RMM Commented Problems Marathon 21 - 40

ROMANIAN MATHEMATICAL MAGAZINE

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

INEQUALITY IN TRIANGLE 305 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$\frac{R}{2r}+\frac{3p^2}{(4R+r)^2}\geq 2$$

Proposed by Adil Abdullayev - Baku - Azerbaidian

Proof.

Using Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$, it's enough to prove that:

$$\frac{R}{2r} + \frac{3(16Rr - 5r^2)}{(4R + r)^2} \ge \Leftrightarrow 16R^3 - 56R^2r + 65Rr^2 - 34Rr^2 \ge 0 \Leftrightarrow$$

 $\Leftrightarrow (R-2r)(16R^2-24Rr+17r^2) \geq 0$, obviously from Euler's inequality $R \geq 2r$. The equality holds if and only if the triangle is equilateral.

Remark

The inequality can be developed:

2. In $\triangle ABC$

$$n\cdot rac{R}{r}+k\cdot rac{p^2}{(4R+r)^2}\geq 2n+rac{k}{3}, \ where \ 15n\geq 2k\geq 0.$$

Proposed by Marin Chirciu - Romania

Proof.

Using Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$ and the conditions $n \ge 0, k \ge 0$ it's enough to prove that:

$$n \cdot \frac{R}{r} + k \cdot \frac{16Rr - 5r^2}{(4R + r)^2} \ge 2n + \frac{k}{3} \Leftrightarrow$$

$$48nR^3 - (72n + 16k)R^2r + (40k - 45n)Rr^2 - (6n + 18k)r^3 \ge 0$$

 $\Leftrightarrow (R-2r)(48nR^2 + (24n-16k)Rr + (3n+8k)r^2) \geq 0, \ obviously \ from \ Euler's \ inequality$

 $R \ge 2r$ and the observation that $48nR^2 + (24n - 16k)Rr + (3n + 8k)r^2 \ge 0$ for $15n \ge 2k \ge 0$.

The equality holds if and only if the triangle is equilateral or n = k = 0.

Remark

The inequality can be reformulated:

3. In $\triangle ABC$

$$\frac{R}{r} + \lambda \cdot \frac{p^2}{(4R+r)^2} \geq 2 + \frac{\lambda}{3}, \text{ where } 0 \leq \lambda \leq \frac{15}{2}.$$

Proof.

In 2. we divide with n and we denote $\frac{k}{n} = \lambda$. The equality holds if and only if the triangle is equilateral. For $\lambda = 6$ we obtain inequality 1.

Remark

The inequality can be reformulated:

4. In $\triangle ABC$

$$\lambda \cdot \frac{R}{r} + \frac{p^2}{(4R+r)^2} \geq 2\lambda + \frac{1}{3}, \lambda \geq \frac{2}{15}.$$

Proof.

In 2. we divide with k and we denote $\frac{n}{k}=\lambda$. The equality holds if and only if the triangle is equilateral. For $\lambda=\frac{1}{6}$ we obtain inequality 1.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

INEQUALITY IN TRIANGLE 295 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$\sum (b+c-a)m_a^2 \ge 18pr(R-r).$$

Proposed by Abdikadir Altintas - Afyon - Turkey

Proof.

Using the known identity in triangle $\sum (p-a)m_a^2 = p(p^2 - 4r^2 - 7Rr)$

the inequality that we have to prove can be written:

$$2p(p^2 - 4r^2 - 7Rr) \ge 18pr(R - r) \Leftrightarrow p^2 \ge 16Rr - 5r^2$$
 (Gerretsen's inequality)

The equality holds if and only if the triangle is equilateral.

Remark

The inequality can be developed:

2. In $\triangle ABC$

$$\sum (b+c-na)m_a^2 \geq 9pr\Big[(3-n)R-2r\Big], \ where \ n \leq 5.$$

Proof.

Using the known identity in triangle $\sum am_a^2 = \frac{1}{2} \cdot p(p^2 + 5r^2 + 2Rr)$, we obtain:

$$\begin{split} \sum (b+c-na)m_a^2 &= \sum \Big[2p-(n+1)a\Big]m_a^2 = 2p\sum m_a^2 - (n+1)\sum am_a^2 = \\ &= 2p\sum m_a^2 - (n+1)\cdot \frac{1}{2}\cdot p(p^2+5r^2+2Rr) = \\ &= 2p\cdot \frac{3}{4}\cdot 2(p^2-r^2-4Rr) - (n+1)\cdot \frac{1}{2}\cdot p(p^2+5r^2+2Rr) = \\ &= \frac{p}{2}\Big[(5-n)p^2 - (5n+11)r^2 - (2n+26)Rr\Big]. \end{split}$$

the inequality that we have to prove can be written:

$$\frac{p}{2} \Big[(5-n)p^2 - (5n+11)r^2 - (2n+26)Rr \Big] \ge 9pr \Big[(3-n)R - 2r \Big] \Leftrightarrow (5-n)p^2 - (5n+11)r^2 - (2n+26)Rr \ge 18r \Big[(3-n)R - 2r \Big],$$

which follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$ and the condition $5-n \ge 0$. The equality holds if and only if the triangle is equilateral. Let's obtain an inequality that have an opposite sense.

3. In $\triangle ABC$

$$\sum (b+c-na)m_a^2 \leq p \Big\lceil (10-2n)R^2 - (3n+3)Rr + (2-4n)r^2 \Big\rceil, \ where \ n \leq 5.$$

Proof.

Using the above proved inequality:

$$\sum (b+c-na)m_a^2 = \frac{p}{2} \left[(5-n)p^2 - (5n+11)r^2 - (2n+26)Rr \right]$$

Gerretsen's inequality $p^2 \le 4R^2 + 4Rr + 3r^2$ and the condition $5 - n \ge 0$, we obtain: $\sum (b + c - na)m_a^2 \le \frac{p}{2} \Big[(5 - n)(4R^2 + 4Rr + 3r^2) - (5n + 11)r^2 - (2n + 26)Rr \Big] = 0$

$$= p \Big[(10 - 2n)R^2 - (3n+3)Rr + (2-4n)r^2 \Big].$$

The equality holds if and only if the triangle is equilateral.

We can write the following double inequality:

4. In $\triangle ABC$

$$9pr\Big[(3-n)R-2r\Big] \leq \sum (b+c-na)m_a^2 \leq p\Big[(10-2n)R^2-(3n+3)Rr+(2-4n)r^2\Big], n \leq 5$$

$$Proposed\ by\ Marin\ Chirciu\ -\ Romania$$

Proof.

See inequalities 2. and 3.

The equality holds if and only if the triangle is equilateral.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

 $E ext{-}mail\ address: dansitaru63@yahoo.com}$

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

INEQUALITY IN TRIANGLE 301 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{18r^2}{abc}$$

Proposed by Panagiote Ligouras - Florence - Italy

Proof.

We prove the following lemma:

Lemma

2. In $\triangle ABC$

$$\sum \frac{a}{(b+c)(b+c-a)} = \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2+r^2+2Rr)}$$

$$\sum \frac{a}{(b+c)(b+c-a)} = \sum \left(\frac{1}{b+c-a} - \frac{1}{b+c}\right) = \sum \frac{1}{b+c-a} - \sum \frac{1}{b+c} =$$

$$= \frac{4R+r}{2pr} - \frac{5p^2 + r^2 + 4Rr}{2p(p^2 + r^2 + 2Rr)} =$$

$$= \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2 + r^2 + 2Rr)}$$

Let's pass to solving the problem from the enunciation.

Using the **Lemma**, the inequality that we have to prove can be written:

$$\frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2 + r^2 + 2Rr)} \ge \frac{18r^2}{abc} \Leftrightarrow \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2 + r^2 + 2Rr)} \ge \frac{18r^2}{4pRr} \Leftrightarrow p^2(4R^2 - 4Rr - 9r^2) + r(8R^3 + 2R^2r - 18Rr^2 - 9r^3) \ge 0$$

We distinguish the following cases:

1. If
$$4R^2 - 4Rr - 9r^2 \ge 0$$
, the inequality is obvious.
2. If $4R^2 - 4Rr - 9r^2 < 0$, the inequality can be rewritten:
$$p^2(9r^2 + 4Rr - 4R^2) < r(8R^3 + 2R^2r - 18Rr^2 - 9r^3).$$

Using Gerretsen's inequality $p^2 \le 4R^2 + 4Rr + 3r^2$ it is enough to prove that: $(4R^2 + 4Rr + 3r^2)(9r^2 + 4Rr - 4R^2) \le r(8R^3 + 2R^2r - 18Rr^2 - 9r^3) \Leftrightarrow$ $\Leftrightarrow 8R^4 + 4R^3r - 19R^2r^2 - 33Rr^3 - 18r^4 \ge 0 \Leftrightarrow (R - 2r)(8R^3 + 20R^2r + 21Rr^2 + 9r^3) \ge 0$

which is obviously from Euler's inequality $R \geq 2r$.

The equality holds if and only if the triangle is equilateral.

Remark

Inequality 1. can be strengthened:

3. In $\triangle ABC$

$$\sum \frac{a}{(b+c)(b+c-a)} \ge \frac{9Rr}{abc}$$

Proof. Using the **Lemma** the inequality can be written:

$$\frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2 + r^2 + 2Rr)} \ge \frac{9Rr}{abc} \Leftrightarrow \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2 + r^2 + 2Rr)} \ge \frac{9Rr}{4pRr} \Leftrightarrow p^2(8R - 17r) + r(16R^2 - 14Rr - 9r^2) \ge 0.$$

We distinguish the cases:

- 1. If $8R 17r \ge 0$, the inequality is obvious.
- 2. If 8R 17r < 0, the inequality can be rewritten:

$$p^2(17r - 8R) \le r(16R^2 - 14Rr - 9r^2).$$

Using Gerretsen's inequality $p^2 < 4R^2 + 4Rr + 3r^2$ it suffices to prove that:

$$(4R^2 + 4Rr + 3r^2)(17r - 8R) \le r(16R^2 - 14Rr - 9r^2) \Leftrightarrow$$

$$\Leftrightarrow 16R^3 - 10R^2r - 29Rr^2 - 30r^3 \ge 0 \Leftrightarrow (R - 2r)(16R^2 + 22Rr + 15r^2) \ge 0,$$

which is obvious from Euler's inequality $R \geq 2r$.

The inequality holds if and only if the triangle is equilateral.

Remark.

Inequality 3. is stronger than inequality 1.

4. In $\triangle ABC$

$$\sum \frac{a}{(b+c)(b+c-a)} \ge \frac{9Rr}{abc} \ge \frac{18r^2}{abc}.$$

Proof.

See inequality 3. and Euler's inequality $R \geq 2r$.

The inequality holds if and only if the triangle is equilateral.

Remark.

Also inequality 3. can be developed:

5. In $\triangle ABC$

$$\sum \frac{a}{(b+c)(b+c-a)} \ge \frac{9R^2}{2abc}$$

Proof.

Using the **Lemma**, the inequality that we have to prove can be written:

$$\frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2 + r^2 + 2Rr)} \ge \frac{9R^2}{2abc} \Leftrightarrow \frac{2p^2(R-r) + Rr(4R+r)}{pr(p^2 + r^2 + 2Rr)} \ge \frac{9R^2}{9pRr} \Leftrightarrow p^2(7R - 16r) + Rr(14R - r) \ge 0.$$

We distinguish the cases:

- 1. If $7R 16r \ge 0$, the inequality is obvious.
- 2. If 7R 16r < 0, the inequality can be rewritten:

$$p^2(16r - 7R) \le Rr(14R - r).$$

Using Gerretsen's inequality $p^2 \le 4R^2 + 4Rr + 3r^2$ it suffices to prove that:

$$(4R^2 + 4Rr + 3r^2)(16r - 7R) \le Rr(14R - r) \Leftrightarrow$$

$$\Leftrightarrow 14R^3 - 11R^2r - 22Rr^2 - 24r^3 \ge 0 \Leftrightarrow (R - 2r)(14R^2 + 17Rr + 12r^2) \ge 0,$$

which is obvious from Euler's inequality $R \geq 2r$.

The inequality holds if and only if the triangle is equilateral.

Remark.

Inequality 5. is stronger than inequality 3.

6. In $\triangle ABC$

$$\sum \frac{a}{(b+c)(b+c-a)} \ge \frac{9R^2}{2abc} \ge \frac{9Rr}{abc}$$

Proof.

See inequality 5. and Euler's inequality $R \geq 2r$.

The inequality holds if and only if the triangle is equilateral.

Remark.

The inequalities can be written:

7. In $\triangle ABC$

$$\sum \frac{a}{(b+c)(b+c-a)} \geq \frac{9R^2}{2abc} \geq \frac{9Rr}{abc} \geq \frac{18r^2}{abc}$$

Remark.

Let's obtain an inequality having an opposite sense.

8. In $\triangle ABC$

$$\sum \frac{a}{(b+c)(b+c-a)} \le \frac{9R^2}{16Sr}.$$

Proof.

Using the **Lemma**, the inequality that we have to prove can be written:

$$\frac{2p^2(R-r)+Rr(4R+r)}{pr(p^2+r^2+2Rr)} \leq \frac{9R^2}{16Sr} \Leftrightarrow \frac{2p^2(R-r)+Rr(4R+r)}{pr(p^2+r^2+2Rr)} \leq \frac{9R^2}{16r^2p} \Leftrightarrow p^2(9R^2-32Rr+32r^2)+Rr(18R^2-55Rr-16r^2) \geq 0.$$

Because $9R^2 - 32Rr + 32r^2 > 0(\Delta < 0$, for the trinomial $9x^2 - 32x + 32$), using Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$ is suffices to prove that:

$$(16Rr - 5r^2)(9R^2 - 32Rr + 32r^2) + Rr(18R^2 - 55Rr - 16r^2) \ge 0 \Leftrightarrow \\ \Leftrightarrow 81R^3 - 306R^2r + 328Rr^2 - 80r^3 \ge 0 \Leftrightarrow (R - 2r)(80R^2 - 144Rr + 40r^2) \ge 0, \\ which is obviously from Euler's $R \ge 2r$.$$

The inequality holds if and only if the triangle is equilateral.

Remark.

We can write the double inequality:

9. In $\triangle ABC$

$$\frac{9R}{8S} \leq \sum \frac{a}{(b+c)(b+c-a)} \leq \frac{9R^2}{16Sr}.$$
 Proposed by Marin Chirciu - Romania

Proof.

See inequalities 2. and 8.

The inequality holds if and only if the triangle is equilateral.

We've obtained a refinement of Euler's inequality.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM 298 TRIANGLE MARATHON 201 - 300 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$m_a\cosrac{A}{2}+m_b\cosrac{B}{2}+m_c\cosrac{C}{2}\geqrac{9r\sqrt{3}}{2}$$

Proposed by Kevin Soto Palacios - Huarmey - Peru

Remark.

The inequality can be strengthened:

2. In $\triangle ABC$

$$m_a \cos rac{A}{2} + m_b \cos rac{B}{2} + m_c \cos rac{C}{2} \geq rac{3p}{2}$$

Proposed by Marin Chirciu - Romania

Proof.

We use the remarkable inequality $m_a \ge \frac{b+c}{2} \cos \frac{A}{2}$

We obtain:

$$\sum m_a \cos \frac{A}{2} \ge \sum m_a \cos^2 \frac{A}{2} = \sum \frac{b+c}{2} \cdot \frac{p(p-a)}{bc} = \frac{p}{2} \cdot \frac{a(b+c)(p-a)}{abc} = \frac{p}{2} \cdot \frac{12pRr}{4pRr} = \frac{3p}{2}.$$

The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 2. is stronger then Inequality 1.:

3. In $\triangle ABC$

$$m_a \cos rac{A}{2} + m_b \cos rac{B}{2} + m_c \cos rac{C}{2} \geq rac{3p}{2} \geq rac{9r\sqrt{3}}{2}.$$

Proof.

See inequality 2. and Mitrinović's inequality: $p \ge 3r\sqrt{3}$. The equality holds if and only if the triangle is equilateral.

In the same mode can be proposed:

4. In $\triangle ABC$

$$m_a \sin \frac{A}{2} + m_b \sin \frac{B}{2} + m_c \sin \frac{C}{2} \ge \frac{ab + bc + ca}{4R}$$

Proof.

Using the remarkable inequality $m_a \ge \frac{b+c}{2} \cos \frac{A}{2}$, we obtain:

$$\sum m_a \sin \frac{A}{2} \ge \sum \frac{b+c}{2} \cos \frac{A}{2} \sin \frac{A}{2} = \frac{1}{4} \sum (b+c) \sin A = \frac{1}{4} \sum (b+c) \cdot \frac{a}{2R} = \frac{ab+bc+ca}{4R}.$$

The equality holds if and only if the triangle is equilateral.

5. In $\triangle ABC$

$$m_a \sin rac{A}{2} + m_b \sin rac{B}{2} + m_c \sin rac{C}{2} \ge rac{S\sqrt{3}}{R}$$

Proof.

See 4. and the remarkable inequality $ab + bc + ca \ge 4S\sqrt{3}$.

The equality holds if and only if the triangle is equilateral.

6. In $\triangle ABC$

$$m_a \sin rac{A}{2} + m_b \sin rac{B}{2} + m_c \sin rac{C}{2} \ge rac{r(5R - r)}{R}$$

Proof.

See 4., the identity
$$ab + bc + ca = p^2 + r^2 + 4Rr$$
 and Gerretsen's inequality $p^2 > 16Rr - 5r$.

The equality holds if and only if the triangle is equilateral.

The following inequalities can be written:

7. In $\triangle ABC$

$$m_a \sin rac{A}{2} + m_b \sin rac{B}{2} + m_c \sin rac{C}{2} \geq rac{p^2 + r^2 + 4Rr}{4R} \geq rac{r(5R - r)}{R} \geq rac{S\sqrt{3}}{R} \geq rac{9r^2}{R}$$

$$Proposed \ by \ Marin \ Chirciu - Romania$$

Proof.

See 4. the identity $ab+bc+ca=p^2+r^2+4Rr$, Gerretsen's inequality $p^2\geq 16Rr-5r$, Doucet's inequality $4R+r\geq p\sqrt{3}$ and Mitrinović's inequality: $p\geq 3r\sqrt{3}$.

The equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

 $E\text{-}mail\ address: \verb|dansitaru63@yahoo.com||$

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM 296 TRIANGLE MARATHON 201 - 300 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$rac{r_a}{r_b}+rac{r_b}{r_c}+rac{r_c}{r_a}+rac{2r}{R}\geq 4.$$

Proposed by Adil Abdullayev - Baku - Azerbaidian

Proof.

We have $\sum \frac{r_a}{r_b} = \sum \frac{r_a^2}{r_a r_b}$ $\geq \frac{(r_a + r_b + r_c)^2}{r_a r_b + r_b r_c + r_c r_a} = \frac{(4R + r)^2}{p^2}$ $\geq 4 - \frac{2r}{R}$, where (1) follows from Blundon - Gerretsen's inequality $p^2 \leq \frac{R(4R + r)^2}{2(2R - r)}$ (true from Gergonne's identity: $H\Gamma^2 = 4R^2 \left[1 - \frac{2p^2(2R - r)}{r(4R + r)^2}\right]$, Γ is Gergonne's point, namely the lines intersections AA_1, BB_1, CC_1 , where A_1, B_1, C_1 are the tangent point of incircle in ΔABC with the sides BC, CA, AB).

The equality holds if and only if the triangle is equilateral.

Remark.

The inequality can be developed:

2. In ΔABC

$$rac{r_a}{r_b}+rac{r_b}{r_c}+rac{r_c}{r_a}+n\cdotrac{r}{R}\geq 3+rac{n}{2}, \; where \; n\leq 2.$$

Proposed by Marin Chirciu - Romania

Proof.

We have
$$\sum \frac{r_a}{r_b} = \sum \frac{r_a^2}{r_a r_b}$$
 $\geq \frac{(r_a + r_b + r_c)^2}{r_a r_b + r_b r_c + r_c r_a} = \frac{(4R + r)^2}{p^2} \geq 3 + \frac{n}{2} - \frac{nr}{R}$, where (1) follows from Blundon-Gerretsen's inequality $p^2 \leq \frac{R(4R + r)^2}{2(2R - r)}$ (true from Gergonne's identity: $H\Gamma^2 = 4R^2 \left[1 - \frac{2p^2(2R - r)}{r(4R + r)^2}\right]$, Γ is Gergonne's point, namely the intersection lines AA_1, BB_1, CC_1 , where A_1, B_1, C_1 are the tangent points of the incircle in ΔABC with the sides BC, CA, AB). It remains to prove that:

$$\underbrace{\frac{(4R+r)^2}{\frac{R(4R+r)^2}{2(2R-r)}}}^{(1)} \ge 3 + \frac{n}{2} - \frac{nr}{R} \Leftrightarrow \frac{4R-2r}{R} + \frac{nr}{R} \ge \frac{n+6}{2} \Leftrightarrow (2-n)(R-2r) \ge 0$$

obviously from Euler's inequality $R \geq 2r$ and the condition $2 - n \geq 0$. The equality holds if and only if the triangle is equilateral.

Remark.

For n = 2 we obtain inequality 1.

For
$$n = 0$$
 we obtain the well known inequality $\frac{r_a}{r_b} + \frac{r_b}{r_c} + \frac{r_c}{r_a} \ge 3$

For
$$n=0$$
 we obtain the well known inequality $\frac{r_a}{r_b} + \frac{r_b}{r_c} + \frac{r_c}{r_a} \ge 3$.
For $n=-2$ we obtain the known inequality $\frac{r_a}{r_b} + \frac{r_b}{r_c} + \frac{r_c}{r_a} \ge 2 + \frac{2r}{R}$.

Let's notice that for $n \leq 0$ the obtained inequalities are very weak, the inequality is interesting for n > 0, being the strongest for n = 2.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

 $E\text{-}mail\ address: \verb|dansitaru63@yahoo.com||$

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM 288 TRIANGLE MARATHON 201 - 300 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$rac{r_a^2}{h_a}+rac{r_b^2}{h_b}+rac{r_c^2}{h_c}\geq 9r.$$

Proposed by Mehmet Sahin - Ankara - Turkey

Proof.

We prove the following lemma:

Lemma.

2. In $\triangle ABC$

$$\frac{r_a^2}{h_a} + \frac{h_b^2}{h_b} + \frac{r_c^2}{h_c} = \frac{2R(4R+r) - p^2}{r}.$$

Proof.

$$We \ have \ \sum \frac{r_a^2}{h_a} = \sum \frac{(\frac{S}{p-a})^2}{\frac{2S}{a}} = \frac{S}{2} \sum \frac{a}{(p-a)^2} = \frac{rp}{2} \cdot \frac{4R(4R+r) - 2p^2}{r^2p} = \frac{2R(4R+r) - p^2}{r}$$

Let's prove inequality 1.

Using the **Lemma**, inequality 1, can be written:
$$\frac{2R(4R+r)-p^2}{r} \geq 9r \Leftrightarrow p^2 \leq 2R(4R+r)-9r^2, \text{ which follows from Gerretsen's inequality:}$$

$$p^2 \le 4R^2 + 4Rr + 3r^2$$

It remains to prove that:

$$4R^2 + 4Rr + 3r^2 \leq 2R(4R + r) - 9r^2 \Leftrightarrow 2R^2 - Rr - 6r^2 \geq 0 \Leftrightarrow (R - 2r)(2R + 3r) \geq 0,$$

obviously from Euler's inequality: $R \geq 2r$.

The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 1. can be strengthened:

3. In $\triangle ABC$

$$rac{r_a^2}{h_a} + rac{r_b^2}{h_b} + rac{r_c^2}{h_c} \geq rac{9R}{2}$$

Proposed by Marin Chirciu - Romania

Proof.

Using the **Lemma**, inequality 3 can be written:

$$\frac{2R(4R+r)-p^2}{r} \geq \frac{9R}{2} \Leftrightarrow 2p^2 \leq 2R(4R+r)-9Rr, \text{ which follows from Gerretsen's inequality:}$$
$$p^2 < 4R^2 + 4Rr + 3r^2.$$

It remains to prove that:

$$2(4R^2+4Rr+3r^2) \leq 2R(4R+r)-9Rr \Leftrightarrow 8R^2-13Rr-6r^2 \geq 0 \Leftrightarrow (R-2r)(8R+3r) \geq 0,$$
 obviously from Euler's inequality: $R \geq 2r$.

The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 3. is stronger than inequality 1.

4. In $\triangle ABC$

$$rac{r_a^2}{h_a} + rac{r_b^2}{h_b} + rac{r_c^2}{h_c} \geq rac{9R}{2} \geq 9r.$$

Proof.

See inequality 3. and Euler's inequality.

The equality holds if and only if the triangle is equilateral.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM 354 INEQUALITY IN TRIANGLE ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$\sum \frac{a^3}{b+c-a} \ge 4S\sqrt{3}$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania

Proof.

We prove that following lemma:

Lemma.

2. In $\triangle ABC$

$$\sum rac{a^3}{b+c-a} = rac{p^2(2R-3r) + r^2(4R+r)}{r}.$$

Proof.

$$\sum \frac{a^3}{b+c-a} = \frac{1}{2} \sum \frac{a^3}{p-a} = \frac{1}{2} \cdot \frac{2p^2(2R-3r) + 2r^2(4R+r)}{r} = \frac{p^2(2R-3r) + r^2(4R+r)}{r}.$$

Let's pass to solving the problem from enunciation.

Base on the **Lemma** we write the following inequality:

$$\frac{p^2(2R - 3r) + r^2(4R + r)}{r} \ge 4rp\sqrt{3} \Leftrightarrow p^2(2R - 3r) + r^2(4R + r) \ge 4r \cdot p\sqrt{3}$$

which follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$ and Doucet's inequality $4R + r \ge p\sqrt{3}$ It remains to prove that:

$$(16Rr - 5r^2)(2R - 3r) + r^2(4R + r) \ge 4r \cdot (4R + r) \Leftrightarrow 16R^2 - 35Rr + 6r^2 \ge 0 \Leftrightarrow \Leftrightarrow (R - 2r)(16R - 3r) \ge 0$$
, obviously from Euler's inequality $R \ge 2r$.

Equality holds if and only if the triangle is equilateral.

Remark.

Inequality 1. can be strengthened:

3. In $\triangle ABC$

$$\sum \frac{a^3}{b+c-a} \ge \frac{4p^2}{3}.$$

2

Proof.

Base on the **Lemma** the inequality can be written:

$$\frac{p^2(2R-3r) + r^2(4R+r)}{r} \ge \frac{4p^2}{3} \Leftrightarrow p^2(6R-13r) + 3r^2(4R+r) \ge 0$$

We distinguish the cases:

- 1. If $6R 13r \ge 0$, the inequality is obvious.
- 2. If 6R 13r < 0, inequality can be rewritten:

$$p^2(13r - 6R) \le 3r^2(4R + r)$$

which follows from Gerretsen's inequality $p^2 \le 4R^2 + 4Rr + 3r^2$.

It remains to prove that:

$$\begin{split} (4R^2+4Rr+3r^2)(13r-6R) &\leq 3r^2(4R+r) \Leftrightarrow 12R^3-14R^2r-11Rr^2-18r^3 \geq 0 \Leftrightarrow \\ &\Leftrightarrow (R-2r)(12R^2+10Rr+9r^2) \geq 0, \ obviously \ from \ Euler's \ inequality \ R \geq 2r. \end{split}$$

The equality holds if and only if the triangle is equilateral.

Inequality 3. is stronger than inequality 1.

4. In $\triangle ABC$

Remark.

$$\sum \frac{a^3}{b+c-a} \geq \frac{4p^2}{3} \geq 4S\sqrt{3}$$

Proof.

See inequality 3. and Mitrinović's inequality $p \geq 3r\sqrt{3}$. The equality holds if and only if the triangle is equilateral.

Inequality 3. can be also strengthened:

5. In $\triangle ABC$

$$\sum \frac{a^3}{b+c-a} \ge 2Rp\sqrt{3}$$

Proposed by Marin Chirciu - Romania

Proof.

Base on the **Lemma** we write the inequality:

$$\frac{p^2(2R - 3r) + r^2(4R + r)}{r} \ge 2Rp\sqrt{3} \Leftrightarrow p^2(2R - 3r) + r^2(4R + r) \ge 2R \cdot p\sqrt{3}$$

which follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$ and Doucet's inequality $4R + r \ge p\sqrt{3}$.

It remains to prove that:

$$(16Rr - 5r^2)(2R - 3r) + r^2(4R + r) \ge 2R \cdot (4R + r) \Leftrightarrow 3R^2 - 7Rr + 2r^2 \ge 0 \Leftrightarrow \Leftrightarrow (R - 2r)(3R - r) \ge 0$$
, obviously from Euler's inequality $R \ge 2r$.

The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 5. is stronger than inequality 3.:

6. In $\triangle ABC$

$$\sum rac{a^3}{b+c-a} \geq 2Rp\sqrt{3} \geq rac{4p^2}{3}$$

Proof.

See inequality 5. and Mitrinović's inequality $p \leq \frac{3R\sqrt{3}}{2}$ The equality holds if and only if the triangle is equilateral.

Remark.

We write the following inequalities:

7. In $\triangle ABC$

$$\sum \frac{a^3}{b+c-a} \geq 2Rp\sqrt{3} \geq \frac{4p^2}{3} \geq 4S\sqrt{3}$$

Proof.

See inequality 5. and Mitrinović's inequality $3r\sqrt{3} \le p \le \frac{3R\sqrt{3}}{2}$ The equality holds if and only if the triangle is equilateral.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

 $E ext{-}mail\ address$: dansitaru630yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

COMMENTED PROBLEM 30

MARIN CHIRCIU

1. Let be $a, b, c \in (0, \infty)$. Prove that

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} + \frac{30abc}{(a+b)(b+c)(c+a)} \geq \frac{27}{4}.$$

Proposed by Costel Anghel - Romania

Proof.

Denoting
$$\frac{a}{b} = x$$
, $\frac{b}{c} = y$, $\frac{c}{a} = z$, we have $x, y, z > 0$ and $xyz = 1$.

We write
$$\frac{abc}{(a+b)(b+c)(c+a)} = \frac{1}{(\frac{a+b}{b})(\frac{b+c}{c})(\frac{c+a}{a})} = \frac{1}{(x+1)(y+1)(z+1)}$$

We reformulate the problem.

If
$$x, y, z > 0$$
 and $xyz = 1$, prove that $x^2 + y^2 + z^2 + \frac{30}{(x+1)(y+1)(z+1)} \ge \frac{27}{4}$.

Denoting
$$x + y + z = t$$
, we have $t \ge 3\sqrt[3]{xyz} = 3$; $x^2 + y^2 + z^2 \ge \frac{(x + y + z)^2}{3} = \frac{t^2}{3}$

$$(x+y+z)^2 \geq 3(xy+yz+zx) \Rightarrow xy+yz+zx \leq \frac{t^2}{3}; (x+y+z)^3 \geq 27xyz \Rightarrow xyz \leq \frac{t^3}{27};$$

We have
$$(x+1)(y+1)(z+1) = xyz + xy + yz + zx + x + y + z + 1 \le \frac{t^3}{27} + \frac{t^2}{3} + t + 1$$
.

It suffices to prove that:

$$\frac{t^2}{3} + \frac{30}{\frac{t^3}{27} + \frac{t^2}{3} + t + 1} \ge \frac{27}{4} \Leftrightarrow \frac{t^2}{3} + \frac{810}{t^3 + 9t^2 + 27t + 27} \ge \frac{27}{4} \Leftrightarrow$$

$$4t^2(t^3 + 9t^2 + 27t + 27) + 9720 \ge 81(t^3 + 9t^2 + 27t + 27) \Leftrightarrow$$

$$4t^5 + 36t^4 + 27t^3 - 621t^2 - 2187t + 7533 \ge 0 \Leftrightarrow (t - 3)(4t^2 + 48t^3 + 171t^2 - 108t - 2511) \ge 0,$$

Which follows from
$$t - 3 \ge 0$$
 and $4t^2 + 48t^3 + 171t^2 - 108t - 2511 \ge 324 > 0$.

Equality holds for x = y = z = 1, namely for a = b = c.

Remark.

The inequality can be devoloped:

2. Let be $a, b, c \in (0, \infty)$ and $n \leq 32$. Prove that

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} + n \cdot \frac{abc}{(a+b)(b+c)(c+a)} \ge 3 + \frac{n}{8}$$

Proposed by Marin Chirciu - Romania

Proof.

$$Denoting \ \frac{a}{b} = x, \frac{b}{c} = y, \frac{c}{a} = z, \ we \ have \ x, y, z > 0 \ and \ xyz = 1.$$

$$We \ write \ \frac{abc}{(a+b)(b+c)(c+a)} = \frac{1}{(\frac{a+b}{b})(\frac{b+c}{c})(\frac{c+a}{a})} = \frac{1}{(x+1)(y+1)(z+1)}.$$

$$The \ problem \ can \ be \ reformulated:$$

$$If \ x, y, z > 0 \ and \ xyz = 1, \ prove \ that \ x^2 + y^2 + z^2 + \frac{n}{(x+1)(y+1)(z+1)} \ge 3 + \frac{n}{8}.$$

$$Denoting \ x + y + z = t, \ we \ have \ t \ge 3\sqrt[3]{xyz} = 3; x^2 + y^2 + z^2 \ge \frac{(x+y+z)^2}{3} = \frac{t^2}{3}$$

$$(x+y+z)^2 \ge 3(xy+yz+zx) \Rightarrow xy+yz+zx \le \frac{t^2}{3}; (x+y+z)^3 \ge 27xyz \Rightarrow xyz \le \frac{t^3}{27};$$

$$We \ have \ (x+1)(y+1)(z+1) = xyz+xy+yz+zx+x+y+z+1 \le \frac{t^3}{27} + \frac{t^2}{3} + t+1.$$

$$It \ suffices \ to \ prove \ that:$$

$$\frac{t^2}{3} + \frac{n}{\frac{t^3}{27} + \frac{t^2}{3} + t+1} \ge 3 + \frac{n}{8} \Leftrightarrow \frac{t^2}{3} + \frac{27n}{t^3 + 9t^2 + 27t + 27} \ge \frac{n + 24}{8} \Leftrightarrow$$

$$8t^2(t^3 + 9t^2 + 27t + 27) + 648n \ge (3n + 72)(t^3 + 9t^2 + 27t + 27) \Leftrightarrow$$

$$8t^5 + 72t^4 + (144 - 3n)t^3 - (27n + 432)t^2 - (81n + 1944)t + 567n - 1944 > 0$$

Which follows from $t-3 \ge 0$ and $8t^4 + 96t^3 + (432 - 3n)t^2 + (864 - 36n)t + 648 - 189n \ge 0$, for $n \le 32$.

The equality holds for x = y = z = 1, namely for a = b = c.

 $\Leftrightarrow (t-3)(8t^4+96t^3+(432-3n)t^2+(864-36n)t+648-189) > 0,$

We can formulate the following problem:

3. Let be $a, b, c \in (0, \infty)$. Prove that

$$\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} + \frac{32abc}{(a+b)(b+c)(c+a)} \ge 7.$$

Proof 1.

$$Denoting \ \frac{a}{b} = x, \frac{b}{c} = y, \frac{c}{a} = z, \ we \ have \ x, y, z > 0 \ and \ xyz = 1.$$

$$We \ write \ \frac{abc}{(a+b)(b+c)(c+a)} = \frac{1}{(\frac{a+b}{b})(\frac{b+c}{c})(\frac{c+a}{a})} = \frac{1}{(x+1)(y+1)(z+1)}.$$

$$The \ problem \ can \ be \ reformulated:$$

$$If \ x, y, z > 0 \ and \ xyz = 1, \ prove \ that \ x^2 + y^2 + z^2 + \frac{30}{(x+1)(y+1)(z+1)} \geq \frac{27}{4}.$$

$$Denoting \ x + y + z = t, \ we \ have \ t \geq 3\sqrt[3]{xyz} = 3; x^2 + y^2 + z^2 \geq \frac{(x+y+z)^2}{3} = \frac{t^2}{3}$$

$$(x+y+z)^2 \geq 3(xy+yz+zx) \Rightarrow xy+yz+zx \leq \frac{t^2}{3}; (x+y+z)^3 \geq 27xyz \Rightarrow xyz \leq \frac{t^3}{27};$$

$$We \ have \ (x+1)(y+1)(z+1) = xyz+xy+yz+zx+x+y+z+1 \leq \frac{t^3}{27} + \frac{t^2}{3} + t+1$$

$$\begin{split} & It \ \textit{suffices to prove that:} \\ & \frac{t^2}{3} + \frac{32}{\frac{t^3}{27} + \frac{t^2}{3} + t + 1} \geq 7 \Leftrightarrow \frac{t^2}{3} + \frac{864}{t^3 + 9t^2 + 27t + 27} \geq 7 \Leftrightarrow \\ & t^2(t^3 + 9t^2 + 27t + 27) + 2592 \geq 21(t^3 + 9t^2 + 27t + 27) \Leftrightarrow \\ & t^5 + 9t^4 + 6t^3 - 162t^2 - 567t + 2025 \geq 0 \Leftrightarrow (t - 3)(t^4 + 12t^3 + 42t^2 - 36t - 675) \geq 0, \\ & \textit{Which follows from } t - 3 \geq 0 \ \textit{and} \ t^4 + 12t^3 + 42t^2 - 36t - 675 > 0. \\ & \textit{The equality holds for } x = y = z = 1, \ \textit{namely for } a = b = c. \end{split}$$

Proof 2.

We put
$$n = 32$$
 in 2.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM 356 INEQUALITY IN TRIANGLE ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$rac{m_a^2 + m_b^2 + m_c^2}{m_a m_b + m_b m_c + m_c m_a} + rac{p^2}{p^2 + r(R-2r)} \geq 2.$$

Proposed by Adil Abdullayev - Baku - Azerbaidian

Proof.

We prove the following lemma:

Lemma.

2. In $\triangle ABC$

$$rac{m_a^2 + m_b^2 + m_c^2}{m_a m_b + m_b m_c + m_c m_a} \geq rac{6(p^2 - r^2 - 4Rr)}{5p^2 - 3r^2 - 12Rr}$$

Proof.

$$\sum m_a^2 = \frac{3}{4} \sum a^2 = \frac{3}{4} \cdot 2(p^2 - r^2 - 4Rr) = \frac{3}{2}(p^2 - r^2 - 4Rr)$$

Using the known inequality in triangle $4m_bm_c \leq 2a^2 + bc$, wherefrom:

$$\sum m_b m_c \le \frac{1}{4} \sum (2a^2 + bc) = \frac{1}{4} \left(2 \sum a^2 + \sum bc \right) = \frac{1}{2} \cdot (p^2 - r^2 - 4Rr) + \frac{1}{4} \cdot (p^2 + r^2 + 4Rr) = \frac{1}{4} (5p^2 - 3r^2 - 12Rr).$$

We obtain
$$\frac{m_a^2 + m_b^2 + m_c^2}{m_a m_b + m_b m_c + m_c m_a} \ge \frac{\frac{3}{2}(p^2 - r^2 - 4Rr)}{\frac{1}{4}(5p^2 - 3r^2 - 12Rr)} = \frac{6(p^2 - r^2 - 4Rr)}{5p^2 - 3r^2 - 12Rr}$$

Let's pass to solving the problem from enuntiation.

Based on Lemma it is enough to prove that:

$$\frac{6(p^2 - r^2 - 4Rr)}{5p^2 - 3r^2 - 12Rr} + \frac{p^2}{p^2 + r(R - 2r)} \ge 2 \Leftrightarrow p^4 + 5p^2r^2 - 16p^2Rr \ge 0 \Leftrightarrow p^2 \ge 16Rr - 5r^2$$

which is Gerretsen's inequality.

The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 1. can be devoloped:

3. In $\triangle ABC$

$$\frac{m_a^2 + m_b^2 + m_c^2}{m_a m_b + m_b m_c + m_c m_a} + n \cdot \frac{p^2}{p^2 + r(R - 2r)} \ge n + 1, \; where \; n \le 1$$

Proposed by Marin Chirciu - Romania

Base on Lemma it is enough to prove that:

$$\frac{6(p^2 - r^2 - 4Rr)}{5p^2 - 3r^2 - 12Rr} + \frac{np^2}{p^2 + r(R - 2r)} \ge n + 1 \Leftrightarrow$$

$$p^2 \left[p^2 + (10n - 5)r^2 - (5n + 11)Rr \right] + (12n - 12)R^2r^2 + (21 - 21n)Rr^3 + (6 - 6n)r^4 \geq 0.$$

We have $p^2+(10n-5)r^2-(5n+11)Rr \ge 0$, for $n \le 1$, because using Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$, we obtain:

$$p^2 + (10n - 5)r^2 - (5n + 11)Rr \ge 16Rr - 5r^2 + (10n - 5)r^2 - (5n + 11)Rr =$$

$$= (5 - 5n)Rr + (10n - 10)r^2 = 5(1 - n)r(R - 2r) \ge 0, \text{ obviously from } R - 2r \ge 0 \text{ and } 1 - n \ge 0.$$

$$\text{It suffices to prove that:}$$

$$(16Rr-5r^2)5(1-n)r(R-2r)+(12n-12)R^2r^2+(21-21n)Rr^3+(6-6n)r^4\geq 0 \Leftrightarrow \\ (1-n)\Big[(16R-5r)5(R-2r)+12R^2-21Rr-6r^2\Big]\geq \Leftrightarrow (1-n)(R-2r)(17R-7r)\geq 0,$$

obviously from Euler's inequality and condition $n \leq 1$.

Equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

SOLUTION INEQUALITY IN TRIANGLE - 413 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$\left(rac{m_a}{h_a} + rac{m_b}{h_b} + rac{m_c}{h_c}
ight)^3 \geq rac{27(a+b)(b+c)(c+a)}{8abc}$$

Proposed by Abdullayev - Baku - Azerbaidian

Remark.

The inequality can be strengthened:

2. In $\triangle ABC$

$$\left(rac{m_a}{h_a} + rac{m_b}{h_b} + rac{m_c}{h_c}
ight)^3 \geq rac{2p^2}{Rr}$$

Marin Chirciu - Romania

Proof.

We prove that following Lemma.

Lemma 1.

3. In $\triangle ABC$

$$rac{m_a}{h_a} + rac{m_b}{h_b} + rac{m_c}{h_c} \geq rac{p^2 + r^2 - 2Rr}{4Rr}.$$

Proof.

Using Tereşin's inequality $m_a \ge \frac{b^2 + c^2}{4R}$, formula $h_a = \frac{bc}{2R}$ and the known

inequality in triangle $\sum \frac{b^2+c^2}{bc} = \frac{p^2+r^2-2Rr}{2Rr}$, we obtain:

$$\sum \frac{m_a}{h_a} \ge \sum \frac{\frac{b^2 + c^2}{4R}}{\frac{bc}{2R}} = \frac{1}{2} \sum \frac{b^2 + c^2}{bc} = \frac{p^2 + r^2 - 2Rr}{4Rr}$$

Equality holds if and only if the triangle is equilateral.

2

Remark.

We can write the inequalities:

4. In $\triangle ABC$

$$rac{m_a}{h_a} + rac{m_b}{h_b} + rac{m_c}{h_c} \geq rac{p^2 + r^2 - 2Rr}{4Rr} \geq rac{7R - 2r}{2R} \geq 3.$$

Proof.

The first inequality is **Lemma 1**, the second inequality follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$, and the third inequality follows from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

Lemma 2.

5. In $\triangle ABC$

$$\left(rac{m_a}{h_a} + rac{m_b}{h_b} + rac{m_c}{h_c}
ight)^2 \geq rac{2p^2}{3Rr}$$

Proof.

Using **Lemma 1**, is enough to prove that:
$$\left(\frac{p^2+r^2-2Rr}{4Rr}\right)^2 \ge \frac{2p^2}{3Rr} \Leftrightarrow 3p^4+p^2(6r^2-44Rr)+12R^2r^2-12Rr^3+3r^4 \ge 0 \Leftrightarrow p^2(3p^2+6r^2-44Rr)+3r^2(2R-r)^2 \ge 0$$

We distinguish the cases:

- 1) If $3p^2 + 6r^2 44Rr \ge 0$, the inequality is obvious. 2) If $3p^2 + 6r^2 44Rr < 0$, inequality we can rewrite:

$$p^2(44Rr-6r^2-3p^2) \leq 3r^2(2R-r)^2$$
, true from Gerretsen's inequality:

$$(4R^2 + 4Rr + 3r^2) \Big[44Rr - 6r^2 - 3(16Rr - 5r^2) \Big] \le 3r^2 (2R - r)^2 \Leftrightarrow$$

$$\Leftrightarrow 4R^3 - 2R^2r - 9Rr^2 - 6r^3 \ge 0 \Leftrightarrow (R - 2r)(4R^2 + 6Rr + 3r^2) \ge 0$$

obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

Remark 2.

We can rewrite the inequalities:

6. In $\triangle ABC$

$$\left(rac{m_a}{h_a}+rac{m_b}{h_b}+rac{m_c}{h_c}
ight)^2 \geq rac{2p^2}{3Rr} \geq rac{9(a+b)(b+c)(c+a)}{8abc} \geq 9.$$

Proof.

First inequality is Lemma 2.

Let's prove the second inequality.

Using the known identities in triangle: $(a+b)(b+c)(c+a) = 2p(p^2+r^2+2Rr)$ and abc = 4Rrp, the second inequality:

$$\frac{2p^2}{3Rr} \ge \frac{9 \cdot 2p(p^2 + r^2 + 2Rr)}{8 \cdot 4Rrp} \Leftrightarrow 32p^2 \ge 27(p^2 + r^2 + 2Rr) \Leftrightarrow 5p^2 \ge 27(r^2 + 2Rr)$$

which follows from Gerretsen's inequality: $p^2 \ge 16Rr - 5r^2$ and Euler's inequality $R \ge 2r$. Equality holds if and only if the triangle is equilateral.

The third inequality is the well known inequality $(a+b)(b+c)(c+a) \ge 8abc$ (Cesaro)

We've obtained a strengthened inequality in triangle $\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \ge 3$.

Let's pass to solving inquality 2:
$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^3 \ge \frac{2p^2}{Rr}$$

Base on Lemma 2 and the the last inequality from Remark 1 we obtain:

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^3 = \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^2 \cdot \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right) \geq \frac{2p^2}{3Rr} \cdot 3 = \frac{2p^2}{Rr}$$
 Equality holds if and only if the triangle is equilateral.

Remark 3.

Inequality 2 is stronger then inequality 1:

7. In $\triangle ABC$

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^3 \ge \frac{2p^2}{Rr} \ge \frac{27(a+b)(b+c)(c+a)}{8abc}$$

Proof.

The first inequality is **6**.

Let's prove the second inequality.

Using the known identities in triangle: $(a+b)(b+c)(c+a) = 2p(p^2+r^2+2Rr)$ and abc = 4Rrp, the second inequality:

$$\frac{2p^2}{Rr} \ge \frac{27 \cdot 2p(p^2 + r^2 + 2Rr)}{8 \cdot 4Rrp} \Leftrightarrow 32p^2 \ge 27(p^2 + r^2 + 2Rr) \Leftrightarrow 5p^2 \ge 27(r^2 + 2Rr)$$

which follows from Gerretsen's inequality: $p^2 \ge 16Rr - 5r^2$ and Euler's inequality $R \ge 2r$. Equality holds if and only if the triangle is equilateral.

Remark 4.

We can write the inequalities:

8. In $\triangle ABC$

$$\left(rac{m_a}{h_a} + rac{m_b}{h_b} + rac{m_c}{h_c}
ight)^3 \geq rac{2p^2}{Rr} \geq rac{27(a+b)(b+c)(c+a)}{8abc} \geq 27$$

4

Proof.

See 7 and Cesaro's inequality $(a+b)(b+c)(c+a) \ge 8abc$

Remark 5.

Inequality 2 can also be strengthened:

9. In $\triangle ABC$

$$\left(rac{m_a}{h_a} + rac{m_b}{h_b} + rac{m_c}{h_c}
ight)^3 \geq rac{p^2}{3Rr}\Big(7 - rac{2r}{R}\Big)$$

Proof.

Base on Lemma 2 and on the second inequality from Remark 1 we obtain:

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^3 = \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^2 \cdot \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right) \geq \frac{2p^2}{3Rr} \cdot \frac{7R - 2r}{2R} = \frac{p^2}{3Rr} \left(7 - \frac{2r}{R}\right)$$

Equality holds if and only if the triangle is equilateral.

Remark 6.

Inequality 9. is stronger then inequality 2.:

10. In $\triangle ABC$

$$\left(rac{m_a}{h_a}+rac{m_b}{h_b}+rac{m_c}{h_c}
ight)^3 \geq rac{p^2}{3Rr}\Big(7-rac{2r}{R}\Big) \geq rac{2p^2}{Rr}$$

Proof.

See inequality 9. and Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

Remark 7.

We can write the inequalities:

11. In $\triangle ABC$

$$\Big(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\Big)^3 \geq \frac{p^2}{3Rr}\Big(7 - \frac{2r}{R}\Big) \geq \frac{2p^2}{Rr} \geq \frac{27(a+b)(b+c)(c+a)}{8abc} \geq 27.$$

Proof.

See 10. and 8.

Equality holds if and only if the triangle is equilateral.

We've obtained again a strengthening of the well known inequality in triangle

$$\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c} \ge 3$$

Finally we can propose a development of inequality 2.:

12. In $\triangle ABC$

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^n \ge 3^{n-3} \cdot \frac{2p^2}{Rr}, \text{ where } n \ge 2.$$

Proof.

Base on Lemma 2 and the last inequality from Remark 1 we obtain:

$$\left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^n = \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^2 \cdot \left(\frac{m_a}{h_a} + \frac{m_b}{h_b} + \frac{m_c}{h_c}\right)^{n-2} \geq \frac{2p^2}{3Rr} \cdot 3^{n-2} = 3^{n-3} \cdot \frac{2p^2}{Rr}.$$
 Equality holds if and only if the triangle is equilateral.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

 $E ext{-}mail\ address$: dansitaru630yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

INEQUALITY IN TRIANGLE - 449 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$\frac{1}{a(p-a)}+\frac{1}{b(p-b)}+\frac{1}{c(p-c)}\geq \frac{1}{2Rr}$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

We prove the following lemma:

Lemma

2. In $\triangle ABC$

$$\frac{1}{a(p-a)} + \frac{1}{b(p-b)} + \frac{1}{c(p-c)} = \frac{p^2 + (4R+r)^2}{4Rrp^2}$$

Proof

We have
$$\sum \frac{1}{a(p-a)} = \frac{\sum bc(p-b)(p-c)}{abc(p-a)(p-b)(p-c)} = \frac{r^2[p^2 + (4R+r)^2]}{4Rrp \cdot r^2p} = \frac{p^2 + (4R+r)^2}{4Rrp^2}$$

Let's pass to solving the inequality from enuntiation.

Using the **Lemma** we write the inequality:

$$\frac{p^2 + (4R + r)^2}{4Rrn^2} \ge \frac{1}{2Rr} \Leftrightarrow 3p^2 \ge (4R + r)^2$$

(Doucet's inequality, which follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$

and Euler's inequality $R \geq 2r$).

The equality holds if and only if the triangle is equilateral.

Remark 1.

The inequality can be strengthened

3. In $\triangle ABC$

$$\frac{1}{a(p-a)} + \frac{1}{b(p-b)} + \frac{1}{c(p-c)} \ge \frac{5R-2r}{4R^2r}$$

2

Proof.

Using the **Lemma** we write the inequality:

$$\frac{p^2+(4R+r)^2}{4Rrp^2} \geq \frac{5R-2r}{4R^2r} \Leftrightarrow p^2 \leq \frac{R(4R+r)^2}{2(2R-r)}$$

(Blundon-Gerretsen's inequality, which follows from Gergonne's identity

$$H\Gamma^2 = 4R^2 \left[1 - \frac{2p^2(2R-r)}{R(4R+r)^2} \right]$$
, where Γ is Gergonne's point).

The equality holds if and only if the triangle is equilateral.

Remark 2.

Inequality 3. is stronger then inequality 1.:

4. In $\triangle ABC$

$$\frac{1}{a(p-a)} + \frac{1}{b(p-b)} + \frac{1}{c(p-c)} \geq \frac{5R-2r}{4R^2r} \geq \frac{1}{2Rr}$$

Proof.

The first inequality is inequality 3.

The second inequality is equivalent with $R \geq 2r$ (Euler's inequality).

The equality holds if and only if the triangle is equilateral.

Remark 3.

Let's find an inequality having an opposite sense.

5. In $\triangle ABC$

$$\frac{1}{a(p-a)} + \frac{1}{b(p-b)} + \frac{1}{c(p-c)} \leq \frac{1}{2r^2}.$$

Proof.

Using the **Lemma** we write the inequality:

$$\frac{p^2 + (4R + r)^2}{4Rrp^2} \le \frac{1}{2r^2} \Leftrightarrow p^2(2R - r) \ge r(4R + r)^2$$

which follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$.

It remains to prove that:

$$(16Rr-5r^2)(2R-r) \ge r(4R+r)^2 \Leftrightarrow 16R^2-17Rr+2r^2 \ge 0 \Leftrightarrow (R-2r)(8R-r) \ge 0,$$
 obviously form Euler's inequality $R \ge 2r$.

The equality holds if and only if the triangle is equilateral.

Remark 6.

The double inequality take place:

6. In ΔABC

$$rac{5R-2r}{4R^2r} \leq rac{1}{a(p-a)} + rac{1}{b(p-b)} + rac{1}{c(p-c)} \leq rac{1}{2r^2}$$
 $Marin\ Chirciu\ -\ Romania$

Proof.

See inequalities 3. and 5.

The equality holds if and only if the triangle is equilateral.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

 $E ext{-}mail\ address: dansitaru63@yahoo.com}$

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

INEQUALITY IN TRIANGLE - 447 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$\frac{2m_am_bm_c}{h_ah_bh_c}+1\geq\frac{(r_a+r_b+r_c)^2}{r_ar_b+r_br_c+r_cr_a}$$

Proposed by Adil Abdullayev - Baku - Azerbaidian

We prove the following lemmas:

Lemma 1.

2. In $\triangle ABC$

$$rac{m_a m_b m_c}{h_a h_b h_c} \geq rac{R}{2r}.$$

Proof.

(1) From
$$m_a \ge \sqrt{p(p-a)} \Rightarrow m_a m_b m_c \ge pS = rp^2$$

(2) and from
$$h_a = \frac{2S}{a} \Rightarrow h_a h_b h_c = \frac{2r^2 p^2}{R}$$

From (1) and (2) it follows
$$\frac{m_a m_b m_c}{h_a h_b h_c} \ge \frac{rp^2}{\frac{2r^2 p^2}{R}} = \frac{R}{2r}$$
.

Lemma 2.

3. In $\triangle ABC$

$$p^2 \ge \frac{r(4R+r)^2}{R+r}$$

Proof.

Using Yang Xue Zhi's inequality
$$p^2 \ge 16Rr - 5r^2 + \frac{r^2(R-2r)}{R-r}$$

(stronger inequality then Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$), it remains to prove that:

$$16Rr - 5r^2 + \frac{r^2(R - 2r)}{R - r} \ge \frac{r(4R + r)^2}{R + r} \Leftrightarrow \frac{r(16R^2 - 20Rr + 3r^2)}{R - r} \ge \frac{r(4R + r)^2}{R + r} \Leftrightarrow \frac{r$$

 $2R^2 - 5Rr + 2r^2 \geq 0 \Leftrightarrow (R - 2r)(2R - r) \geq 0, \ obviously \ from \ Euler's \ inequality \ R \geq 2r.$

Let's pass to solving the inequality from enunciation. Using **Lemma 1** and the known identities in triangle $r_a + r_b + r_c = 4R + r \text{ and } r_a r_b + r_b r_c + r_c r_a = p^2 \text{ it suffices to prove that}$ $\frac{R}{r} \geq \frac{(4R+r)^2}{p^2} \Leftrightarrow p^2 \geq p^2 \geq \frac{r(4R+r)^2}{R+r} \text{ (Lemma 2)}.$ Equality holds if and only if the triangle is equilateral.

Remark.

Inequality can be devoloped:

4. In $\triangle ABC$

$$\lambda \cdot rac{m_a m_b m_c}{h_a h_b h_c} + 3 - \lambda \geq rac{(r_a + r_b + r_c)^2}{r_a r_b + r_b r_c + r_c r_a}, \; where \; \lambda \geq 2.$$

Proof.

We have
$$\lambda \cdot \frac{m_a m_b m_c}{h_a h_b h_c} + 3 - \lambda \cdot \frac{m_a m_b m_c}{h_a h_b h_c} + 1 \ge \frac{(r_a + r_b + r_c)^2}{r_a r_b + r_b r_c + r_c r_a}$$
where the first inequality is equivalent with $(\lambda - 2) \left(\frac{m_a m_b m_c}{h_a h_b h_c} - 1 \right) \ge 0$

obviously from $\frac{m_a m_b m_c}{h_a h_b h_c} \ge 1$ and the condition $\lambda \ge 2$, and the second inequality is inequality 1. Equality holds if and only if the triangle is equilateral.

Remark.

For $\lambda = 2$ in inequality 4. we obtain inequality 1.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

INEQUALITY IN TRIANGLE - 435 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. $\triangle ABC$

$$\sum \frac{a^2 \sin^2 A}{\sin B \sin C} \ge 36r^2.$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania

We prove the following lemma:

Lemma.

2. In $\triangle ABC$

$$\sum \frac{a^4}{bc} = \frac{p^4 - 10p^2(r^2 + Rr) + 5r^2(r^2 + 6Rr + 8R^2)}{2Rr}$$

Proof.

$$\sum \frac{a^4}{bc} = \frac{\sum a^5}{abc} = \frac{2p[p^4 - 10p^2(r^2 + Rr) + 5r^2(r^2 + 6Rr + 8R^2)]}{4Rrp} = \frac{p^4 - 10p^2(r^2 + Rr) + 5r^2(r^2 + 6Rr + 8R^2)}{2Rr}$$

Let's pass to solving the inequality from enuntiation.

Using the sines theorem and the **Lemma** above, the inequality from enunciation can be written:

$$\frac{p^4 - 10p^2(r^2 + Rr) + 5r^2(r^2 + 6Rr + 8R^2)}{2Rr} \ge 36r^2 \Leftrightarrow \Leftrightarrow p^2(p^2 - 10r^2 - 10Rr) + r^2(5r^2 - 42Rr + 40R^2) \ge 0$$

We distinguish the following cases:

1. If $p^2 - 10r^2 - 10Rr \ge 0$, the inequality is obviously.

2. If $p^2 - 10r^2 - 10Rr < 0$, the inequality can be rewritten: $p^2(10Rr + 10r^2 - p^2) \le r^2(5r^2 - 42Rr + 40R^2)$, which follows from Gerretsen's inequality: $16Rr - 5r^2 \le p^2 \le 4R^2 + 4Rr + 3r^2$. It remains to prove that:

$$(4R^2 + 4Rr + 3r^2)(10Rr + 10r^2 - 16Rr + 5r^2) \le r^2(5r^2 - 42Rr + 40R^2) \Leftrightarrow$$

$$6R^3 + R^2r - 21Rr^2 - 10r^3 \ge 0 \Leftrightarrow (R - 2r)(6R^2 + 13Rr + 5r^2) \ge 0$$

obviously from Euler's inequality R > 2r.

The inequality holds if and only if the triangle is equilateral.

Remark.

Inequality can be strengthened:

3. In $\triangle ABC$

$$\sum \frac{a^2 \sin^2 A}{\sin B \sin C} \ge 18Rr.$$

Marin Chirciu - Romania

Proof. Using the sines theorem and the Lemma above, the inequality from enunciation can be written:

$$\begin{split} \frac{p^2 - 10p^2(r^2 + Rr) + 5r^2(r^2 + 6Rr + 8R^2)}{2Rr} &\geq 18Rr \Leftrightarrow \\ &\Leftrightarrow p^2(p^2 - 10r^2 - 10Rr) + r^2(5r^2 + 30Rr + 4R^2) \geq 0. \end{split}$$

We distinguish the following cases:

1. If $p^2-10r^2-10Rr\geq 0$, the inequality is obviously. 2. If $p^2-10r^2-10Rr<0$, inequality can be rewritten: $p^2(10Rr+10r^2-p^2)\leq r^2(5r^2+30Rr+4R^2)$, which follows from Gerretsen's inequality: $16Rr-5r^2\leq p^2\leq 4R^2+4Rr+3r^2$. It remains to prove that:

$$(4R^2 + 4Rr + 3r^2)(10Rr + 10r^2 - 16Rr + 5r^2) \le r^2(5r^2 + 30Rr + 4R^2) \Leftrightarrow$$

 $6R^3 - 8R^2r - 3Rr^2 - 10r^3 \ge 0 \Leftrightarrow (R - 2r)(6R^2 - 4Rr + 5r^2) \ge 0$, obviously form Euler's inequality $R \ge 2r$. The inequality holds if and only if the triangle is equilateral.

Remark.

Inequality 3. is stronger then inequality 1.:

4. In $\triangle ABC$

$$\sum \frac{a^2 \sin^2 A}{\sin B \sin C} \ge 18Rr \ge 36r^2.$$

Proof. The first inequality is inequality 3., and the second inequality is equivalent with R > 2r (Euler's inequality).

Equality holds if and only if the triangle is equilateral.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM TRIANGLE MARATHON - 377 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$a\sqrt{bc} + b\sqrt{ca} + c\sqrt{ab} \ge 4r(4R+r)$$

Proposed by Kevin Soto Palacios - Huarmey - Peru

Proof.

Using the means inequality we obtain:

$$a\sqrt{bc} + b\sqrt{ca} + c\sqrt{ab} \ge 3\sqrt[3]{(abc)^2} = 3\sqrt[3]{(4Rrp)^2} \ge 4r(4R+r),$$

where the last inequality is equivalent with:

$$27 \cdot (4Rrp)^2 \ge 64r^3(4Rr+r)^3 \Leftrightarrow 27R^2p^2 \ge 4r(4R+r)^3$$

which follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$. It remains to prove that:

$$27R^{2}(16Rr - 5r^{2}) \ge 4r(4R + r)^{3} \Leftrightarrow 176R^{3} - 327R^{2}r - 48Rr^{2} - 4r^{3} \ge 0 \Leftrightarrow$$

$$\Leftrightarrow (R-2r)(176R^2+25Rr+2r^2) \geq 0, \ obviously \ from \ Euler's \ inequality \ R \geq 2r.$$

The equality holds if and only if the triangle is equilateral.

Remark.

Inequality 1. can be strengthened:

2. In *ABC*

$$a\sqrt{bc} + b\sqrt{ca} + c\sqrt{ab} \ge 18Rr.$$

Proof.

Using means inequality we obtain:

$$a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab}\geq 3\sqrt[3]{(abc)^2}=3\sqrt[3]{(4Rrp)^2}\geq 18Rr,$$

where the last inequality is equivalent with:

$$(4Rrp)^2 \ge (6Rr)^3 \Leftrightarrow 16R^2r^2p^2 \ge 216R^3r^3 \Leftrightarrow 2p^2 \ge 27Rr$$

which follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$. It remains to prove that:

$$2(16Rr - 5r^2) \ge 27Rr \Leftrightarrow R \ge 2r$$
 (Euler's inequality).

The equality holds if and only if the triangle is equilateral.

Remark 2.

Inequality 1. is stronger then inequality 2.:

3. In $\triangle ABC$

$$a\sqrt{bc} + b\sqrt{ca} + c\sqrt{ab} \ge 18Rr \ge 4r(4R+r)$$

Proof.

See inequality 2. and Euler's inequality $R \geq 2r$. The equality holds if and only if the triangle is equilateral.

Remark 3.

Inequality 1. can be developed:

4. In $\triangle ABC$

$$a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab}\geq r\Big[nR+(36-2n)r\Big],$$
 where $n\leq 19$

$$Proposed\ by\ Marin\ Chirciu\ -\ Romania$$

Proof.

Using the means inequality we obtain:

$$a\sqrt{bc} + b\sqrt{ca} + c\sqrt{ab} \ge 3\sqrt[3]{(abc)^2} = 3\sqrt[3]{(4Rrp)^2} \ge r\Big[nR + (36-2n)r\Big],$$

where the last inequality is equivalent with:

$$27 \cdot (4Rrp)^2 \ge r^3 \Big[nR + (36 - 2n)r \Big]^3 \Leftrightarrow 27 \cdot 16R^2 r^2 p^2 \ge 64r^3 \Big[nR + (36 - 2n)r \Big]^3 \Leftrightarrow 432R^2 p^2 \ge r \Big[nR + (36 - 2n)r \Big]^3$$

which follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$. It remains to prove that:

$$432R^2(16Rr - 5r^2) \geq 4 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16R - 5r) \geq \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 4 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 4 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 4 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 4 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 4 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^3 \Leftrightarrow 432R^2(16Rr - 5r^2) \geq 2 \Big[nR + (36 - 2n)r\Big]^2 \Leftrightarrow 4 \Big[nR + (36 -$$

$$6912R^{3} - 2160R^{2}r \ge (nR)^{3} + 3 \cdot (nR)^{2} \cdot (36 - 2n)r + 3(nR) \left[(36 - 2n)r \right]^{2} + \left[(36 - 2n)r \right]^{3} \Leftrightarrow (6912 - n^{3})R^{3} + (6n^{3} - 108n^{2} - 2160)R^{2}r + (-12n^{3} + 432n^{2} - 3888n)Rr^{2} + (8n^{3} - 432n^{2} + 7776n - 46656)r^{3} \ge 0 \Leftrightarrow$$

$$\Leftrightarrow (R-2r)\Big[(6912-n^3)R^2 + (4n^3 - 108n^2 + 11664)Rr + (-4n^3 + 216n^2 + 23328)r^2\Big] \ge 0$$
obviously from Euler's inequality $R \ge 2r$ and the condition $n \ge 19$

which assures the positivity of the right parenthesis.

The equality holds if and only if the triangle is equilateral.

Note.

For n = 16 we obtain inequality 1., and for n = 18 we obtain inequality 2. Let's find an inequality having an opposite sense.

5. In $\triangle ABC$

$$a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab}\leq 4(R+r)^2.$$

Proof.

Using inequality $xy+yz+zx \le x^2+y^2+z^2$ for $x=\sqrt{bc}, y=\sqrt{ca}, z=\sqrt{ab}$ we obtain: $a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab} \le ab+bc+ca = p^2+r^2+4Rr \le 4R^2+4Rr+3r^2+r^2+4Rr = 4(R+r)^2$. where the last inequality follows from Gerretsen's inequality $p^2 \le 4R^2+4Rr+3r^2$. The equality holds if and only if the triangle is equilateral.

We can write the double inequality:

6. In $\triangle ABC$

$$18Rr \le a\sqrt{bc} + b\sqrt{ca} + c\sqrt{ab} \le 4(R+r)^2$$

Proof.

See inequalities 2. and 5.

The equality holds if and only if the triangle is equilateral.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

 $E ext{-}mail\ address: dansitaru63@yahoo.com}$

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM JP.080 RMM NUMBER 6 AUTUMN 2017 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. Prove that in any triangle ABC,

$$\frac{a^2 + b^2 + c^2}{a + b + c} \Big(\frac{1}{m_a} + \frac{1}{m_b} + \frac{1}{m_c} \Big) \ge 2\sqrt{3}$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Proof.

We use the following lemma:

Lemma 1. In $\triangle ABC$

$$\Big(\frac{1}{m_a} + \frac{1}{m_b} + \frac{1}{m_c}\Big)^2 \geq \frac{108}{5p^2 - 3r^2 - 12Rr}$$

Proof.

Using the inequality $(x+y+z)^2 \geq 3(xy+yz+zx)$, with $x=\frac{1}{m}$, $y=\frac{1}{m}$, $z=\frac{1}{m}$ we obtain

$$\left(\frac{1}{m_a} + \frac{1}{m_b} + \frac{1}{m_c}\right)^2 \ge 3\left(\frac{1}{m_a m_b} + \frac{1}{m_b m_c} + \frac{1}{m_c m_a}\right) \stackrel{(1)}{\ge} 3\left(\frac{4}{2a^2 + bc} + \frac{4}{2b^2 + ca} + \frac{4}{2c^2 + ab}\right) \ge \frac{108}{2a^2 + bc + 2b^2 + ca + 2c^2 + ab} = \frac{108}{2(a^2 + b^2 + c^2) + ab + bc + ca} = \frac{108}{2 \cdot 2(p^2 - r^2 - 4Rr) + p^2 + r^2 + 4Rr} = \frac{108}{5p^2 - 3r^2 - 12Rr}$$

where inequality (1) follows from $4m_bm_c \le 2a^2 + bc$ and analogs.

Equality holds if and only if the triangle is equilateral.

Let's pass to solving the inequality from enuntiation.

Using **Lemma 1** and
$$\sum a = 2p, \sum a^2 = 2(p^2 - r^2 - 4Rr)$$
 it is enough to prove that
$$\left(\frac{2(p^2 - r^2 - 4Rr)}{2p}\right)^2 \cdot \frac{108}{5p^2 - 3r^2 - 12Rr} \ge 12 \Leftrightarrow 9(p^2 - r^2 - 4Rr)^2 \ge p^2(5p^2 - 3r^2 - 12Rr) \Leftrightarrow \frac{1}{5} + \frac$$

 $\Leftrightarrow p^2(4p^2-15r(4R+r))+9r^2(4R+2)^2\geq 0$. We distinguish the cases:

Case 1. If $4p^2 - 15r(4R + r) \ge 0$ the inequality is obvious. Case 2. If $4p^2 - 15r(4R + r) < 0$ we write the inequality

 $p^2(15r(4R+r)-4p^2) \leq 9r^2(4R+r)^2$, which follows from Gerretsen's inequality $16Rr-5r^2 \leq p^2 \leq 4R^2+4Rr+3r^2$. It remains to prove that:

$$(4R^2+4Rr+3r^2)(15r(4R+r)-4(16Rr-5r^2)) \leq 9r^2(4R+r)^2 \Leftrightarrow \\ \Leftrightarrow (4R^2+4Rr+3r^2)(-4Rr+35r^2) \leq 9r^2(4R+r)^2 \Leftrightarrow 4R^3+5R^2r-14Rr^2-24r^3 \geq 0 \Leftrightarrow \\ \Leftrightarrow (R-2r)(4R^2+13Rr+12r^2) \geq 0, \text{ obviously from Euler's inequality } R \geq 2r \\ \text{Equality holds if and only if the triangle is equilateral.}$$

Remark 1.

Inequality 1 can be developed:

3. In $\triangle ABC$

$$\frac{a^2 + b^2 + c^2}{a + b + c} \Big(\frac{1}{m_a + m_b} + \frac{1}{m_b + m_c} + \frac{1}{m_c + m_a} \Big) \geq \sqrt{3}$$

Proof.

Using the following lemma:

Lemma 2.

4. In $\triangle ABC$

$$\Big(\frac{1}{m_a+m_b}+\frac{1}{m_b+m_c}+\frac{1}{m_c+m_a}\Big)^2 \geq \frac{36}{7p^2-5r^2-20Rr}.$$

Proof.

$$Using the inequality $(x+y+z)^2 \geq 3(xy+yz+zx),$

$$with \ x = \frac{1}{m_a+m_b}, y = \frac{1}{m_b+m_c}, z = \frac{1}{m_c+m_a} \text{ we obtain}$$

$$\left(\sum \frac{1}{m_b+m_c}\right)^2 \geq 3\left(\sum \frac{1}{(m_a+m_b)(m_a+m_c)}\right) \stackrel{Bergstrom}{\geq} 3 \cdot \frac{9}{\sum (m_a+m_b)(m_a+m_c)} =$$

$$= \frac{27}{\sum (m_a^2+m_am_b+m_bm_c+m_cm_a)} = \frac{27}{\sum m_a^2+3\sum m_bm_c} \stackrel{(1)}{\geq} \frac{27}{\frac{3}{4}\sum a^2+\frac{3}{4}\sum (2a^2+bc)} =$$

$$= \frac{36}{3\sum a^2+\sum bc} = \frac{36}{3\cdot 2(p^2-r^2-4Rr)+p^2+r^2+4Rr} = \frac{36}{7p^2-5r^2-20Rr}$$

$$\text{where inequality (1) follows from } 4m_bm_c \leq 2a^2+bc \text{ and analogs.}$$$$

Equality holds if and only if the triangle is equilateral.

Let's pass to solving inequality 3.

Using **Lemma 2** and $\sum a=2p, \sum a^2=2(p^2-r^2-4Rr)$ it is enough to prove that $\left(\frac{2(p^2-r^2-4Rr)^2}{2p}\right)^2\cdot\frac{36}{7p^2-5r^2-20Rr}\geq 3 \Leftrightarrow 12(p^2-r^2-4Rr)^2\geq p^2(7p^2-5r^2-20Rr) \Leftrightarrow p^2(5p^2-19r(4R+r))+12r^2(4R+r)^2\geq 0.$ We distinguish the following cases:

Case 1. If
$$5p^2 - 19r(4R + r) \ge 0$$
 inequality is obvious.
Case 2. If $5p^2 - 19r(4R + r) < 0$ inequality can be rewritten
$$p^2(19r(4R + r) - 4p^2) \le 12r^2(4R + r)^2, \text{ which follows from Gerretsen's inequality}$$

$$16Rr - 5r^2 \le p^2 \le 4R^2 + 4Rr + 3r^2. \text{ It remains to prove that:}$$

$$(4R^2 + 4Rr + 3r^2)(19r(4R + r) - 5(16Rr - 5r^2)) \le 9r^2(4R + r)^2 \Leftrightarrow$$

$$\Leftrightarrow (4R^2 + 4Rr + 3r^2)(-4Rr + 44r^2) \le 12r^2(4R + r)^2 \Leftrightarrow 4R^3 + 8R^2r - 17Rr^2 - 30r^3 \ge 0 \Leftrightarrow$$

$$\Leftrightarrow (R - 2R)(4R^2 + 16Rr + 15r^2) \ge 0, \text{ obviously from Euler's inequality } R \ge 2r.$$
Equality holds if and only if the triangle is equilateral.

Remark 2.

Inequality 3. can be developed:

5. In
$$\triangle ABC$$

$$\frac{a^2+b^2+c^2}{a+b+c}\Big(\frac{1}{m_a+\lambda m_b}+\frac{1}{m_b+\lambda m_c}+\frac{1}{m_c+\lambda m_a}\Big)\geq \frac{2\sqrt{3}}{1+\lambda}, \ \textit{where} \ \lambda\geq 0$$

$$Proposed \ \textit{by Marin Chirciu - Romania}$$

Proof.

We use the following lemma:

Lemma 3.

6. In
$$\triangle ABC$$
, for $\lambda > 0$,

$$\begin{split} & \left(\frac{1}{m_a + \lambda m_b} + \frac{1}{m_b + \lambda m_c} + \frac{1}{m_c + \lambda m_a}\right)^2 \geq \\ \geq & \frac{108}{(5\lambda^2 + 11\lambda + 5)p^2 - (3\lambda^2 + 9\lambda + 3)r^2 - (12\lambda^2 + 36\lambda + 12)Rr} \end{split}$$

Proof.

$$\begin{aligned} & \text{Using the inequality } (x+y+z)^2 \geq 3(xy+yz+zx), \\ & \text{with } x = \frac{1}{m_a + \lambda m_b}, y = \frac{1}{m_b + \lambda_c}, z = \frac{1}{m_c + \lambda m_a} \text{ we obtain} \\ & \left(\sum \frac{1}{m_b + \lambda m_c}\right)^2 \geq 3 \left(\sum \frac{1}{(m_a + \lambda m_b)(\lambda m_a + m_c)}\right) \overset{Bergstrom}{\geq} 3 \cdot \frac{9}{\sum (m_a + \lambda m_b)(\lambda m_a + m_c)} = \\ & = \frac{27}{\sum (\lambda m_a^2 + \lambda^2 m_a m_b + \lambda m_b m_c + m_c m_a)} = \frac{27}{\lambda \sum m_a^2 + (\lambda^2 + \lambda + 1) \sum m_b m_c} \overset{(1)}{\geq} \\ & \stackrel{(1)}{\geq} \frac{27}{\frac{3\lambda}{4} \sum a^2 + \frac{\lambda^2 + \lambda + 1}{4} \sum (2a^2 + bc)} = \frac{108}{(2\lambda^2 + 5\lambda + 2) \sum a^2 + (\lambda^2 + \lambda + 1) \sum bc} = \\ & = \frac{108}{(2\lambda^2 + 5\lambda + 2) \cdot 2(p^2 - r^2 - 4Rr) + (\lambda^2 + \lambda + 1)(p^2 + r^2 + 4Rr)} = \\ & = \frac{108}{(5\lambda^2 + 11\lambda + 5)p^2 - (3\lambda^2 + 9\lambda + 3)r^2 - (12\lambda^2 + 36\lambda + 12)Rr} \\ & \text{where inequality (1) follows from } 4m_b m_c \leq 2a^2 + bc \text{ and analogs.} \end{aligned}$$

Equality holds if and only if the triangle is equilateral.

Let's pass to solve inequality 5.

Using **Lemma 3** and $\sum a = 2p$, $\sum a^2 = 2(p^2 - r^2 - 4Rr)$ it is enough to prove that

$$\left(\frac{2(p^2-r^2-4Rr)}{2p}\right)^2 \cdot \frac{108}{(5\lambda^2+11\lambda+5)p^2-(3\lambda^2+9\lambda+3)r^2-(12\lambda^2+36\lambda+12)Rr} \ge \frac{12}{1+\lambda}$$

$$\Leftrightarrow 9(\lambda+1)^2(p^2-r^2-4Rr)^2 \ge p^2((5\lambda^2+11\lambda+5)p^2-(36\lambda^2+9\lambda+3)r^2-(12\lambda^2+36\lambda+12))$$

$$\Leftrightarrow p^2((4\lambda^2+7\lambda+4)p^2-3(5\lambda^2+9\lambda+5)r(4Rr+r))+9(\lambda+1)^2r^2(4R+r)^2 \ge 0$$
We distinguish the following cases:

Case 1. If $(4\lambda^2+7\lambda+4)p^2-3(5\lambda^2+9\lambda+5)r(4R+r)\geq 0$ inequality is obvious. Case 2. If $(4\lambda^2+7\lambda+4)p^2-3(5\lambda^2+9\lambda+5)r(4R+r)<0$ we write the following inequality:

$$p^{2}(3(5\lambda^{2} + 9\lambda + 5)r(4R + r) - (4\lambda^{2} + 7\lambda + 4)p^{2}) \le 9(\lambda + 1)^{2}r^{2}(4R + r)^{2}$$

which follows from Blundon-Gerretsen's inequality $16Rr - 5r^2 \le p^2 \le \frac{R(4R+r)^2}{2(2R-r)}$

It remains to prove that:

$$\begin{split} \frac{R(4R+r)^2}{2(2R-r)} \cdot (3(5\lambda^2+9\lambda+5)r(4R+r) - (4\lambda^2+7\lambda+4)p^2) &\leq 9(\lambda+1)^2 r^2 (4R+r)^2 \Leftrightarrow \\ &\Leftrightarrow (4\lambda^2+4\lambda+4)R^2 + (\lambda^2+10\lambda+1)Rr - (18\lambda^2+36\lambda+18)r^2 \geq 0 \Leftrightarrow \\ \Leftrightarrow (R-2r)((4\lambda^2+4\lambda+4)R+(9\lambda^2+18\lambda+9)r) \geq 0, \ obviously \ from \ R \geq 2r \ (Euler). \\ &\qquad \qquad Equality \ holds \ if \ and \ only \ if \ the \ triangle \ is \ equialteral. \end{split}$$

Note.

For $\lambda = 0$ in inequality 5. we obtain inequality 1., and for the case $\lambda = 1$ we obtain 3.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM JP.088 RMM NUMBER 6 AUTUMN 2017 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. Let ABC be an acute triangle. Prove that

$$\sum \sqrt{\cos A \sin B \sin C} \leq \frac{3}{2} \sqrt{\frac{3}{2}}$$

Proposed by George Apostolopoulos - Messolonghi - Greece

Proof.

Using CBS inequality we obtain

$$\left(\sum \sqrt{\cos A \cdot \sin B \cdot \sin C}\right)^2 \leq \sum \cos A \cdot \sum \sin B \sin C = \left(1 + \frac{r}{R}\right) \cdot \frac{p^2 + r^2 + 4Rr}{4R^2} < \frac{3}{2} \cdot \frac{9}{4} = \left(\frac{3}{2}\sqrt{\frac{3}{2}}\right)^2,$$

where the last inequality follows from:

1)
$$1 + \frac{r}{R} \le \frac{3}{2} \Leftrightarrow R \ge 2r$$
 (Euler's inequality).

1)
$$1 + \frac{r}{R} \le \frac{3}{2} \Leftrightarrow R \ge 2r$$
 (Euler's inequality).
2) $\frac{p^2 + r^2 + 4Rr}{4R^2} \le \frac{9}{4} \Leftrightarrow p^2 \le 9R^2 - 4Rr - r^2$, true from Gerretsen's inequality $p^2 \le 4R^2 + 4Rr + 3r^2$. It remains to prove that:

$$4R^2 + 4Rr + 3r^2 \le 9R^2 - 4Rr - r^2 \Leftrightarrow 5R^2 - 8Rr - 4r^2 \ge 0 \Leftrightarrow (R - 2r)(5R + 2r) \ge 0,$$

obviously from Euler's inequality R > 2r.

Equality holds if and only if the triangle is equilateral.

Remark.

In the same way it can be proposed:

2. In $\triangle ABC$

$$\sum \sqrt{\sin A \cos B \cos C} \leq \frac{3}{2} \sqrt{\frac{\sqrt{3}}{2}}$$

Proposed by Marin Chirciu

Proof.

Using CBS inequality we obtain

$$\left(\sum \sqrt{\sin A \cdot \cos B \cos C}\right)^2 \leq \sum \sin A \cdot \sum \cos B \cos C = \frac{rp}{2R^2} \cdot \frac{p^2 + r^2 - 4R^2}{4R^2} \leq \frac{3\sqrt{3}}{8} \cdot \frac{3}{4} = \left(\frac{3}{2}\sqrt{\frac{\sqrt{3}}{2}}\right)^2$$

where the last inequality follows from:

1) $\frac{rp}{2R^2} \le \frac{3\sqrt{3}}{8} \Leftrightarrow p \le \frac{3R^2\sqrt{3}}{4r}$, true from Mitrinović's inequality $p \le \frac{3R\sqrt{3}}{2}$ and Euler's inequality $R \ge 2r$

2)
$$\frac{p^2+r^2-4R^2}{4R^2} \leq \frac{3}{4} \Leftrightarrow p^2 \leq 7R^2-r^2$$
, true from Gerretsen's inequality $p^2 \leq 4R^2+4Rr+3r^2$. It remains to prove that:
$$4R^2+4Rr+3r^2 \leq 7R^2-r^2 \Leftrightarrow 3R^2-4Rr-4r^2 \geq 0 \Leftrightarrow (R-2r)(3R+2r) \geq 0$$
 obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

 $E ext{-}mail\ address: dansitaru63@yahoo.com}$

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM SP.083 RMM NUMBER 6 AUTUMN 2017 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$\left(1+\frac{1}{m_{c}}\right)\left(1+\frac{1}{m_{b}}\right)\left(1+\frac{1}{m_{c}}\right) \ge \left(1+\frac{2}{3R}\right)^{3}.$$

Proposed by George Apostolopoulos - Messolonghi - Greece

Proof.

Using Huygens' inequality we obtain

$$\Big(1 + \frac{1}{m_a}\Big)\Big(1 + \frac{1}{m_b}\Big)\Big(1 + \frac{1}{m_c}\Big) \ge \Big(1 + \sqrt[3]{\frac{1}{m_a m_b m_c}}\Big)^3 \ge \Big(1 + \frac{2}{3R}\Big)^3,$$

where the last inequality is equivalent with.

$$\sqrt[3]{\frac{1}{m_a m_b m_c}} \geq \frac{2}{3R} \Leftrightarrow \frac{1}{m_a m_b m_c} \geq \left(\frac{2}{3r}\right)^3 \Leftrightarrow m_a m_b m_c \leq \left(\frac{3R}{2}\right)^3$$

which follows from means inequality and the known inequality in triangle $\sum m_a \leq 4R + r \leq \frac{9R}{2}$;

indeed:
$$m_a m_b m_c \le \left(\frac{m_a + m_b + m_c}{3}\right)^3 \le \left(\frac{4R + r}{3}\right)^3 \le \left(\frac{3R}{2}\right)^3$$
.

Equality holds if and only if the triangle is equilateral.

Remark.

In the same way it can be proposed:

2. In $\triangle ABC$

$$\Big(1 + \frac{1}{m_a + m_b}\Big) \Big(1 + \frac{1}{m_b + m_c}\Big) \Big(1 + \frac{1}{m_c + m_a}\Big) \ge \Big(1 + \frac{1}{3R}\Big)^3$$

Proof.

Using Huygens' inequality we obtain

$$\left(1 + \frac{1}{m_a + m_b}\right) \left(1 + \frac{1}{m_b + m_c}\right) \left(1 + \frac{1}{m_c + m_a}\right) \ge \left(1 + \sqrt[3]{\frac{1}{(m_a + m_b)(m_b + m_c)(m_c + m_a)}}\right)^3 \ge \left(1 + \frac{1}{3R}\right)^3$$

where the last inequality is equivalent with:

$$\sqrt[3]{\frac{1}{(m_a + m_b)(m_b + m_c)(m_c + m_a)}} \ge \frac{1}{3R} \Leftrightarrow \frac{1}{(m_a + m_b)(m_b + m_c)(m_c + m_a)} \ge \left(\frac{1}{3R}\right)^3 \Leftrightarrow (m_a + m_b)(m_b + m_c)(m_c + m_a) \le (3R)^3$$

which follows from means inequality and the known inequality in triangle

$$\sum m_a \le 4R + r \le \frac{9R}{2}; indeed:$$

$$(m_a + m_b)(m_b + m_c)(m_c + m_a) \le \left(\frac{2(m_a + m_b + m_c)}{3}\right)^3 \le \left(\frac{2(4R + r)}{3}\right)^3 \le (3R)^3$$
Equality holds if and only if the triangle is equilateral.

3. In $\triangle ABC$

$$\Big(1+\frac{1}{m_a+\lambda m_b}\Big)\Big(1+\frac{1}{m_b+\lambda m_c}\Big)\Big(1+\frac{1}{m_c+\lambda m_a}\Big)\geq \Big(1+\frac{2}{3(\lambda+1)R}\Big)^3, \ \textit{where} \ \lambda\geq 0$$
 Proposed by Marin Chirciu - Romania

Proof.

Using Huygens' inequality we obtain

$$\left(1 + \frac{1}{m_a + \lambda m_b}\right) \left(1 + \frac{1}{m_b + \lambda m_c}\right) \left(1 + \frac{1}{m_c + \lambda m_a}\right) \ge \left(1 + \sqrt[3]{\frac{1}{(m_a + \lambda m_b)(m_b + \lambda m_c)(m_c + \lambda m_a)}}\right)^3 \ge \left(1 + \frac{2}{3(\lambda + 1)R}\right)^3$$

where the last inequality is equivalent with:

$$\sqrt[3]{\frac{1}{(m_a + \lambda m_b)(m_b + \lambda m_c)(m_c + \lambda m_a)}} \ge \frac{1}{3R} \Leftrightarrow \frac{1}{(m_a + \lambda m_b)(m_b + \lambda m_c)(m_c + \lambda m_a)} \ge \left(\frac{2}{3(\lambda + 1)R}\right)^3 \Leftrightarrow (m_a + \lambda m_b)(m_b + \lambda m_c)(m_c + \lambda m_a) \le \left(\frac{3(\lambda + 1)R}{2}\right)^3$$

which follows from means inequality and the known inequality in triangle

$$\sum m_a \leq 4R + r \leq \frac{9R}{2}; indeed:$$

$$(m_a + \lambda m_b)(m_b + \lambda m_c)(m_c + \lambda m_a) \leq \left(\frac{(1+\lambda)(m_a + m_b + m_c)}{3}\right)^3 \leq \left(\frac{(1+\lambda)(4R+r)}{3}\right)^3 \leq \left(\frac{3(\lambda+1)R}{2}\right)^3$$
Equality holds if and only if the triangle is equilateral.

Note

For $\lambda = 0$ we obtain inequality 1., and for $\lambda = 1$ we obtain inequality 2.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM SP.077 RMM NUMBER 6 AUTUMN 2017 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. Let ABC be an acute triangle. Prove that

$$\frac{m_a}{h_a} \cdot \cos A + \frac{m_a}{h_c} \cdot \cos B + \frac{m_c}{h_c} \cdot \cos C \geq \frac{3}{2}$$

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Proof.

Using
$$m_a \ge \frac{b^2 + c^2}{4R}$$
, $h_a = \frac{bc}{2R}$ and $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$
we obtain $\frac{m_a}{h_a} \cdot \cos A \ge \frac{(b^2 + c^2)(b^2 + c^2 - a^2)}{4b^2c^2}$
It follows $\sum \frac{m_a}{h_a} \cdot \cos A \ge \sum \frac{(b^2 + c^2)(b^2 + c^2 - a^2)}{4b^2c^2} = \frac{\sum a^2(b^2 + c^2)(b^2 + c^2 - a^2)}{4a^2b^2c^2} = \frac{6a^2b^2c^2}{4a^2b^2c^2} = \frac{3}{2}$

Note.

From the above proof the condition of acute-angled triangle is not necessary.

Equality holds if and only if the triangle is equilateral

Remark.

In the same way it can be proposed:

2. In $\triangle ABC$

$$\frac{m_a}{h_a} \cdot (\cos B + \cos C) + \frac{m_a}{h_b} \cdot (\cos C + \cos A) + \frac{m_c}{h_c} \cdot (\cos A + \cos B) \leq \frac{2R}{r} - 1$$

$$Proposed \ by \ Marin \ Chirciu - Romania$$

Proof.

$$\begin{array}{c} We \ have \\ \sum \frac{m_a}{h_a} \cdot (\cos B + \cos C) = \sum \frac{m_a}{h_a} \cdot (\cos A + \cos B + \cos C - \cos A) = \sum \frac{m_a}{h_a} \sum \cos A - \sum \frac{m_a}{h_a} \cos A \leq \\ \leq \left(1 + \frac{r}{R}\right) \sum \frac{m_a}{h_a} - \frac{3}{2} \leq \frac{3}{2} \sum \frac{m_a}{h_a} - \frac{3}{2} = \frac{3}{2} \left(\sum \frac{m_a}{h_a} - 1\right) \leq \frac{3}{2} \left(\frac{4R + r}{3r} - 1\right) = \frac{2R}{r} - 1 \\ where \ we've \ used: \\ \frac{m_a}{h_a} \cdot \cos A \geq \frac{3}{2} \ (inequality \ \textbf{1.}), \sum \cos A = 1 + \frac{r}{R} \leq \frac{3}{2} \ (Euler's \ inequality) \ and \end{array}$$

$$\frac{ma}{h_a} \cdot \cos A \ge \frac{\pi}{2}$$
 (inequality 1.), $\sum \cos A = 1 + \frac{\pi}{R} \le \frac{\pi}{2}$ (Euler's inequality) an

$$\sum \frac{m_a}{h_a} \leq \frac{4R+r}{3r}$$
, which follows from Cebyshev's inequality:

The triplets (m_a, m_b, m_c) and $\left(\frac{1}{h_a}, \frac{1}{h_b}, \frac{1}{h_c}\right)$ are reversed ordered, and $\sum m_a \le 4R + r$ and $\sum \frac{1}{h_a} = \frac{1}{r}$

wherefrom
$$\sum \frac{m_a}{h_a} \leq \frac{1}{3} \cdot \sum m_a \sum \frac{1}{h_a} \leq \frac{1}{3} \cdot (4R+r) \cdot \frac{1}{r} = \frac{4R+r}{3r}$$

The equality holds if and only if the triangle is equilateral.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

 $E\text{-}mail\ address: \verb|dansitaru63@yahoo.com||$

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM JP.090 RMM NUMBER 6 AUTUMN 2017 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. Prove that in any triangle ABC

$$\frac{1+\cos A\cos B\cos C}{\sin A\sin B\sin C}\geq \frac{p}{3r}$$

Proposed by Martin Lukarevski - Skopje - Macedonia

Proof.

Using the known identities known in triangle: $\prod \cos A = \frac{p^2 - (2R + r)^2}{4R^2}$ and

$$\prod \sin A = \frac{rp}{2R^2}$$

We write the inequality $\frac{1 + \frac{p^2 - (2R + r)^2}{4R^2}}{\frac{rp}{2D^2}} \ge \frac{p}{3r} \Leftrightarrow \frac{p^2 - r^2 - 4Rr}{2rp} \ge \frac{p}{3r} \Leftrightarrow p^2 \ge 12Rr + 3r^2,$

which follows from Gerretsen's inequality $p^2 \geq 16Rr - 5r^2$. It remains to prove that: $16Rr - 5r^2 \geq 12Rr + 3r^2 \Leftrightarrow R \geq 2r$ (Euler's inequality).

Equality holds if and only if the triangle is equilateral.

Remark 1.

Inequality 1. can be strengthened:

2. In $\triangle ABC$

$$\frac{1+\cos A\cos B\cos C}{\sin A\sin B\sin C}\geq \frac{p}{3r}+\frac{p}{24}\Big(\frac{1}{r}-\frac{2r}{R}\Big)$$

Proof.

Using the known identities in triangle: $\prod \cos A = \frac{p^2 - (2R + r)^2}{4R^2}$ and

$$\prod \sin A = \frac{rp}{2R^2}$$

We write the inequality:

$$\frac{1+\frac{p^2-(2R+r)^2}{4R^2}}{\frac{rp}{2R^2}} \geq \frac{p}{3r} + \frac{p}{24}\left(\frac{1}{r} - \frac{2r}{R}\right) \Leftrightarrow \frac{p^2-r^2-4Rr}{2rp} \geq \frac{p}{3r} + \frac{p}{24}\left(\frac{1}{r} - \frac{2r}{R}\right) \Leftrightarrow \frac{p^2-r^2-4Rr}{2r} \geq \frac{p}{3r} + \frac{p}{24}\left(\frac{1}{r} - \frac{2r}{R}\right) \Leftrightarrow \frac{p}{24}\left(\frac{1}{r} - \frac{2r}{R}\right) \Leftrightarrow \frac{p}{24}\left(\frac{1}{r} - \frac{2r}{R}\right) \approx \frac{p}{24}\left(\frac{1}{r} - \frac{2r}{R}\right)$$

 $\Leftrightarrow p^2(3R+2r) \ge 12Rr(4R+r)$, which follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$.

It remains to prove that:

$$(16Rr - 5r^2)(3R + 2) \ge 12Rr(4R + r) \Leftrightarrow R \ge 2r$$
 (Euler's inequality). The equality holds if and only if the triangle is equilateral.

Remark 2.

Inequality 2. is stronger then inequality 1.:

3. In $\triangle ABC$

$$\frac{1+\cos A\cos B\cos C}{\sin A\sin B\sin C}\geq \frac{p}{3r}+\frac{p}{24}\Big(\frac{1}{r}-\frac{2r}{R}\Big)\geq \frac{p}{3r}.$$

Proof.

See inequality 2. and Euler's inequality $R \geq 2r$. The equality holds if and only if the triangle is equilateral.

Remark 3.

Inequality 2. can be developed

4. In $\triangle ABC$

$$\frac{1+\cos A\cos B\cos C}{\sin A\sin B\sin C}\geq \frac{p}{3r}+\lambda p\Big(\frac{1}{r}-\frac{2r}{R}\Big), \ \textit{where} \ \lambda \leq \frac{1}{24}$$

$$\textit{Proposed by Marin Chirciu - Romania}$$

Proof.

Using the known identities in triangle:
$$\prod \cos A = \frac{p^2 - (2R+r)^2}{4R^2}$$
 and
$$\prod \sin A = \frac{rp}{2R^2}$$

We write the inequality.

$$\frac{1+\frac{p^2-(2R+r)^2}{4R^2}}{\frac{rp}{2R^2}} \geq \frac{p}{3r} + \lambda p \left(\frac{1}{r} - \frac{2r}{R}\right) \Leftrightarrow \frac{p^2-r^2-4Rr}{2rp} \geq \frac{p}{3r} + \lambda p \left(\frac{1}{r} - \frac{2r}{R}\right) \Leftrightarrow \frac{p^2-r^2-4Rr}{2rp} \geq \frac{p}{3r} + \frac{p}{2r} + \frac{p}{2r}$$

 $p^2\Big[(1-6\lambda)R+12\lambda r\Big] \geq 3Rr(4R+r)$, which follows from Gerretsen's inequality $p^2\geq 16Rr-5r^2$ and the condition $1-6\lambda\geq 0$. It remains to prove that:

$$(16Rr-5r^2)\Big\lceil (1-6\lambda)R+12\lambda r\Big\rceil \geq 3Rr(4R+r) \Leftrightarrow (2-48\lambda)R^2+(111\lambda-4)Rr-30\lambda r^2 \geq 0$$

$$\Leftrightarrow (R-2r)\Big[(2-48\lambda)R+15\lambda r\Big] \ge 0$$
, obviously from Euler's inequality $R \ge 2r$ and the condition $2-48\lambda \ge 0$

The equality holds if and only if the triangle is equialateral.

Remark 4.

For $\lambda > 0$ inequality 4. is stronger then inequality 1.:

5. In $\triangle ABC$

$$\frac{1+\cos A\cos B\cos C}{\sin A\sin B\sin C}\geq \frac{p}{3r}+\lambda p\Big(\frac{1}{r}-\frac{2r}{R}\Big)\geq \frac{p}{3r}, \ where \ 0\leq \lambda \leq \frac{1}{24}.$$

Proof.

See inequality 4., Euler's inequality $R \geq 2r$ and the condition $\lambda \geq 0$.

Note.

In inequality 4. for $\lambda = 0$ we obtain inequality 1, and for $\lambda = \frac{1}{24}$ we obtain 2.

Remark.

Taking into account that
$$\frac{1+\cos A\cos B\cos C}{\sin A\sin B\sin C}=\frac{a^2+b^2+c^2}{4S}$$

inequalities 1., 2., 3., 4., 5. can be reformulated

1.a. In $\triangle ABC$

$$\frac{a^2+b^2+c^2}{4S} \ge \frac{p}{3r}$$

2.a. In $\triangle ABC$

$$rac{a^2 + b^2 + c^2}{4S} \ge rac{p}{3r} + rac{p}{24} \Big(rac{1}{r} - rac{2r}{R}\Big)$$

3.a. In $\triangle ABC$

$$\frac{a^2 + b^2 + c^2}{4S} \ge \frac{p}{3r} + \frac{p}{24} \Big(\frac{1}{r} - \frac{2r}{R} \Big) \ge \frac{p}{3r}.$$

4.a. In ΔABC

$$rac{a^2+b^2+c^2}{4S} \geq rac{p}{3r} + \lambda p \Big(rac{1}{r} - rac{2r}{R}\Big), \; where \; \lambda \leq rac{1}{24}.$$

5.a. In $\triangle ABC$

$$rac{a^2+b^2+c^2}{4S} \geq rac{p}{3r} + \lambda p \Big(rac{1}{r} - rac{2r}{R}\Big), \; where \; \lambda \leq rac{1}{24}.$$

Remark 5.

Inequality 1. can be developed also in the following way:

6. In $\triangle ABC$,

$$\frac{n + \cos A \cos B \cos C}{\sin A \sin B \sin C} \ge \frac{(8n+1)p}{27r}, \text{ where } 1 \le n \le \frac{25}{16}$$

Proposed by Marin Chirciu - Romania

Proof.

Using the known identities in triangle:
$$\prod \cos A = \frac{p^2 - (2R + r)^2}{4R^2}$$
 and

$$\prod \sin A = \frac{rp}{2R^2}$$

We write the inequality $\frac{n+\frac{p^2-(2R+r)^2}{4R^2}}{\frac{rp}{2R^2}} \geq \frac{(8n+1)p}{27r} \Leftrightarrow \frac{4nR^2+p^2-(2R+r)^2}{2rp} \geq \frac{(8n+1)p}{27r} \Leftrightarrow \frac{(8n+1)p}{2r} \Leftrightarrow \frac{(8n+1)p$

$$108nR^2 + 27p^2 - 27(2R+r)^2 \ge (16n+2)p^2 \Leftrightarrow p^2(25-16n) \ge 27(2R+r)^2 - 108nR^2$$
, which follows from Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$ and the condition $25 - 16n \ge 0$

It remains to prove that:

$$(16Rr - 5r^2)(25 - 16n) > 27(2Rr + r)^2 - 108nR^2 \Leftrightarrow (27n - 27)R^2 + (73 - 64n)Rr + (38 - 20n) > 0$$

$$\Leftrightarrow (R-2r)\Big[(27n-27)R+(10n-19)r\Big] \geq 0, \ obviously \ from \ Euler's \ inequality \ R \geq 2r$$
 and the condition $27n-27 \geq 0$.

The equality holds if and only if the triangle is equilateral.

Note.

For n = 1 we obtain inequality 1. from enunciation.

Remark 6.

Inequality 5. can be reformulated:

7. In $\triangle ABC$,

$$\frac{1+k\cos A\cos B\cos C}{\sin A\sin B\sin C}\geq \frac{(k+8)p}{27r}, \ where \ \frac{16}{25}\leq k\leq 1.$$

Proof.

In inequality 6. we put $n = \frac{1}{k}$

The equality holds if and only if the triangle is equilateral.

Note.

For k = 1 we obtain inequality 1. from enunciation.

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, MEHEDINTI.

 $E ext{-}mail\ address: }$ dansitaru63@yahoo.com

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

PROBLEM UP.083 RMM NUMBER 6 AUTUMN 2017 ROMANIAN MATHEMATICAL MAGAZINE 2017

MARIN CHIRCIU

1. In $\triangle ABC$

$$R\sum (b+c-2a)^2 \leq 4(R-2r)\sum a^2$$

Proposed by Daniel Sitaru - Romania

Proof.

$$Avem \sum (b+c-2a)^2 = \sum (2p-3a)^2 = \sum (4p^2-12pa+9a^2) = 12p^2-12p \sum a+9 \sum a^2 = 12p^2 - 12p \cdot 2p + 9 \cdot 2(p^2 - r^2 - 4Rr) = 6p^2 - 18r^2 - 72Rr$$

Using the identities
$$\sum a(b+c-2a)^2 = 6p^2 - 18r^2 - 72Rr$$
 and $\sum a^2 = 2(p^2 - r^2 - 4Rr)$

inequality that we have to prove:

$$R \cdot (6p^2 - 18r^2 - 72Rr) \le 4(R - 2r) \cdot 2(p^2 - r^2 - 4Rr)$$

$$\Leftrightarrow (R - 8r)p^2 + r(20R^2 + 37Rr + 8r^2) \ge 0$$

Distinguish the cases:

Case 1. If $R - 8r \ge 0$ inequality is obviously.

Case 2. If R-8r<0 inequality can be rewritten

 $(8r-R)p^2 \le r(20R^2+37Rr+8r^2)$ which follows from Gerretsen's inequality: $p^2 \le 4R^2+4Rr+3r^2$. It remains to prove that:

$$(8r-R)(4R^2+4Rr+3r^2) \le r(20R^2+37Rr+8r^2) \Leftrightarrow R^3-2R^2r+2Rr^2-4r^3 \ge 0 \Leftrightarrow (R-2r)(R^2+r^2) \ge 0, \text{ obviously from Euler's inequality } R \ge 2r.$$

Equality holds if and only if the triangle is equilateral.

Remark. 1 Inequality can be developed:

2. In $\triangle ABC$

$$R\sum (b+c-2a)^2 \le n(R-2r)\sum a^2, ext{ where } n \ge 3.$$

Proposed by Marin Chirciu - Romania

Proof.

Using the identities
$$\sum (b+c-2a)^2 = 6p^2 - 18r^2 - 72Rr$$
 and $\sum a^2 = 2(p^2 - r^2 - 4Rr)$

inequality that we have to prove can be written:

$$R \cdot (6p^2 - 18r^2 - 72Rr) \le n(R - 2r) \cdot 2(p^2 - r^2 - 4Rr)$$

$$\Leftrightarrow \left[(n - 3)R - 2nr \right] p^2 + r \left[(36 - 4n)R^2 + (7n + 9)Rr + 2nr^2 \right] \ge 0$$

We distinguish the cases:

Case 1. If $(n-3)R - 2nr \ge 0$ we use Gerretsen's inequality $p^2 \ge 16Rr - 5r^2$. It remains to prove that:

$$\Leftrightarrow \left[(n-3)R - 2nr \right] (16Rr - 5r^2) + r \left[(36 - 4n)R^2 + (7n + 9)Rr + 2nr^2 \right] \ge 0 \Leftrightarrow$$

 $\Leftrightarrow (2n-2)R^2 + (4-5n)Rr + 2nr^2 \ge 0$, obviously from Euler's inequality $R \ge 2r$ and $n \ge 3$. Case 2. If (n-3)R - 2nr < 0 inequality can be rewritten

 $[2nr+(3-n)R]p^2 \le r[(36-4n)R^2+(7n+9)Rr+2nr^2]$, which follows from Gerretsen's inequality:

$$p^2 \le 4R^2 + 4Rr + 3r^2$$
. It remains to prove that:

$$[2nr + (3-n)R](4R^2 + 4Rr + 3r^2) \le r \Big[(36-4n)R^2 + (7n+9)Rr + 2nr^2 \Big] \Leftrightarrow (2n-6)R^3 + (12-4n)R^2r + nRr^2 - 4nr^3 \ge 0 \Leftrightarrow (R-2r) \Big[(2n-6)R^2 + nr^2 \Big] \ge 0$$

obviously from Euler's inequality $R \geq 2r$ and the condition $n \geq 3$.

Equality holds if and only if the triangle is equialteral.

Note.

For n = 4 we obtain inequality 1.

Remark 2.

In the same way we can propose:

3. In $\triangle ABC$

$$\sum a(b+c-2a)^2 \le n\sqrt{3}(R-2r)R^2$$
, where $n \ge 21$.

Proposed by Marin Chirciu - Romania

Proof.

$$\sum a(b+c-2a)^2 = \sum a(2p-3a)^2 = \sum a(4p^2-12pa+9a^2) = 4p^2 \sum a-12p \sum a^2+9 \sum a^3 = 4p^2 \cdot 2p - 12p \cdot 2(p^2-r^2-4Rr) + 9 \cdot 2p(p^2-r^2-6Rr) = 2p(p^2-15r^2-6Rr).$$

Inequality that we have to prove can be written:

$$2p(p^2 - 15r^2 - 6Rr) \le n\sqrt{3}(R - 2r)R^2 \Leftrightarrow 2p\sqrt{3}(p^2 - 15r^2 - 6Rr) \le 3n(R - 2r)R^2,$$
 which follows from Doucet's inequality $p\sqrt{3} \le 4R + r$

and Gerretsen's inequality $p^2 \leq 4R^2 + 4Rr + 3r^2$. It remains to prove that:

$$2(4R+r)(4R^2+4Rr+3r^2-15r^2-6Rr) \le 3n(R-2r)R^2 \Leftrightarrow (3n-32)R^3+(8-6n)R^2r+100Rr^2+24r^3 > 0 \Leftrightarrow$$

 $\Leftrightarrow (R-2r)[(3n-32)R^2-56Rr-12r^2] > 0$, obviously from Euler's inequality R > 2r and the condition $n \geq 21$, which assures the positivity of the right parentheses.

The equality holds if and only if the triangle is equilateral.

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC COLLEGE, DROBETA TURNU - SEVERIN, MEHEDINTI.

E-mail address: dansitaru63@yahoo.com