

$$
\left(\frac{1}{m_{a}}+\frac{1}{m_{b}}+\frac{1}{m_{c}}\right)^{2} \geq \frac{108}{5 p^{2}-3 r^{2}-12 R r}
$$

Proof.
Using the inequality $(x+y+z)^{2} \geq 3(x y+y z+z x)$, with $x=\frac{1}{m_{a}}, y=\frac{1}{m_{b}}, z=\frac{1}{m_{c}}$ we obtain

$$
\left(\frac{1}{m_{a}}+\frac{1}{m_{b}}+\frac{1}{m_{c}}\right)^{2} \geq 3\left(\frac{1}{m_{a} m_{b}}+\frac{1}{m_{b} m_{c}}+\frac{1}{m_{c} m_{a}}\right) \overbrace{\geq}^{(1)} 3\left(\frac{4}{2 a^{2}+b c}+\frac{4}{2 b^{2}+c a}+\frac{4}{2 c^{2}+a b}\right) \geq
$$

Bergstrom
$\overbrace{\geq}^{\text {Bergstrom }} 12 \cdot \frac{9}{2 a^{2}+b c+2 b^{2}+c a+2 c^{2}+a b}=\frac{108}{2\left(a^{2}+b^{2}+c^{2}\right)+a b+b c+c a}=$

$$
=\frac{108}{2 \cdot 2\left(p^{2}-r^{2}-4 R r\right)+p^{2}+r^{2}+4 R r}=\frac{108}{5 p^{2}-3 r^{2}-12 R r}
$$

where inequality (1) follows from $4 m_{b} m_{c} \leq 2 a^{2}+b c$ and analogs.
Equality holds if and only if the triangle is equilateral.

Let's pass to solving the inequality from enuntiation.
Using Lemma 1 and $\sum a=2 p, \sum a^{2}=2\left(p^{2}-r^{2}-4 R r\right)$ it is enough to prove that

$$
\begin{gathered}
\left(\frac{2\left(p^{2}-r^{2}-4 R r\right)}{2 p}\right)^{2} \cdot \frac{108}{5 p^{2}-3 r^{2}-12 R r} \geq 12 \Leftrightarrow 9\left(p^{2}-r^{2}-4 R r\right)^{2} \geq p^{2}\left(5 p^{2}-3 r^{2}-12 R r\right) \Leftrightarrow \\
\Leftrightarrow p^{2}\left(4 p^{2}-15 r(4 R+r)\right)+9 r^{2}(4 R+2)^{2} \geq 0 . \text { We distinguish the cases: }
\end{gathered}
$$

Case 1. If $4 p^{2}-15 r(4 R+r) \geq 0$ the inequality is obvious.
Case 2. If $4 p^{2}-15 r(4 R+r)<0$ we write the inequality
$p^{2}\left(15 r(4 R+r)-4 p^{2}\right) \leq 9 r^{2}(4 R+r)^{2}$, which follows from Gerretsen's inequality $16 R r-5 r^{2} \leq p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:

$$
\begin{aligned}
& \quad\left(4 R^{2}+4 R r+3 r^{2}\right)\left(15 r(4 R+r)-4\left(16 R r-5 r^{2}\right)\right) \leq 9 r^{2}(4 R+r)^{2} \Leftrightarrow \\
& \Leftrightarrow\left(4 R^{2}+4 R r+3 r^{2}\right)\left(-4 R r+35 r^{2}\right) \leq 9 r^{2}(4 R+r)^{2} \Leftrightarrow 4 R^{3}+5 R^{2} r-14 R r^{2}-24 r^{3} \geq 0 \Leftrightarrow \\
& \Leftrightarrow(R-2 r)\left(4 R^{2}+13 R r+12 r^{2}\right) \geq 0, \text { obviously from Euler's inequality } R \geq 2 r \\
& \text { Equality holds if and only if the triangle is equilateral. }
\end{aligned}
$$

Remark 1.

Inequality 1 can be developed:

3. In $\triangle A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{a+b+c}\left(\frac{1}{m_{a}+m_{b}}+\frac{1}{m_{b}+m_{c}}+\frac{1}{m_{c}+m_{a}}\right) \geq \sqrt{3}
$$

Proof.
Using the following lemma:

Lemma 2.

4. In $\Delta A B C$

$$
\left(\frac{1}{m_{a}+m_{b}}+\frac{1}{m_{b}+m_{c}}+\frac{1}{m_{c}+m_{a}}\right)^{2} \geq \frac{36}{7 p^{2}-5 r^{2}-20 R r}
$$

Proof.
Using the inequality $(x+y+z)^{2} \geq 3(x y+y z+z x)$,

$$
\text { with } x=\frac{1}{m_{a}+m_{b}}, y=\frac{1}{m_{b}+m_{c}}, z=\frac{1}{m_{c}+m_{a}} \text { we obtain }
$$

$$
\left(\sum \frac{1}{m_{b}+m_{c}}\right)^{2} \geq 3\left(\sum \frac{1}{\left(m_{a}+m_{b}\right)\left(m_{a}+m_{c}\right)}\right)^{\text {Bergstrom }} \overbrace{\geq} 3 \cdot \frac{9}{\sum\left(m_{a}+m_{b}\right)\left(m_{a}+m_{c}\right)}=
$$

$$
=\frac{27}{\sum\left(m_{a}^{2}+m_{a} m_{b}+m_{b} m_{c}+m_{c} m_{a}\right)}=\frac{27}{\sum m_{a}^{2}+3 \sum m_{b} m_{c}} \overbrace{\geq}^{(1)} \frac{27}{\frac{3}{4} \sum a^{2}+\frac{3}{4} \sum\left(2 a^{2}+b c\right)}=
$$

$$
=\frac{36}{3 \sum a^{2}+\sum b c}=\frac{36}{3 \cdot 2\left(p^{2}-r^{2}-4 R r\right)+p^{2}+r^{2}+4 R r}=\frac{36}{7 p^{2}-5 r^{2}-20 R r}
$$

where inequality (1) follows from $4 m_{b} m_{c} \leq 2 a^{2}+b c$ and analogs.
Equality holds if and only if the triangle is equilateral.

Let's pass to solving inequality 3.
Using Lemma 2 and $\sum a=2 p, \sum a^{2}=2\left(p^{2}-r^{2}-4 R r\right)$ it is enough to prove that $\left(\frac{2\left(p^{2}-r^{2}-4 R r\right)^{2}}{2 p}\right)^{2} \cdot \frac{36}{7 p^{2}-5 r^{2}-20 R r} \geq 3 \Leftrightarrow 12\left(p^{2}-r^{2}-4 R r\right)^{2} \geq p^{2}\left(7 p^{2}-5 r^{2}-20 R r\right) \Leftrightarrow$ $\Leftrightarrow p^{2}\left(5 p^{2}-19 r(4 R+r)\right)+12 r^{2}(4 R+r)^{2} \geq 0$. We distinguish the following cases:

Case 1. If $5 p^{2}-19 r(4 R+r) \geq 0$ inequality is obvious.
Case 2. If $5 p^{2}-19 r(4 R+r)<0$ inequality can be rewritten
$p^{2}\left(19 r(4 R+r)-4 p^{2}\right) \leq 12 r^{2}(4 R+r)^{2}$, which follows from Gerretsen's inequality
$16 R r-5 r^{2} \leq p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:
$\left(4 R^{2}+4 R r+3 r^{2}\right)\left(19 r(4 R+r)-5\left(16 R r-5 r^{2}\right)\right) \leq 9 r^{2}(4 R+r)^{2} \Leftrightarrow$
$\Leftrightarrow\left(4 R^{2}+4 R r+3 r^{2}\right)\left(-4 R r+44 r^{2}\right) \leq 12 r^{2}(4 R+r)^{2} \Leftrightarrow 4 R^{3}+8 R^{2} r-17 R r^{2}-30 r^{3} \geq 0 \Leftrightarrow$
$\Leftrightarrow(R-2 R)\left(4 R^{2}+16 R r+15 r^{2}\right) \geq 0$, obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark 2.

Inequality 3. can be developed:
5. In $\Delta A B C$

$$
\begin{array}{r}
\frac{a^{2}+b^{2}+c^{2}}{a+b+c}\left(\frac{1}{m_{a}+\lambda m_{b}}+\frac{1}{m_{b}+\lambda m_{c}}+\frac{1}{m_{c}+\lambda m_{a}}\right) \geq \frac{2 \sqrt{3}}{1+\lambda}, \text { where } \lambda \geq 0 \\
\text { Proposed by Marin Chirciu - Romania }
\end{array}
$$

Proof.
We use the following lemma:

Lemma 3.

6. In $\Delta A B C$, for $\lambda \geq 0$,

$$
\begin{gathered}
\left(\frac{1}{m_{a}+\lambda m_{b}}+\frac{1}{m_{b}+\lambda m_{c}}+\frac{1}{m_{c}+\lambda m_{a}}\right)^{2} \geq \\
\geq \frac{108}{\left(5 \lambda^{2}+11 \lambda+5\right) p^{2}-\left(3 \lambda^{2}+9 \lambda+3\right) r^{2}-\left(12 \lambda^{2}+36 \lambda+12\right) R r}
\end{gathered}
$$

Proof.
Using the inequality $(x+y+z)^{2} \geq 3(x y+y z+z x)$,

$$
\begin{gathered}
\text { with } x=\frac{1}{m_{a}+\lambda m_{b}}, y=\frac{1}{m_{b}+\lambda_{c}}, z=\frac{1}{m_{c}+\lambda m_{a}} \text { we obtain } \\
\left(\sum \frac{1}{m_{b}+\lambda m_{c}}\right)^{2} \geq 3\left(\sum \frac{1}{\left(m_{a}+\lambda m_{b}\right)\left(\lambda m_{a}+m_{c}\right)}\right) \overbrace{\geq}^{\text {Bergstrom }} 3 \cdot \frac{9}{\sum\left(m_{a}+\lambda m_{b}\right)\left(\lambda m_{a}+m_{c}\right)}= \\
=\frac{27}{\sum\left(\lambda m_{a}^{2}+\lambda^{2} m_{a} m_{b}+\lambda m_{b} m_{c}+m_{c} m_{a}\right)}=\frac{27}{\lambda \sum m_{a}^{2}+\left(\lambda^{2}+\lambda+1\right) \sum m_{b} m_{c}} \overbrace{\geq}^{(1)}
\end{gathered}
$$

$$
\overbrace{\geq}^{(1)} \frac{27}{\frac{3 \lambda}{4} \sum a^{2}+\frac{\lambda^{2}+\lambda+1}{4} \sum\left(2 a^{2}+b c\right)}=\frac{108}{\left(2 \lambda^{2}+5 \lambda+2\right) \sum a^{2}+\left(\lambda^{2}+\lambda+1\right) \sum b c}=
$$

$$
=\frac{108}{\left(2 \lambda^{2}+5 \lambda+2\right) \cdot 2\left(p^{2}-r^{2}-4 R r\right)+\left(\lambda^{2}+\lambda+1\right)\left(p^{2}+r^{2}+4 R r\right)}=
$$

$$
=\frac{108}{\left(5 \lambda^{2}+11 \lambda+5\right) p^{2}-\left(3 \lambda^{2}+9 \lambda+3\right) r^{2}-\left(12 \lambda^{2}+36 \lambda+12\right) R r}
$$

where inequality (1) follows from $4 m_{b} m_{c} \leq 2 a^{2}+b c$ and analogs.
Equality holds if and only if the triangle is equilateral.

Let's pass to solve inequality 5.
Using Lemma 3 and $\sum a=2 p, \sum a^{2}=2\left(p^{2}-r^{2}-4 R r\right)$ it is enough to prove that

$$
\begin{aligned}
& \left(\frac{2\left(p^{2}-r^{2}-4 R r\right)}{2 p}\right)^{2} \cdot \frac{108}{\left(5 \lambda^{2}+11 \lambda+5\right) p^{2}-\left(3 \lambda^{2}+9 \lambda+3\right) r^{2}-\left(12 \lambda^{2}+36 \lambda+12\right) R r} \geq \frac{12}{1+\lambda} \\
& \Leftrightarrow 9(\lambda+1)^{2}\left(p^{2}-r^{2}-4 R r\right)^{2} \geq p^{2}\left(\left(5 \lambda^{2}+11 \lambda+5\right) p^{2}-\left(36 \lambda^{2}+9 \lambda+3\right) r^{2}-\left(12 \lambda^{2}+36 \lambda+12\right)\right) \\
& \Leftrightarrow p^{2}\left(\left(4 \lambda^{2}+7 \lambda+4\right) p^{2}-3\left(5 \lambda^{2}+9 \lambda+5\right) r(4 R r+r)\right)+9(\lambda+1)^{2} r^{2}(4 R+r)^{2} \geq 0
\end{aligned}
$$

We distinguish the following cases:
Case 1. If $\left(4 \lambda^{2}+7 \lambda+4\right) p^{2}-3\left(5 \lambda^{2}+9 \lambda+5\right) r(4 R+r) \geq 0$ inequality is obvious. Case 2. If $\left(4 \lambda^{2}+7 \lambda+4\right) p^{2}-3\left(5 \lambda^{2}+9 \lambda+5\right) r(4 R+r)<0$ we write the following inequality:

$$
p^{2}\left(3\left(5 \lambda^{2}+9 \lambda+5\right) r(4 R+r)-\left(4 \lambda^{2}+7 \lambda+4\right) p^{2}\right) \leq 9(\lambda+1)^{2} r^{2}(4 R+r)^{2}
$$

which follows from Blundon-Gerretsen's inequality $16 R r-5 r^{2} \leq p^{2} \leq \frac{R(4 R+r)^{2}}{2(2 R-r)}$
It remains to prove that:

$$
\begin{aligned}
& \frac{R(4 R+r)^{2}}{2(2 R-r)} \cdot\left(3\left(5 \lambda^{2}+9 \lambda+5\right) r(4 R+r)-\left(4 \lambda^{2}+7 \lambda+4\right) p^{2}\right) \leq 9(\lambda+1)^{2} r^{2}(4 R+r)^{2} \Leftrightarrow \\
& \quad \Leftrightarrow\left(4 \lambda^{2}+4 \lambda+4\right) R^{2}+\left(\lambda^{2}+10 \lambda+1\right) R r-\left(18 \lambda^{2}+36 \lambda+18\right) r^{2} \geq 0 \Leftrightarrow \\
& \Leftrightarrow(R-2 r)\left(\left(4 \lambda^{2}+4 \lambda+4\right) R+\left(9 \lambda^{2}+18 \lambda+9\right) r\right) \geq 0, \text { obviously from } R \geq 2 r \quad \text { (Euler). }
\end{aligned}
$$

Equality holds if and only if the triangle is equialteral.

Note.

For $\lambda=0$ in inequality 5. we obtain inequality 1., and for the case $\lambda=1$ we obtain 3.
Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

PROBLEM JP. 088 RMM
 NUMBER 6 AUTUMN 2017 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. Let $A B C$ be an acute triangle. Prove that

$$
\sum \sqrt{\cos A \sin B \sin C} \leq \frac{3}{2} \sqrt{\frac{3}{2}}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece

Proof.
Using CBS inequality we obtain
$\left(\sum \sqrt{\cos A \cdot \sin B \cdot \sin C}\right)^{2} \leq \sum \cos A \cdot \sum \sin B \sin C=\left(1+\frac{r}{R}\right) \cdot \frac{p^{2}+r^{2}+4 R r}{4 R^{2}}<\frac{3}{2} \cdot \frac{9}{4}=\left(\frac{3}{2} \sqrt{\frac{3}{2}}\right)^{2}$,
where the last inequality follows from:

1) $1+\frac{r}{R} \leq \frac{3}{2} \Leftrightarrow R \geq 2 r \quad$ (Euler's inequality).
2) $\frac{p^{2}+r^{2}+4 R r}{4 R^{2}} \leq \frac{9}{4} \Leftrightarrow p^{2} \leq 9 R^{2}-4 R r-r^{2}$, true from Gerretsen's inequality $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:
$4 R^{2}+4 R r+3 r^{2} \leq 9 R^{2}-4 R r-r^{2} \Leftrightarrow 5 R^{2}-8 R r-4 r^{2} \geq 0 \Leftrightarrow(R-2 r)(5 R+2 r) \geq 0$,
obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark.

> In the same way it can be proposed:

2. In $\Delta A B C$

$$
\sum \sqrt{\sin A \cos B \cos C} \leq \frac{3}{2} \sqrt{\frac{\sqrt{3}}{2}}
$$

Proposed by Marin Chirciu
Proof.
Using CBS inequality we obtain
$\left(\sum \sqrt{\sin A \cdot \cos B \cos C}\right)^{2} \leq \sum \sin A \cdot \sum \cos B \cos C=\frac{r p}{2 R^{2}} \cdot \frac{p^{2}+r^{2}-4 R^{2}}{4 R^{2}} \leq \frac{3 \sqrt{3}}{8} \cdot \frac{3}{4}=\left(\frac{3}{2} \sqrt{\frac{\sqrt{3}}{2}}\right)^{2}$
where the last inequality follows from:

1) $\frac{r p}{2 R^{2}} \leq \frac{3 \sqrt{3}}{8} \Leftrightarrow p \leq \frac{3 R^{2} \sqrt{3}}{4 r}$, true from Mitrinovic's inequality $p \leq \frac{3 R \sqrt{3}}{2}$ and Euler's inequality $R \geq 2 r$
2) $\frac{p^{2}+r^{2}-4 R^{2}}{4 R^{2}} \leq \frac{3}{4} \Leftrightarrow p^{2} \leq 7 R^{2}-r^{2}$, true from Gerretsen's inequality $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:

$$
4 R^{2}+4 R r+3 r^{2} \leq 7 R^{2}-r^{2} \Leftrightarrow 3 R^{2}-4 R r-4 r^{2} \geq 0 \Leftrightarrow(R-2 r)(3 R+2 r) \geq 0
$$

obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

PROBLEM SP. 083 RMM
 NUMBER 6 AUTUMN 2017 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle A B C$

$$
\left(1+\frac{1}{m_{a}}\right)\left(1+\frac{1}{m_{b}}\right)\left(1+\frac{1}{m_{c}}\right) \geq\left(1+\frac{2}{3 R}\right)^{3}
$$

Proposed by George Apostolopoulos - Messolonghi - Greece
Proof.
Using Huygens' inequality we obtain

$$
\left(1+\frac{1}{m_{a}}\right)\left(1+\frac{1}{m_{b}}\right)\left(1+\frac{1}{m_{c}}\right) \geq\left(1+\sqrt[3]{\frac{1}{m_{a} m_{b} m_{c}}}\right)^{3} \geq\left(1+\frac{2}{3 R}\right)^{3}
$$

where the last inequality is equivalent with:

$$
\sqrt[3]{\frac{1}{m_{a} m_{b} m_{c}}} \geq \frac{2}{3 R} \Leftrightarrow \frac{1}{m_{a} m_{b} m_{c}} \geq\left(\frac{2}{3 r}\right)^{3} \Leftrightarrow m_{a} m_{b} m_{c} \leq\left(\frac{3 R}{2}\right)^{3}
$$

which follows from means inequality and the known inequality in triangle $\sum m_{a} \leq 4 R+r \leq \frac{9 R}{2}$;

$$
\text { indeed: } m_{a} m_{b} m_{c} \leq\left(\frac{m_{a}+m_{b}+m_{c}}{3}\right)^{3} \leq\left(\frac{4 R+r}{3}\right)^{3} \leq\left(\frac{3 R}{2}\right)^{3}
$$

Equality holds if and only if the triangle is equilateral.

Remark.

In the same way it can be proposed:
2. In $\triangle A B C$

$$
\left(1+\frac{1}{m_{a}+m_{b}}\right)\left(1+\frac{1}{m_{b}+m_{c}}\right)\left(1+\frac{1}{m_{c}+m_{a}}\right) \geq\left(1+\frac{1}{3 R}\right)^{3}
$$

Proof.

> Using Huygens' inequality we obtain

$$
\left(1+\frac{1}{m_{a}+m_{b}}\right)\left(1+\frac{1}{m_{b}+m_{c}}\right)\left(1+\frac{1}{m_{c}+m_{a}}\right) \geq\left(1+\sqrt[3]{\frac{1}{\left(m_{a}+m_{b}\right)\left(m_{b}+m_{c}\right)\left(m_{c}+m_{a}\right)}}\right)^{3} \geq\left(1+\frac{1}{3 R}\right)^{3}
$$

where the last inequality is equivalent with:

$$
\begin{gathered}
\sqrt[3]{\frac{1}{\left(m_{a}+m_{b}\right)\left(m_{b}+m_{c}\right)\left(m_{c}+m_{a}\right)}} \geq \frac{1}{3 R} \Leftrightarrow \frac{1}{\left(m_{a}+m_{b}\right)\left(m_{b}+m_{c}\right)\left(m_{c}+m_{a}\right)} \geq\left(\frac{1}{3 R}\right)^{3} \Leftrightarrow \\
\left(m_{a}+m_{b}\right)\left(m_{b}+m_{c}\right)\left(m_{c}+m_{a}\right) \leq(3 R)^{3}
\end{gathered}
$$

which follows from means inequality and the known inequality in triangle

$$
\begin{aligned}
\sum m_{a} & \leq 4 R+r \leq \frac{9 R}{2} ; \text { indeed } \\
\left(m_{a}+m_{b}\right)\left(m_{b}+m_{c}\right)\left(m_{c}+m_{a}\right) & \leq\left(\frac{2\left(m_{a}+m_{b}+m_{c}\right)}{3}\right)^{3} \leq\left(\frac{2(4 R+r)}{3}\right)^{3} \leq(3 R)^{3}
\end{aligned}
$$

Equality holds if and only if the triangle is equilateral.

3. In $\Delta A B C$

$$
\left(1+\frac{1}{m_{a}+\lambda m_{b}}\right)\left(1+\frac{1}{m_{b}+\lambda m_{c}}\right)\left(1+\frac{1}{m_{c}+\lambda m_{a}}\right) \geq\left(1+\frac{2}{3(\lambda+1) R}\right)^{3}, \text { where } \lambda \geq 0
$$

Proposed by Marin Chirciu - Romania

Proof.
Using Huygens' inequality we obtain

$$
\begin{aligned}
\left(1+\frac{1}{m_{a}+\lambda m_{b}}\right)\left(1+\frac{1}{m_{b}+\lambda m_{c}}\right) & \left(1+\frac{1}{m_{c}+\lambda m_{a}}\right) \geq\left(1+\sqrt[3]{\left.\frac{1}{\left(m_{a}+\lambda m_{b}\right)\left(m_{b}+\lambda m_{c}\right)\left(m_{c}+\lambda m_{a}\right)}\right)^{3}} \geq\right. \\
& \geq\left(1+\frac{2}{3(\lambda+1) R}\right)^{3}
\end{aligned}
$$

where the last inequality is equivalent with:

$$
\begin{gathered}
\sqrt[3]{\frac{1}{\left(m_{a}+\lambda m_{b}\right)\left(m_{b}+\lambda m_{c}\right)\left(m_{c}+\lambda m_{a}\right)}} \geq \frac{1}{3 R} \Leftrightarrow \frac{1}{\left(m_{a}+\lambda m_{b}\right)\left(m_{b}+\lambda m_{c}\right)\left(m_{c}+\lambda m_{a}\right)} \geq\left(\frac{2}{3(\lambda+1) R}\right)^{3} \Leftrightarrow \\
\left(m_{a}+\lambda m_{b}\right)\left(m_{b}+\lambda m_{c}\right)\left(m_{c}+\lambda m_{a}\right) \leq\left(\frac{3(\lambda+1) R}{2}\right)^{3}
\end{gathered}
$$

which follows from means inequality and the known inequality in triangle

$$
\sum m_{a} \leq 4 R+r \leq \frac{9 R}{2} ; \text { indeed: }
$$

$\left(m_{a}+\lambda m_{b}\right)\left(m_{b}+\lambda m_{c}\right)\left(m_{c}+\lambda m_{a}\right) \leq\left(\frac{(1+\lambda)\left(m_{a}+m_{b}+m_{c}\right)}{3}\right)^{3} \leq\left(\frac{(1+\lambda)(4 R+r)}{3}\right)^{3} \leq\left(\frac{3(\lambda+1) R}{2}\right)^{3}$
Equality holds if and only if the triangle is equilateral.

Note
For $\lambda=0$ we obtain inequality 1., and for $\lambda=1$ we obtain inequality $\mathcal{2}$.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, mehedinti.

E-mail address: dansitaru63@yahoo.com

Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

PROBLEM SP. 077 RMM
 NUMBER 6 AUTUMN 2017

 ROMANIAN MATHEMATICAL MAGAZINE 2017
MARIN CHIRCIU

1. Let $A B C$ be an acute triangle. Prove that

$$
\begin{aligned}
& \frac{m_{a}}{h_{a}} \cdot \cos A+\frac{m_{a}}{h_{c}} \cdot \cos B+\frac{m_{c}}{h_{c}} \cdot \cos C \geq \frac{3}{2} \\
& \text { Proposed by Nguyen Viet Hung - Hanoi - Vietnam }
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& \text { Using } m_{a} \geq \frac{b^{2}+c^{2}}{4 R}, h_{a}=\frac{b c}{2 R} \text { and } \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \qquad \text { we obtain } \frac{m_{a}}{h_{a}} \cdot \cos A \geq \frac{\left(b^{2}+c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)}{4 b^{2} c^{2}}
\end{aligned}
$$

It follows $\sum \frac{m_{a}}{h_{a}} \cdot \cos A \geq \sum \frac{\left(b^{2}+c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)}{4 b^{2} c^{2}}=\frac{\sum a^{2}\left(b^{2}+c^{2}\right)\left(b^{2}+c^{2}-a^{2}\right)}{4 a^{2} b^{2} c^{2}}=\frac{6 a^{2} b^{2} c^{2}}{4 a^{2} b^{2} c^{2}}=\frac{3}{2}$ Equality holds if and only if the triangle is equilateral.

Note.
From the above proof the condition of acute-angled triangle is not necessary.
Remark.

> In the same way it can be proposed:

2. In $\Delta A B C$

$\frac{m_{a}}{h_{a}} \cdot(\cos B+\cos C)+\frac{m_{a}}{h_{b}} \cdot(\cos C+\cos A)+\frac{m_{c}}{h_{c}} \cdot(\cos A+\cos B) \leq \frac{2 R}{r}-1$
Proposed by Marin Chirciu - Romania

Proof.
We have
$\sum \frac{m_{a}}{h_{a}} \cdot(\cos B+\cos C)=\sum \frac{m_{a}}{h_{a}} \cdot(\cos A+\cos B+\cos C-\cos A)=\sum \frac{m_{a}}{h_{a}} \sum \cos A-\sum \frac{m_{a}}{h_{a}} \cos A \leq$ $\leq\left(1+\frac{r}{R}\right) \sum \frac{m_{a}}{h_{a}}-\frac{3}{2} \leq \frac{3}{2} \sum \frac{m_{a}}{h_{a}}-\frac{3}{2}=\frac{3}{2}\left(\sum \frac{m_{a}}{h_{a}}-1\right) \leq \frac{3}{2}\left(\frac{4 R+r}{3 r}-1\right)=\frac{2 R}{r}-1$

$$
\begin{gathered}
\frac{m_{a}}{h_{a}} \cdot \cos A \geq \frac{3}{2} \text { (inequality 1.), } \sum \cos A=1+\frac{r}{R} \leq \frac{3}{2} \text { (Euler's inequality) and } \\
\sum \frac{m_{a}}{h_{a}} \leq \frac{4 R+r}{3 r} \text {, which follows from Cebyshev's inequality: }
\end{gathered}
$$

The triplets $\left(m_{a}, m_{b}, m_{c}\right)$ and $\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}, \frac{1}{h_{c}}\right)$ are reversed ordered, and $\sum m_{a} \leq 4 R+r$ and $\sum \frac{1}{h_{a}}=\frac{1}{r}$
wherefrom $\sum \frac{m_{a}}{h_{a}} \leq \frac{1}{3} \cdot \sum m_{a} \sum \frac{1}{h_{a}} \leq \frac{1}{3} \cdot(4 R+r) \cdot \frac{1}{r}=\frac{4 R+r}{3 r}$
The equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

MARIN CHIRCIU

1. Prove that in any triangle $A B C$

$$
\begin{aligned}
& \quad \frac{1+\cos A \cos B \cos C}{\sin A \sin B \sin C} \geq \frac{p}{3 r} \\
& \text { Proposed by Martin Lukarevski - Skopje - Macedonia }
\end{aligned}
$$

Proof.
Using the known identities known in triangle: $\prod \cos A=\frac{p^{2}-(2 R+r)^{2}}{4 R^{2}}$ and

$$
\prod \sin A=\frac{r p}{2 R^{2}}
$$

We write the inequality $\frac{1+\frac{p^{2}-(2 R+r)^{2}}{4 R^{2}}}{\frac{r p}{2 R^{2}}} \geq \frac{p}{3 r} \Leftrightarrow \frac{p^{2}-r^{2}-4 R r}{2 r p} \geq \frac{p}{3 r} \Leftrightarrow p^{2} \geq 12 R r+3 r^{2}$, which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that: $16 R r-5 r^{2} \geq 12 R r+3 r^{2} \Leftrightarrow R \geq 2 r$ (Euler's inequality).

Equality holds if and only if the triangle is equilateral.

Remark 1.

Inequality 1. can be strengthened:
2. In $\triangle A B C$

$$
\frac{1+\cos A \cos B \cos C}{\sin A \sin B \sin C} \geq \frac{p}{3 r}+\frac{p}{24}\left(\frac{1}{r}-\frac{2 r}{R}\right)
$$

Proof.
Using the known identities in triangle: $\prod \cos A=\frac{p^{2}-(2 R+r)^{2}}{4 R^{2}}$ and

$$
\prod \sin A=\frac{r p}{2 R^{2}}
$$

We write the inequality:

$$
\frac{1+\frac{p^{2}-(2 R+r)^{2}}{4 R^{2}}}{\frac{r p}{2 R^{2}}} \geq \frac{p}{3 r}+\frac{p}{24}\left(\frac{1}{r}-\frac{2 r}{R}\right) \Leftrightarrow \frac{p^{2}-r^{2}-4 R r}{2 r p} \geq \frac{p}{3 r}+\frac{p}{24}\left(\frac{1}{r}-\frac{2 r}{R}\right) \Leftrightarrow
$$

$\Leftrightarrow p^{2}(3 R+2 r) \geq 12 R r(4 R+r)$, which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$.

It remains to prove that:
$\left(16 R r-5 r^{2}\right)(3 R+2) \geq 12 R r(4 R+r) \Leftrightarrow R \geq 2 r$ (Euler's inequality).
The equality holds if and only if the triangle is equilateral.

Remark 2.

Inequality 2. is stronger then inequality 1.:
3. In $\triangle A B C$

$$
\frac{1+\cos A \cos B \cos C}{\sin A \sin B \sin C} \geq \frac{p}{3 r}+\frac{p}{24}\left(\frac{1}{r}-\frac{2 r}{R}\right) \geq \frac{p}{3 r}
$$

Proof.
See inequality 2. and Euler's inequality $R \geq 2 r$. The equality holds if and only if the triangle is equilateral.

Remark 3.

Inequality 2. can be developed

4. In $\Delta A B C$

$$
\begin{array}{r}
\frac{1+\cos A \cos B \cos C}{\sin A \sin B \sin C} \geq \frac{p}{3 r}+\lambda p\left(\frac{1}{r}-\frac{2 r}{R}\right), \text { where } \lambda \leq \frac{1}{24} \\
\text { Proposed by Marin Chirciu - Romania }
\end{array}
$$

Proof.
Using the known identities in triangle: $\prod \cos A=\frac{p^{2}-(2 R+r)^{2}}{4 R^{2}}$ and

$$
\prod \sin A=\frac{r p}{2 R^{2}}
$$

We write the inequality:

$$
\frac{1+\frac{p^{2}-(2 R+r)^{2}}{4 R^{2}}}{\frac{r p}{2 R^{2}}} \geq \frac{p}{3 r}+\lambda p\left(\frac{1}{r}-\frac{2 r}{R}\right) \Leftrightarrow \frac{p^{2}-r^{2}-4 R r}{2 r p} \geq \frac{p}{3 r}+\lambda p\left(\frac{1}{r}-\frac{2 r}{R}\right) \Leftrightarrow
$$

$p^{2}[(1-6 \lambda) R+12 \lambda r] \geq 3 \operatorname{Rr}(4 R+r)$, which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$ and the condition $1-6 \lambda \geq 0$. It remains to prove that:

$$
\left(16 R r-5 r^{2}\right)[(1-6 \lambda) R+12 \lambda r] \geq 3 R r(4 R+r) \Leftrightarrow(2-48 \lambda) R^{2}+(111 \lambda-4) R r-30 \lambda r^{2} \geq 0
$$

$\Leftrightarrow(R-2 r)[(2-48 \lambda) R+15 \lambda r] \geq 0$, obviously from Euler's inequality $R \geq 2 r$ and the condition $2-48 \lambda \geq 0$

The equality holds if and only if the triangle is equialateral.

Remark 4.

For $\lambda \geq 0$ inequality 4. is stronger then inequality 1.:
5. In $\triangle A B C$
$\frac{1+\cos A \cos B \cos C}{\sin A \sin B \sin C} \geq \frac{p}{3 r}+\lambda p\left(\frac{1}{r}-\frac{2 r}{R}\right) \geq \frac{p}{3 r}$, where $0 \leq \lambda \leq \frac{1}{24}$.

Proof.
See inequality 4., Euler's inequality $R \geq 2 r$ and the condition $\lambda \geq 0$.

Note.

In inequality 4. for $\lambda=0$ we obtain inequality 1, and for $\lambda=\frac{1}{24}$ we obtain 2.

Remark.

$$
\text { Taking into account that } \frac{1+\cos A \cos B \cos C}{\sin A \sin B \sin C}=\frac{a^{2}+b^{2}+c^{2}}{4 S}
$$

inequalities 1., 2., 3., 4., 5. can be reformulated

1.a. In $\Delta A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{4 S} \geq \frac{p}{3 r}
$$

2.a. In $\Delta A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{4 S} \geq \frac{p}{3 r}+\frac{p}{24}\left(\frac{1}{r}-\frac{2 r}{R}\right)
$$

3.a. In $\triangle A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{4 S} \geq \frac{p}{3 r}+\frac{p}{24}\left(\frac{1}{r}-\frac{2 r}{R}\right) \geq \frac{p}{3 r}
$$

4.a. In $\Delta A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{4 S} \geq \frac{p}{3 r}+\lambda p\left(\frac{1}{r}-\frac{2 r}{R}\right), \text { where } \lambda \leq \frac{1}{24}
$$

5.a. In $\triangle A B C$

$$
\frac{a^{2}+b^{2}+c^{2}}{4 S} \geq \frac{p}{3 r}+\lambda p\left(\frac{1}{r}-\frac{2 r}{R}\right), \text { where } \lambda \leq \frac{1}{24}
$$

Remark 5.

Inequality 1. can be developed also in the following way:
6. In $\Delta A B C$,

$$
\frac{n+\cos A \cos B \cos C}{\sin A \sin B \sin C} \geq \frac{(8 n+1) p}{27 r}, \text { where } 1 \leq n \leq \frac{25}{16}
$$

Proof.
Using the known identities in triangle: $\prod \cos A=\frac{p^{2}-(2 R+r)^{2}}{4 R^{2}}$ and

$$
\prod \sin A=\frac{r p}{2 R^{2}}
$$

We write the inequality $\frac{n+\frac{p^{2}-(2 R+r)^{2}}{4 R^{2}}}{\frac{r p}{2 R^{2}}} \geq \frac{(8 n+1) p}{27 r} \Leftrightarrow \frac{4 n R^{2}+p^{2}-(2 R+r)^{2}}{2 r p} \geq \frac{(8 n+1) p}{27 r} \Leftrightarrow$ $108 n R^{2}+27 p^{2}-27(2 R+r)^{2} \geq(16 n+2) p^{2} \Leftrightarrow p^{2}(25-16 n) \geq 27(2 R+r)^{2}-108 n R^{2}$, which follows from Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$ and the condition $25-16 n \geq 0$

It remains to prove that:
$\left(16 R r-5 r^{2}\right)(25-16 n) \geq 27(2 R r+r)^{2}-108 n R^{2} \Leftrightarrow(27 n-27) R^{2}+(73-64 n) R r+(38-20 n) \geq 0$
$\Leftrightarrow(R-2 r)[(27 n-27) R+(10 n-19) r] \geq 0$, obviously from Euler's inequality $R \geq 2 r$ and the condition $27 n-27 \geq 0$.
The equality holds if and only if the triangle is equilateral.

Note.

For $n=1$ we obtain inequality 1. from enunciation.
Remark 6.
Inequality 5. can be reformulated:
7. In $\Delta A B C$,

$$
\frac{1+k \cos A \cos B \cos C}{\sin A \sin B \sin C} \geq \frac{(k+8) p}{27 r}, \text { where } \frac{16}{25} \leq k \leq 1
$$

Proof.
In inequality 6. we put $n=\frac{1}{k}$
The equality holds if and only if the triangle is equilateral.

Note.
For $k=1$ we obtain inequality 1. from enunciation.
Mathematics Department, " Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

PROBLEM UP. 083 RMM
 NUMBER 6 AUTUMN 2017 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\Delta A B C$

$$
R \sum(b+c-2 a)^{2} \leq 4(R-2 r) \sum a^{2}
$$

Proposed by Daniel Sitaru - Romania
Proof.
Avem $\sum(b+c-2 a)^{2}=\sum(2 p-3 a)^{2}=\sum\left(4 p^{2}-12 p a+9 a^{2}\right)=12 p^{2}-12 p \sum a+9 \sum a^{2}=$

$$
=12 p^{2}-12 p \cdot 2 p+9 \cdot 2\left(p^{2}-r^{2}-4 R r\right)=6 p^{2}-18 r^{2}-72 R r
$$

Using the identities $\sum a(b+c-2 a)^{2}=6 p^{2}-18 r^{2}-72 R r$ and $\sum a^{2}=2\left(p^{2}-r^{2}-4 R r\right)$
inequality that we have to prove:

$$
\begin{gathered}
R \cdot\left(6 p^{2}-18 r^{2}-72 R r\right) \leq 4(R-2 r) \cdot 2\left(p^{2}-r^{2}-4 R r\right) \\
\Leftrightarrow(R-8 r) p^{2}+r\left(20 R^{2}+37 R r+8 r^{2}\right) \geq 0
\end{gathered}
$$

Distinguish the cases:
Case 1. If $R-8 r \geq 0$ inequality is obviously.
Case 2. If $R-8 r<0$ inequality can be rewritten
$(8 r-R) p^{2} \leq r\left(20 R^{2}+37 R r+8 r^{2}\right)$ which follows from Gerretsen's inequality: $p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:

$$
\begin{gathered}
(8 r-R)\left(4 R^{2}+4 R r+3 r^{2}\right) \leq r\left(20 R^{2}+37 R r+8 r^{2}\right) \Leftrightarrow R^{3}-2 R^{2} r+2 R r^{2}-4 r^{3} \geq 0 \Leftrightarrow \\
\Leftrightarrow(R-2 r)\left(R^{2}+r^{2}\right) \geq 0, \text { obviously from Euler's inequality } R \geq 2 r . \\
\text { Equality holds if and only if the triangle is equilateral. }
\end{gathered}
$$

Remark. 1 Inequality can be developed:

2. In $\Delta A B C$

$$
R \sum(b+c-2 a)^{2} \leq n(R-2 r) \sum a^{2}, \text { where } n \geq 3
$$

Proposed by Marin Chirciu - Romania
Proof.
Using the identities $\sum(b+c-2 a)^{2}=6 p^{2}-18 r^{2}-72 R r$ and $\sum a^{2}=2\left(p^{2}-r^{2}-4 R r\right)$
inequality that we have to prove can be written:

$$
\begin{gathered}
R \cdot\left(6 p^{2}-18 r^{2}-72 R r\right) \leq n(R-2 r) \cdot 2\left(p^{2}-r^{2}-4 R r\right) \\
\Leftrightarrow[(n-3) R-2 n r] p^{2}+r\left[(36-4 n) R^{2}+(7 n+9) R r+2 n r^{2}\right] \geq 0
\end{gathered}
$$

We distinguish the cases:
Case 1. If $(n-3) R-2 n r \geq 0$ we use Gerretsen's inequality $p^{2} \geq 16 R r-5 r^{2}$. It remains to prove that:

$$
\Leftrightarrow[(n-3) R-2 n r]\left(16 R r-5 r^{2}\right)+r\left[(36-4 n) R^{2}+(7 n+9) R r+2 n r^{2}\right] \geq 0 \Leftrightarrow
$$

$\Leftrightarrow(2 n-2) R^{2}+(4-5 n) R r+2 n r^{2} \geq 0$, obviously from Euler's inequality $R \geq 2 r$ and $n \geq 3$.
Case 2. If $(n-3) R-2 n r<0$ inequality can be rewritten
$[2 n r+(3-n) R] p^{2} \leq r\left[(36-4 n) R^{2}+(7 n+9) R r+2 n r^{2}\right]$, which follows from Gerretsen's inequality:
$p^{2} \leq 4 R^{2}+4 R r+3 r^{2}$. It remains to prove that:
$[2 n r+(3-n) R]\left(4 R^{2}+4 R r+3 r^{2}\right) \leq r\left[(36-4 n) R^{2}+(7 n+9) R r+2 n r^{2}\right] \Leftrightarrow$ $\Leftrightarrow(2 n-6) R^{3}+(12-4 n) R^{2} r+n R r^{2}-4 n r^{3} \geq 0 \Leftrightarrow$ $\Leftrightarrow(R-2 r)\left[(2 n-6) R^{2}+n r^{2}\right] \geq 0$
obviously from Euler's inequality $R \geq 2 r$ and the condition $n \geq 3$.
Equality holds if and only if the triangle is equialteral.

Note.

$$
\text { For } n=4 \text { we obtain inequality } 1 .
$$

Remark 2.

In the same way we can propose:

3. In $\triangle A B C$

$$
\begin{aligned}
\sum a(b+c-2 a)^{2} \leq n \sqrt{3}(R-2 r) R^{2}, \text { where } n \geq 21
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& \sum a(b+c-2 a)^{2}=\sum a(2 p-3 a)^{2}=\sum a\left(4 p^{2}-12 p a+9 a^{2}\right)=4 p^{2} \sum a-12 p \sum a^{2}+9 \sum a^{3}= \\
& =4 p^{2} \cdot 2 p-12 p \cdot 2\left(p^{2}-r^{2}-4 R r\right)+9 \cdot 2 p\left(p^{2}-r^{2}-6 R r\right)=2 p\left(p^{2}-15 r^{2}-6 R r\right) . \\
& \text { Inequality that we have to prove can be written: } \\
& 2 p\left(p^{2}-15 r^{2}-6 R r\right) \leq n \sqrt{3}(R-2 r) R^{2} \Leftrightarrow 2 p \sqrt{3}\left(p^{2}-15 r^{2}-6 R r\right) \leq 3 n(R-2 r) R^{2}, \\
& \text { which follows from Doucet's inequality } p \sqrt{3} \leq 4 R+r \\
& \text { and Gerretsen's inequality } p^{2} \leq 4 R^{2}+4 R r+3 r^{2} \text {. It remains to prove that: } \\
& 2(4 R+r)\left(4 R^{2}+4 R r+3 r^{2}-15 r^{2}-6 R r\right) \leq 3 n(R-2 r) R^{2} \Leftrightarrow \\
& \Leftrightarrow(3 n-32) R^{3}+(8-6 n) R^{2} r+100 R r^{2}+24 r^{3} \geq 0 \Leftrightarrow \\
& \Leftrightarrow(R-2 r)\left[(3 n-32) R^{2}-56 R r-12 r^{2}\right] \geq 0 \text {, obviously from Euler's inequality } R \geq 2 r \text { and } \\
& \text { the condition } n \geq 21 \text {, which assures the positivity of the right parentheses. }
\end{aligned}
$$

The equality holds if and only if the triangle is equilateral.

[^0]
[^0]: Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

 E-mail address: dansitaru63@yahoo.com

