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COMMENTED SOLUTION

DANIEL SITARU

Abstract. In this article we comment problem nr.22972 from GM3/1994,

which represents a good opportunity for a lesson synthesis for the class or for

the circle of students.

In GM3/1994 Răzvan Satnoianu proposes the following problem:
22972: Let A,B ∈ Mn(R) be invertible, having the property A−1 + B−1 = In.
Prove that:

det
[
In −A2m+1 −B2m+1 + (AB)2m+1

]
≥ 0, (∀)m ∈ N

We will comment the author’s solution (published in GM1/1995):
Using the simplification rules on the left and on the right the author processes the
relationship from the hypothesis like this

A−1 +B−1 = In| ·A

A(A−1 +B−1) = AIn ⇒ In +AB−1 = A

A−1 +B−1 = In| ·A
(A−1 +B−1)A = In ⇒ In +B−1A = A

From In +AB−1 = A s, i In +B−1A = A we obtain

In +AB−1 = In +B−1A⇒ AB−1 = B−1A

We repeat the procedure processing the relationship from the hypothesis by multi-
plying on the left and on the right with AB.

A−1 +B−1 = In| ·AB

AB(A−1 +B−1) = (AB)In ⇒ ABA−1 +A = AB

(A−1 +B−1)AB = In(AB)⇒ B +B−1AB = AB

We deduce ABA−1 + A = B−1AB + B. We use the relationship AB−1 = B−1A
that we’ve obtained previously and it follows:

ABA−1 +A = AB−1B +B

(0.1) ABA−1 +A = A+B

ABA−1 = B

ABA−1 +B−1AB = AB

ABA−1 +AB−1B = AB

(0.2) ABA−1 +A = AB

From 0.1 s, i 0.2 we deduce:

A+B = AB ⇒ In = (In −A)(In −B)
1
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Remark:
In the following reasoning the author uses the relationship:

A2n+1 −B2n+1 = (A−B)(A2n +A2n−1B + . . .+B2n)

A,B ∈Mn(R);AB = BA

Using this relationship:

In −A2m+1 = (In −A)(In +A+ . . .+A2m)

In −B2m+1 = (In −B)(In +B + . . .+B2m)

By multiplying:
(In −A2m+1)(In −B2m+1) =

= (In −A)(In +A+ . . .+A2m)(In −B)(In +B + . . .+B2m) =

= (In +A+ . . .+A2m)(In +B + . . .+B2m)

On the other hand:

(In −A2m+1)(In −B2m+1) = In −A2m+1 −B2m+1 +A2m+1B2m+1 =

(0.3) = In −A2m+1 −B2m+1 + (AB)2m+1

Remark:
The following results appeals to:
- the some of some terms in geometric progression:

1 + x+ . . .+ x2m =
x2m+1 − 1

x− 1

- the factors decomposition formula of the polynoms:

1 + x+ . . .+ x2m = (x− ε1)(x− ε2) · . . . · (x− ε2m)

where ε1, ε2, . . . , ε2m are the solution of the equation: x2m+1 − 1 = 0 except 1.
- the determinant of two matrixes product:

det(AB) = detA · detB;A,B ∈Mn(R)

- complex numbers property:

z · z = |z|2; (∀)z ∈ C
The ”2m+ 1” squares having the order ”2m+ 1” of the unit are:

εk = cos
2kπ

2m+ 1
+ i sin

2kπ

2m+ 1
; k ∈ 0, 2m

1 + x+ . . .+ x2m = (x− ε1)(x− ε2) · . . . · (x− ε2m)

On the other hand εi = ε2m−i; i ∈ {1, 2, . . . ,m}
In matrix writing:

In +X + . . .+X2m = (X − ε1In)(X − ε2In) · . . . · (X − ε2mIn)

and passing to determinants:

det(In +X + . . .+X2m) =

2m∏
k=1

det(X − εkIn) =

=

m∏
k=1

det(X − εkIn) det(X − εkIn) =
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=

n∏
k=1

det(X − εkIn) · det(X − εkIn) =

=

n∏
k=1

|det(X − εkIn)|2 ≥ 0; (∀)m ∈ R.

We replace X with A s, i B we consider 0.3. It follows:

det(In −A2m+1 −B2m+1 + (AB)2m+1) ≥ 0

Remark:
The problem is particularly complex because it requires various knowledge about
complex numbers, polynomials, matrix calculus and determinants. The links that
can be made with previous chapters, are making from this problem a very good
end point to a recap and systematisation lesson or to circles of students.
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COMMENTED PROBLEM - 3

MARIN CHIRCIU - ROMANIA

In Mathematical Gazette nr. 11/2016, problem 27298 has the following content:
Prove that in any triangle ∆ABC we have∑ a

b + c
+

r

R
≤ 2

Florin Stănescu, Găes,ti, Dâmbovit,a

a)
∑

a
b+c + r

R ≤ 2.

Mathematical Reflections 4/2016, Florin Stănescu, Găes,ti, Romania

Solution:

Using the known identity in triangle
∑

a
b+c = 2(p2−r2−Rr)

p2+r2+2Rr , we write the inequality

2(p2 − r2 −Rr)

p2 + r2 + 2Rr
+

r

R
≤ 2⇔ 2R(p2 − r2 −Rr) ≤ (2R− r)(p2 + r2 + 2Rr)

⇔ p2 ≤ 6R2 + 2Rr − r2, which follows from Gerresten’s inequality

⇔ p2 ≤ 4R2+4Rr+3r2. It remains to prove that ⇔ 4R2+4Rr+3r2 ≤ 6R2+2Rr−r2

⇔ R2−Rr−2r2 ≥ 0⇔ (R−2r)(R+r) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.
The article proposes to strengthen this inequality, and developments of some in-
equalities with sums having the form

∑
a

b+c . �

b)
∑

a
b+c + 3r

2R+2r ≤ 2.

Solution:

Using the known identity in triangle
∑

a
b+c = 2(p2−r2−Rr)

p2+r2+2r , we write the inequality

2(p2 − r2 −Rr)

p2 + r2 + 2Rr
+

3r

2R + 2r
≤ 2⇔ 3p2 ≤ 12R2 + 14Rr + 5r2,

which follows from Gerretsen’s inequality ⇔ p2 ≤ 4R2 + 4Rr + 3r2.

It remains to prove that ⇔ 3(4R2 + 4Rr + 3r2) ≤ 12R2 + 14Rr + 5r2 ⇔ R ≥ 2r

obviously from Euler’s inequality.
The equality holds if and only if the triangle is equilateral. �

c)
∑

a
b+c + r

R ≤
∑

a
b+c + 3r

2R+2r ≤ 2.

Solution:

The first inequality is equivalent with Euler’s inequality R ≥ 2r, the second is b).
Obviously b) is stronger than a).
The equality holds if and only if the triangle is equilateral. �

1
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d)
∑

a
b+c + n · r

R ≤
n+3
2 , where n ≥ 1.

Solution:

We use
∑

a
b+c = 2(p2−r2−Rr)

p2+r2+2Rr , Gerretsen’s inequality.

16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2and Euler’s inequalityR ≥ 2r.

The equality holds if and only if the triangle is equilateral. �

e)
∑

a
b+c + 3n

2 ·
r

R+r ≤
n+3
2 , unde n ≥ 1.

Solution:

Analogous d).
The equality holds if and only if the triangle is equilateral. �

f)
∑

a
b+c + n · r

R ≤
∑

a
b+c + 3n

2 ·
r

R+r ≤
n+3
2 , where n ≥ 1.

Developments, M. Chirciu

Solution:

Analogous c).
The equality holds if and only if the triangle is equilateral. �

g)
∑

a
b+c = 2(p2−r2−Rr)

p2+r2+2Rr ≥
3
2 .

Solution:

∑ a

b + c
=

∑
a(a + b)(a + c)∏

(b + c)
=

∑
a3 +

∑
a
∑

bc∏
(b + c)

=
2p(p2 − 3r2 − 6Rr) + 2p(p2 + r2 + 4Rr)

2p(p2 + r2 + 2Rr)
=

=
2(p2 − r2 −Rr)

p2 + r2 + 2Rr
.

The inequality
2(p2 − r2 −Rr)

p2 + r2 + 2Rr
≥ 3

2
is equivalent with p2 ≥ 10Rr+7r2, which follows

from Gerretsen’s inequality p2 ≥ 16Rr − 5r2 and Euler’s inequalityR ≥ 2r.

The equality holds if and only if the triangle is equilateral.
Its Nesbitt’s inequality in triangle. �

h)
∑

a
b+c = 11p2−15r2−60Rr

6p2−6r2−24Rr ≥
3
2 .

Mathematical Recreations 2/2009, Marius Olteanu, Rm. Vâlcea

Solutions:

See g). �

i)
∑

a
b+c ≥

4p2−6Rr
2p2+5Rr ≥

3
2 .
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Solution:

We use
∑

a
b+c = 2(p2−r2−Rr)

p2+r2+2Rr , Gerretsen’s inequality

p2 ≥ 16Rr − 5r2 and Euler’s inequality R ≥ 2r.
It is a strengthening of Nesbitt’s inequality in triangle.
The equality holds if and only if the triangle is equilateral. �

j)
∑

a2

b2+c2 ≥ 2− r
R ≥

∑
a

b+c ≥
3
2 .

Solution:

For the first inequality we use Bergstrom, Gerretsen and Euler.
We obtain∑ a2

b2 + c2
=
∑ a4

a2b2 + a2c2
≥ (

∑
a2)2

2
∑

b2c2
=

[2(p2 − r2 − 4Rr)]2

2[p4 − 2p2(4Rr − r2) + r2(4R + r)2]
≥

≥ 2− r

R
, the last inequality is equivalent to p4 +p2(2r2−16Rr)+r2(4R+r)2 ≥ 0,

which follows from Gerretsen’s inequality.

For the second inequality we use
∑ a

b + c
=

2(p2 − r2 −Rr)

p2 + r2 + 2Rr
and Gerretsen.

The equality holds if and only if the triangle is equilateral. �

k)
∑

a
b+c + 9r

4R+r ≤
5
2 .

Solution:

We use
∑ a

b + c
=

2(p2 − r2 −Rr)

p2 + r2 + 2Rr
and Gerretsen.

The equality holds if and only if the triangle is equilateral. �

1)
∑

a
b+c + nr

4R+r ≤
3
2 + n

9 , unde n ≥ 9
2 .

Solution:

We use
∑ a

b + c
=

2(p2 − r2 −Rr)

p2 + r2 + 2Rr
and Gerretsen.

The equality holds if and only if the triangle is equilateral. �

m)
∑

a
b+c + 3abc∑

bc(b+c) ≥ 2.

Solution:

We use
∑ a

b + c
=

2(p2 − r2 −Rr)

p2 + r2 + 2Rr
,
∑

bc(b+c) = 2p(p2+r2−2Rr) and Gerretsen.

The equality holds if and only if the triangle is equilateral. �

n)
∑

a
b+c + n · abc∑

bc(b+c) ≥
n+9
6 , where n ≤ 3.

Solution:

Analogous m). �

o)
∑

a
b+c + 4

∏
a

b+c ≥ 2.
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Solution:

We use
∑ a

b + c
=

2(p2 − r2 −Rr)

p2 + r2 + 2Rr
,
∏ a

b + c
=

2Rr

p2 + r2 + 2Rr
and Gerretsen.

The equality holds if and only if the triangle is equilateral. �

p)
∑

a
b+c + n ·

∏
a

b+c ≥
n+12

8 , where n ≤ 4.

Solution:

Analogous o).

IneMath 10/2016, M. Chirciu

�

Other inequalities with sums having the form
∑

a
b+c .

1)
∑

b+c
a ≥ 4

∑
a

b+c .

2)
∑

b+c
a ≥ 6− 3n

2 + n
∑

a
b+c , where n ≤ 4.

3) 3
∑

a
b+c ≥

∑
a ·
∑

1
b+c ≥ 9.

4)
∑

a2 ·
∑

1
a2 ≥ 6

∑
a

b+c .

5) a2+b2+c2

ab+bc+ca ≥
2
3

∑
a

b+c ≥ 1.

6) a3+b3+c3

abc ≥ 2
∑

a
b+c ≥ 3.

7) a3+b3+c3

abc + n ≥ 2
3 (n + 2)

∑
a

b+c , where n ≤ 3
4 .

8)
∑

a ·
∑

a
bc ≥ 6

∑
a

b+c ≥ 9.

9) 2
∑

a
b+c ≥

(a+b+c)2

ab+bc+ca ≥ 3.

10)
∑

a ·
∑

1
a ≥

12r
R

∑
a

b+c .

11)
∑

b+c
a − 2

∑
a

b+c ≥ 3; b)
∑

b+c
a −

∑
a

b+c ≥ 6n− 3
2 , where n ≥ 1

4 .

12)
∑

a
b+c + 4abc

(a+b)(b+c)(c+a) ≥ 2;

13)
∑

a
b+c + n · abc

(a+b)(b+c)(c+a) ≥
n+12

8 , where n ≤ 4.

14)
∑

a
b+c + 3 · ab+bc+ca

a2+b2+c2 ≤
9
2 .

15)
∑

a
b+c + n · ab+bc+ca

a2+b2+c2 ≤ n + 3
2 , where n ≥ 1.

16)
∑

a
b+c + 1

3 ·
ab+bc+ca
a2+b2+c2 ≥ n + 3

2 .

17)
∑

a
b+c + n · ab+bc+ca

a2+b2+c2 ≥ n + 3
2 , where n ≤ 1

3 .

18)
∑

a
b+c + 3 · ab+bc+ca

a2+b2+c2 ≥
11
2 .

19)
∑

a
b+c + n · ab+bc+ca

a2+b2+c2 ≥ n + 3
2 , where n ≥ 3.

IneMath 11/2016, M. Chirciu

Solution:

We use the known identities in triangle:∑ b + c

a
=

p2 + r2 − 2Rr

2Rr
;
∑ 1

b + c
=

5p2 + r2 + 4Rr

2p(p2 + r2 + 2Rr)
;
∑

a2 = 2(p2−r2−4Rr)

∑ 1

a2
=

p2 − 2p2(4Rr − r2) + r2(4R + r)2

16R2r2p2
;
∑

bc = p2 + r2 + 4Rr; abc = 4Rrp;
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∑
a3 = 2p(p2 − 3r2 − 6Rr);

∑ a

bc
=

p2 − r2 − 4Rr

2Rrp
;
∑ 1

a
=

p2 + r2 + 4Rr

4Rrp∏
(b + c) = 2p(p2 + r2 + 2R).

Then we use like the proves before:
Gerresten’s inequality: 16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2.
Euler’s inequality: R ≥ 2r.
To each proposed inequalities, the equality is realised if and only if the triangle is
equilateral. �
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[1] Florin Stănescu, Mathematical Reflections, nr. 2/2016, Problem S.382. Găes,ti, România
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REGARDING PROBLEM S:L16.284 FROM SGM 11/2016

METHODS OF SOLVING AN INEQUALITY

MARIN CHIRCIU

In Mathematical Gazette Supplement nr. 11/2016 the following problem is pro-
posed:

Let be n ∈ N,n ≥ 2. Prove that for a1, a2, . . . , an ∈
(

0,
√
n
]
, with

a1 + a2 + . . . an = n, the following inequality holds:

1

a21 + (a2 + a3 + . . . + an)
+

1

a22 + (a1 + a3 + . . . + an)
+. . .+

1

a2n + (a1 + a3 + . . . + an−1)
≤ 1

Andra - Mălina Cardaş, student, Botoşani

The article presents a methodical treatment of this problem, descending it first to
three variable, developing then this result and finishing with the developing of the
general case.

Proof.

Case n = 3.
If a, b, c > 0 with a + b + c = 3, prove that 1

a2+b+c + 1
b2+c+a + 1

c2+a+b ≤ 1. �

Proof. Because a + b + c = 3, we have b + c = 3 − a and we write the inequality∑
1

a2−a+3 ≤ 1.
In order to obtain this result we look for an inequality having the following form:

1
a2−a+3 ≤ x · a+ y (Tangent Line Method) and we determine x and y such that the

attached equation in the variable ”a” to have double root on 1. We obtain x = −1
9

and y = 4
9 .

We have 1
a2−a+3 ≤

4−a
9 ⇔ (a − 1)2(3 − a) ≥ 0, obviously from a, b, c > 0 and

a + b + c = 3, with equality if and only if a = 1.

We obtain
∑

1
a2−a+3 ≤

∑
4−a
9 = 12−

∑
a

9 = 12−3
9 = 1.

The equality holds if and only if a = b = c = 1.
�

Development.
If a, b, c > 0 with a + b + c = 3, prove that

1

a2 + k(b + c)
+

1

b2 + k(c + a)
+

1

c2 + k(a + b)
≤ 3

2k + 1
, where 1 ≤ k ≤ 2.

Proof. Because a + b + c = 3, we have b + c = 3− a and we write the inequality∑ 1

a2 + k(3− a)
≤ 3

2k + 1

We look for an inequality having the form 1
a2+k(3−a) ≤ x · a + y and we determine

x and y such that the attached equation the variable ”a” to have double root on 1.
1
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We obtain x = k−2
(2k+1)2 and y = k+3

(2k+1)2 .

We have 1
a2+k(3−a) ≤

k+3+(k−2)a
(2k+1)2 ⇔ (a− 1)2

[
(k− 2)a− k2 + 5k− 1

]
≥ 0, obviously

from a, b, c > 0 with a+ b+ c = 3 and 1 ≤ k ≤ 2, with equality if and only if a = 1.
We obtain∑ 1

a2 + k(3− a)
≤
∑ k + 3 + (k − 2)a

(2k + 1)2
=

3(k + 3) + (k − 2)
∑

a

(2k + 1)2
=

=
3(k + 3) + (k − 2)3

(2k + 1)2
=

3

2k + 1

The equality holds if and only if a = b = c = 1. �

Solving the general case.
Let be n ∈ N,n ≥ 2. Prove that for a1, a2, . . . , an > 0, with a1 + a2 + . . .+ an = n,
then

1

a21 + (a2 + a3 + . . . + an)
+

1

a22 + (a1 + a3 + . . . + an)
+. . .+

1

a2n + (a1 + a3 + . . . + an−1)
≤ 1

Proof. Because a1 + a2 + . . .+ an = n, we have a2 + a3 + . . .+ an = n− a1 and we
write the inequality

n∑
i=1

1

a2i − ai + n
≤ 1.

We look an inequality having the form 1
a2−a+n ≤ x · a+ y, and we determine x and

y such that the attached equation in variable ”a” to have double root on 1.
We obtain x = −1

n2 and y = n+1
n2 .

We have 1
a2
i−a+n

≤ n+1−ai

n2 ⇔ (ai − 1)2(n − ai) ≥ 0, obviously from
∑n

i=1 ai = 1

and ai > 0, i = 1, n, with equality if and only if ai = 1, i = 1, n.

We obtain
∑n

i=1
1

a2
i−ai+n

≤
∑n

i=1
n+1−ai

n2 = n(n+1)−n
n2 = 1.

The equality holds if and only if a1 = a2 = . . . = an = 1.
�

Observation.

The condition a1, a2, . . . , an ∈
(

0,
√
n
]

is not necessary. It is sufficient to have

a1, a2, . . . , an > 0.
Development.
Let be n ∈ N,n ≥ 2. Prove that for a1, a2, . . . , an > 0, with a1 + a2 + . . . + an = n
holds the following inequality:

1

a21 + k(a2 + a3 + . . . + an)
+

1

a22 + k(a1 + a3 + . . . + an)
+ . . .+

+
1

a2n + k(a1 + a3 + . . . + an−1)
≤ n

1 + k(n− 1)

where 1 ≤ k ≤ 2.

Proof. Because a1 + a2 + . . .+ an = n, we have a2 + a3 + . . .+ an = n− a1 and we
write the inequality

n∑
i=1

1

a2i + k(n− ai)
≤ 3

1 + k(n− 1)
.
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We look for an inequality having the form 1
a2+k(n−a) ≤ x · a + y and we determine

x and y such that the attached equation in variable ”a” to have double root on 1.
We obtain

x =
k − 2

[1 + k(n− 1)]2
and y =

3 + k(n− 2)

[1 + k(n− 1)]2
.

We have 1
a2
i+k(n−ai)

≤ kn+3−2k+(k−2)ai

[1+k(n−1)]2 ⇔ (ai− 1)2
[
(k− 2)ai + kn− (k− 1)2

]
≥ 0,

obviously from
∑n

i=1 ai = 1 and ai > 0, i = 1, n, with inequality if and only if
ai = 1, i = 1, n.

We obtain
∑n

i=1
1

a2
i+k(n−ai)

≤
∑n

i=1
kn+3−2k+(2−k)ai

[1+k(n−1)]2 ≤ n(kn+3−2k)+(k−2)n
[1+k(n−1)]2 =

= n
1+k(n−1) .

The equality holds if and only if a1 = a2 = . . . = an = 1. �
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SOLUTION TO THE PROBLEM UP.052 FROM

ROMANIAN MATHEMATICAL MAGAZINE

NUMBER 4, SPRING 2017

MARIN CHIRCIU

UP.052. Let a, b, c be positive real numbers such that a+b+c = 3. Prove that:

a6

a2 + b
+

b6

b2 + c
+

c6

c2 + a
≥ 3

2
.

Proposed by George Apostolopoulos, Messolonghi, Greece

Proof.

With Hölder’s inequality we have
A3

X
+
B3

Y
+
C3

Z
≥ (A+B + C)3

3(X + Y + Z)
,∀A,B,C,X, Y, Z > 0.

We obtain
∑ a6

a2 + b
=
∑ (a2)3

a2 + b
≥ (

∑
a2)3

3
∑

(a2 + b)
=

t3

3(t+ 3)
≥ 3

2
, where t =

∑
a2,

and the last inequality is equivalent with

2t3 ≥ 9(t+ 3)⇔ 2t3 − 9t− 27 ≥ 0⇔ (t− 3)(2t2 + 6t+ 9) ≥ 0⇔ t ≥ 3,

obviously from a2 + b2 + c2 ≥ (a+ b+ c)2

3
.

The equality holds if and only if a = b = c = 1.

�

The problem can be developed:

Let a, b, c be positive real numbers such that a+ b+ c = 3. Prove that:

a6

a2 + nb
+

b2

b2 + nc
+

c6

c2 + na
≥

3

n + 1
, where n ≥ 0.

Marin Chirciu - Romania

Proof.

With Hölder’s inequality we have
A3

X
+
B3

Y
+
C3

Z
≥ (A+B + C)3

3(X + Y + Z)
,∀A,B,C,X, Y, Z > 0.

We obtain
a6

a2 + nb
=
∑ (a2)3

a2 + nb
≥ (

∑
a2)3

3
∑

(a2 + nb)
=

t3

3(t+ 3n)
≥ 3

n+ 1
, where t =

∑
a2,

and the last inequality is equivalent with

(n+t)t3 ≥ 9(t+3n)⇔ (n+1)t3−9t−27n ≥ 0⇔ (t−3)
[
(n+1)t2+3(n+1)t+9n

]
≥ 0⇔

t ≥ 3, obviously from a2 + b2 + c2 ≥ (a+ b+ c)2

3
.

The equality holds if and only if a = b = c = 1.

�
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UP.048. Let a, b, c be non-negative real numbers such that a+b+c = 1. Prove that:

a4 + b4 + c4 + 26abc ≤ 1

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Proof.
Homogenising the inequality we obtain

a4 + b4 + c4 + 26abc(a+ b+ c) ≤ (a+ b+ c)4

As (a+b+c)4 =
∑

a4+4
∑

bc(b2+c2)+6
∑

b2c2+12abc(a+b+c), the above inequality

can be written:∑
a4+4

∑
bc(b2+ c2)+6

∑
b2c2+12abc(a+ b+ c) ≥

∑
a4+26abc(a+ b+ c)⇔

2
∑

bc(b2 + c2)+ 3
∑

b2c2 ≥ 7abc(a+ b+ c), which follows from means inequality

and the inequality x2 + y2 + z2 ≥ xy + yz + zx, with x = bc, y = ca, z = ab.

Indeed:

2
∑

bc(b2+c2)+3
∑

b2c2 ≥ 4
∑

b2c2+3
∑

b2c2 = 7
∑

b2c2 ≥ 7
∑

bc·ca = 7abc(a+b+c).

The equality holds if and only if a = b = c =
1

3
.

�

The problem can be developed:

If a, b, c > 0, a+b+c+1 then a4+b4+c4+λabc ≤
λ+ 1

27
, where λ ≥ 26.

Proposed by Marin Chirciu - Romania

Proof.
Homogenising the inequality we obtain:

ab + b4 + c4 + λabc(a+ b+ c) ≤ λ+ 1

27
(a+ b+ c)4.

As (a+ b+ c)4 =
∑

a4 +4
∑

bc(b2 + c2)+ 6
∑

b2c2 +12abc(a+ b+ c), the above

inequality can be written:

λ+ 1

27
·
[∑

a4+4
∑

bc(b2+c2)+6
∑

b2c2+12abc(a+b+c)
]
≥
∑

a4+λabc(a+b+c)⇔

(λ−26)
∑

a4+(8λ+8)
∑

bc(b2+c2)+(6λ+6)
∑

b2c2 ≥ (15
∑

λ−12)abc(a+b+c)
which follows from the condition λ ≥ 26, means inequality and the inequality

1
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x2+y2+z2 ≥ xy+yz+zx, with x = a2, y = b2, z = c2, then x = bc, y = ca, z = ab.

Indeed:

(α− 26)
∑

a4 + (4λ+ 4)
∑

bc(b2 + c2) + (6λ+ 6)
∑

b2c2 ≥

≥ (λ− 26)
∑

b2c2 + (8λ+ 8)
∑

b2c2 + (6λ+ 6)
∑

b2c2 =

= (15λ− 12)
∑

b2c2 ≥ (15λ− 12)
∑

bc · ca
= (15λ− 12)abc(a+ b+ c).

The equality holds if and only if a = b = c =
1

3
.

�
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SOLUTION TO PROBLEM JP.060. FROM

ROMANIAN MATHEMATICAL MAGAZINE

NUMBER 4, SPRING 2017

MARIN CHIRCIU

JP.060. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that

ab

a + b
+

ab

a + b
+

ab

a + b
≤

3
√
3

2
R.

Proposed by George Apostolopoulos - Messolonghi - Greece

Proof.

We have
∑ bc

b+ c
≤
∑ b+ c

4
= p ≤ 3

√
3

2
R, where the last inequality is

Mitrinović’s inequality.

The equality holds if and only if the triangle is equilateral.

�

The inequality can be strengthened:

1. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that
ab

a + b
+

ab

a + b
+

ab

a + b
≤ p.

Proof. ∑ bc

b+ c
≤
∑ b+ c

4
= p.

The equality holds if and only if the triangle is equilateral.

Inequality 1. is stronger then JP.060.

�

2. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that

ab

a + b
+

ab

a + b
+

ab

a + b
≤ p ≤

3
√
3

2
R.

1
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Proof.

We have
∑ bc

b+ c
≤
∑ b+ c

4
=≤ 3

√
3

2
R, where the last inequality

is Mitrinonvić’s inequality.

The equality holds if and only if the triangle is equilateral.

�

Inequality 1. can also be strengthened:

3. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that
ab

a + b
+

ab

a + b
+

ab

a + b
≤

3(ab + bc + ca)

2(a + b + c)
.

Proof 1.

We use the known identities in triangle∑ bc

b+ c
=

p4 + 2p2(8R+ r2) + (4R+ r)3

2p(p2 + r2 + 2Rr)
and

∑
bc = p2 + r2 + 4Rr.

We write the inequality:

p4 + 2p2(8R+ r2) + (4R+ r)3

2p(p2 + r2 + 2Rr)
≤ 3(p2 + r2 + 4Rr)

2 · 2p
⇔

p2(p2 − 14Rr + 2r2) ≥ r2(8R2 − 2Rr − r2).

As (p2 − 14Rr + 2r2) > 0, see Gerretsen’s inquality p2 ≥ 16Rr − 5r2, using again

Gerretsen’s inequality it suffices to prove that

(16Rr − 5r2)(16Rr − 5r2 − 14Rr + 2r2) ≥ r2(8R2 − 2r − r2)⇔
(16R−5r)(2R−3r) ≥ r2(8R2−2Rr−r2)⇔ 3R2−7Rr+2r2 ≥ 0⇔ (R−2r)(3R−r) ≥ 0.

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�

Proof 2.

The triplets (a+ b, b+ c, c+ a) and
( ab

a+ b
,

bc

b+ c
,

ca

c+ a

)
are ordered the same.

With Chebyshev’s inequality we obtain:

(a+b)· ab

a+ b
+(b+c)· bc

b+ c
+(c+a)· ca

c+ a
≥ 1

3

[
(a+b)+(b+c)+(c+a)

][ ab

a+ b
+

bc

b+ c
+

ca

c+ a

]

⇔ (ab+ bc+ ca) ≥ 1

3
· 2(a+ b+ c)·

( ab

a+ b
+

bc

b+ c
+

ca

c+ a

)
⇔

⇔ ab

a+ b
+

ab

a+ b
+

ab

a+ b
≤ 3(ab+ bc+ ca)

2(a+ b+ c)
.

The equality holds if and only if the triangle is equilateral.

Inequality 3. is stronger then Inequality 1.:

�



3

4. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that
ab

a + b
+

ab

a + b
+

ab

a + b
≤

3(ab + bc + ca)

2(a + b + c)
≤ p.

Proof.
We use inequality 3. and

3(ab+ bc+ ca)

2(a+ b+ c)
≤ p⇔ 3(ab+ bc+ ca)

2(a+ b+ c)
≤ a+ b+ c

2
⇔ (a+b+c)2 ≥ 3(ab+bc+ca).

The equality holds if and only if the triangle is equilateral.

�

We can write the series of inequalities:

5. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that
ab

a + b
+

ab

a + b
+

ab

a + b
≤

3(ab + bc + ca)

2(a + b + c)
≤

a + b + c

2
≤

3(a2 + b2 + c2)

2(a + b + c)
.

Proof.

We use inequality 4. and
a+ b+ c

2
≤ 3(a2 + b2 + c2)

2(a+ b+ c)
⇔ a2+b2+c2 ≥ ab+bc+ca.

�

6. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that
ab

a + b
+

ab

a + b
+

ab

a + b
≤

3(ab + bc + ca)

2(a + b + c)
≤ p ≤

3
√
3

2
R.

Proof.
We use inequality 4. and Mitrinović’s inequality.

The equality holds if and only if the triangle is equilateral.

�
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SOLUTION TO PROBLEM SP.055. FROM

ROMANIAN MATHEMATICAL MAGAZINE

NUMBER 4, SPRING 2017

MARIN CHIRCIU

SP.055. Let ma,mb,mc be the lengths of medians of a triangle ABC

with inradius r. Prove that
ma + mb + mc

sin2 A + sin2 B + sin2 C
≥ 4r.

Proposed by George Apostolopoulos - Messolonghi - Greece

Proof.

With sine theorem we write the inequality:
ma +mb +mc

a2 + b2 + c2
≥ r

R2
⇔
∑

ma ≥
r

R2
·
∑

a2.

We use the known inequality ma ≥
b2 + c2

4R
it follows:∑

ma ≥
∑ b2 + c2

4R
=

2
∑

a2

4R
=
∑∑

a2

2R
≥ r

R2
·
∑

a2, where the last inequality

is equivalent with R ≥ 2r, namely Euler’s inequality.

The equality holds if and only if the triangle is equilateral

�

The inequality can be strengthened:

1. Let ma,mb,mc be the lengths of medians of a triangle ABC with inradius r.

Prove that
ma + mb + mc

sin2 A + sin2 B + sin2 C
≥ 2R.

Proof.

With sine theorem we write the inequality:

ma +mb +mc

a2 + b2 + c2
≥ 1

2R
⇔
∑

ma ≥
1

2R
·
∑

a2.

Using the known inequality ma ≥
b2 + c2

4R
it follows:∑

ma ≥
∑ b2 + c2

4R
=

2
∑

a2

4R
=

1

2R
·
∑

a2.

Equality holds if and only if the triangle is equilateral.

�
1
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Inequality 1. is stronger then SP.055.

2. Let a, b, c be the lengths of the sides of a triangle with circumradius R.

Prove that
ma +mb +mc

sin2 A+ sin2 B + sin2 C
≥ 2R ≥ 4r.

Proof.
We use Inequality 1. and Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

�
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MARIN CHIRCIU

1. Prove that in triangle ABC, with angles A;B;C side lengths a; b; c
the following inequality holds:

a(b + c)

bc · cos2 A
2

+
b(c + a)

ca · cos2 B
2

+
c(a + b)

ab · cos2 C
2

≥ 8

Proposed by Daniel Sitaru - Romania

Proof.
We have∑ a(b+ c)

bc · cos2 A
2

=
∑ a(b+ c)

bc · p(p−a)
bc

=
∑ a(b+ c)

p(p− a)
=
∑ a(2p− a)(p− b)(p− c)

p(p− a)(p− b)(p− c)
=

4R

r
≥ 8,

where the last inequality follows from Euler’s inequality R ≥ 2r.

The equality holds if and only if a = b = c.

�

Next, are proposed inequalities for sums having the form
∑ a(b+ c)

bc · f(A)
, where f

is one of the trigonometric functions.

2. Prove that in any triangle ABC, with angles A;B;C side lengths
a; b; c the following inequality holds:

a(b + c)

bc · sin2 A
2

+
b(c + a)

ca · sin2 B
2

+
c(a + b)

ab · sin2 C
2

≥ 12.

Proposed by Marin Chirciu - Romania

Proof.
We have∑ a(b+ c)

bc · sin2 A
2

=
∑ a(b+ c)

bc · (p−b)(p−c)
bc

=
∑ a(b+ c)

(p− b)(p− c)
=
∑ a(2p− a)(p− a)

(p− a)(p− b)(p− c)
=

12R

r
≥ 24

where the last inequality follows from Euler’s inequality R ≥ 2r.

The equality holds if and only if a = b = c.
1
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�

3. Prove that in triangle ABC, with angles A;B;C side lengths a; b; c
the following inequality holds:

a(b + c)

bc · sin2 A
+

b(c + a)

ca · sin2 B
+

c(a + b)

ab · sin2 C
≥ 8.

Proof 1.
We have∑ a(b+ c)

bc · sin2 A
=
∑ a(b+ c)

bc · a2

4R2

=
4R2

abc

∑
(b+ c) =

4R2

4pRr
· = 4R

r
≥ 8,

where the last inequality follows from Euler’s inequality R ≥ 2r.

The equality holds if and only if a = b = c.

�

Proof 2.
We add the inequalities 1. and 2.

�

4. Prove that in triangle ABC, with angles A;B;C side lengths a; b; c
the following inequality holds:

a(b + c)

bc · sinA
+

b(c + a)

cd · sinB
+

c(a + b)

ab · sinC
≥ 4
√
3.

Proof.
We have∑ a(b+ c)

bc · sinA
=
∑ a(b+ c)

bc · a
2R

=
2R

abc

∑
a(b+c) =

2R

4pRr
·2
∑

bc =
p2 + r2 + 4Rr

pr
≥ 4
√
3,

where the last inequality follows from Gerretsen’s inequality p2 ≥ 16Rr − 5r2,

Doucet’s inequality p
√
3 ≤ 4R+ r and Euler’s inequality R ≥ 2r.

The equality holds if and only if a = b = c.

�

5. Prove that in triangle ABC, with angles A;B;C side lengths a; b; c
the following inequality holds:

a(b + c)

bc · sin3 A
+

b(c + a)

ca · sin3 B
+

c(a + b)

ab · sin3 C
≥

16
√
3

Proof.
We have∑ a(b+ c)

bc · sin3 A
=
∑ a(b+ c)

bc · a3

8R3

=
8R3

abc

∑ b+ c

a
=

8R3

4pRr
·p

2 + r2 − 2Rr

2Rr
=

R(p2 + r2 − 2Rr)

pr2
≥ 16√

3
,

where the last inequality follows from Gerretsen’s inequality p2 ≥ 16Rr − 5r2,

Doucet’s inequality p
√
3 ≤ 4R+ r and Euler’s inequality R ≥ 2r.

The equality holds if and only if a = b = c.

�
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6. Prove that in triangle ABC, with angles A;B;C side lengths a; b; c
the following inequality holds:

a(b + c)

bc · sin4 A
+

b(c + a)

ca · sin4 B
+

c(a + b)

ab · sin4 C
≥

32

3
.

Proposed by Marin Chirciu - Romania

Proof.
We have∑ a(b+ c)

bc · sin4 A
=
∑ a(b+ c)

bc · a4

16R4

=
16R4

abc

∑ b+ c

a2
=

=
16R4

4pRr
· p

4 + p2(2r2 − 10Rr) + r2(4R+ r)(2R+ r)

8pR2r2
=

=
R

2p2r3

[
p4 + p2(2r2 − 10Rr) + r2(4R+ r)(2R+ r)

]
≥ 32

3
,

where the last inequality holds if

3R[p4 + p2(2r2 − 10Rr) + r2(4R+ r)(2R+ r)] ≥ 64p2r3 ⇔
p2(3Rp2 − 30R2r + 6Rr2 − 64r3) + 3Rr2(8R2 + 6Rr + r2) ≥ 0.

We distinguish the cases:

1. If 3Rp2 − 30R2r + 6Rr2 − 6r3 ≥ 0, the inequality is equivalent.

2. If 3Rp2 − 30R2r + 6Rr2 − 64r3 < 0, we rewrite the inequality:

p2(30R2r − 6Rr2 + 64r3 − 3Rp2) ≤ 3Rr2(8R2 + 6Rr + r2), which follows from

Gerretsen’s inequality 16Rr−5r2 ≤ p2 ≤ 4R2+4Rr+3r2. It remains to prove that:

(4R2+4Rr+3r2)[30R2r−6Rr2+64r3−3R(16Rr−5r2)] ≤ 3Rr2(8R2+6Rr+r2)⇔
⇔ 18R4 + 15R3r − 55R2r2 − 70Rr3 − 48r4 ≥ 0⇔

⇔ (R−2r)(18R3+51R2r+47Rr2+24r3) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

The equality holds if and only if a = b = c.

�
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PROBLEM 177

MARIN CHIRCIU

1. In ∆ABC

3

√
a

b + c− a
+ 3

√
b

c + a− b
+ 3

√
c

a + b− c
≤

3R

2r
.

Proposed by George Apostolopoulos - Messolonghi - Grece

Proof.
Using Hölder’s inequality, we obtain(

3

√
a

b+ c− a
+ 3

√
b

c+ a− b
+ 3

√
c

a+ b− c

)3

≤

≤ (a+ b+ c)
( 1

b+ c− a
+

1

c+ a− b
+

1

a+ b− c

)
(1 + 1 + 1) =

= 2p · 4R+ r

2pr
·3 = 3

(
1+

4R

r

)
≤
(3R
2r

)3
, where the last inequality is equivalent with

9R3 ≥ 8r2(4R+ r)⇔ 9R3 − 32Rr2 − 8r3 ≥ 0⇔ (R− 2r)(9R2 + 18Rr + 4r2) ≥ 0

true from Euler’s inequality: R ≥ 2r.

The equality holds for an equilateral triangle.

�

Remark
Inequality 1. can be strengthened:

2. In ∆ABC

3

√
a

b + c− a
+ 3

√
b

c + a− b
+ 3

√
c

a + b− c
≤ 1 +

R

r

Proposed by Marin Chirciu - Romania

Proof.
Using Hölder’s inequality we obtain(

3

√
a

b+ c− a
+ 3

√
b

c+ a− b
+ 3

√
c

a+ b− c

)3

≤

≤ (a+ b+ c)
( 1

b+ c− a
+

1

c+ a− b
+

1

a+ b− c

)
(1 + 1 + 1) =

= 2p·4R+ r

2pr
·3 = 3

(
1+

4R

r

)
≤
(
1+

R

r

)3
, where the last inequality is equivalent with

1
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(R+r)3 ≥ 3r2(4R+r)⇔ R3+3R2r−9Rr2−2r3 ≥ 0⇔ (R−2r)(R2+5r+r2) ≥ 0

true from Euler’s inequality: R ≥ 2r.

The equality holds for an equilateral triangle.

�

Remark
Inequality 2. is stronger the inequality 1.

3. In ∆ABC

3

√
a

b + c− a
+ 3

√
b

c + a− b
+ 3

√
c

a + b− a
≤ 1 +

R

r
≤

3R

2r
.

Proof.

See inequality 2. and 1 +
R

r
≤ 3R

2r
⇔ R ≥ 2r (Euler’s inequality)

Equality holds for an equilateral triangle.

�

Inequality 2 can be developed

4. In ∆ABC

4

√
a

b + c− a
+ 4

√
b

c + a− b
+ 4

√
c

a + b− c
≤ 1 +

R

r
.

Proof.
Using Hölder’s inequality we obtain(

4

√
a

b+ c− a
+ 4

√
b

c+ a− b
+ 4

√
c

a+ b− c

)4

≤

≤ (a+ b+ c)
( 1

b+ c− a
+

1

c+ a− b
+

1

a+ b− c

)
(1 + 1 + 1)(1 + 1 + 1) =

= 2p·4R+ r

2pr
·3·3 = 9

(
1+

4R

r

)
≤
(
1+

R

r

)4
, where the last inequality is equivalent with

(R+ r)4 ≥ 9r3(4R+ r)⇔ R4 + 4R3r + 6R2r2 − 32Rr3 − 8r4 ≥ 0⇔
⇔ (R− 2r)(R3 + 6R3r + 18Rr2 + 4r3) ≥ 0

which is true form Euler’s inequality: R ≥ 2r

The equality holds for an equilateral triangle.

�

5. In ∆ABC

4

√
a

b + c− a
+ 4

√
b

c + a− b
+ 4

√
c

a + b− c
≤ 1 +

R

r
≤

3R

2r
.

Proof.
See 4. and Euler’s inequality R ≥ 2r.

�



3

Let’s generalise inequality 1.

6. In ∆ABC

n

√
a

b + c− a
+ n

√
b

c + a− b
+ n

√
c

a + b− c
≤

3R

2r
, where n ∈ N, n ≥ 2

Proposed by Marin Chirciu - Romania

Proof.
Using Hölder’s inequality we obtain(

n

√
a

b+ c− a
+ n

√
b

c+ a− b
+ n

√
c

a+ b− c

)n

≤

≤ (a+ b+ c)
( a

b+ c− a
+

b

c+ a− b
+

c

a+ b− c

)
(1 + 1 + 1) . . . (1 + 1 + 1)

= 2p·4R+ r

2pr
·3n−2 = 3n−2·

(
1+

4R

r

)
≤
(3R
2r

)n
, where the last inequality is equivalent with

9Rn ≥ 2nrn−1
(
4R+ r)⇔ 9Rn − 2n+2Rrn−1 − 2nrn ≥ 0

Denoting
R

r
= t ≥ 2 it remains to prove that

9tn−2n+2t−2n ≥ 0⇔ (t−2)(9tn−1+9·2tn−2+9·22·tn−3+. . .+9·2n−3t2+9·2n−2t+2n−1) ≥ 0,

Obviously because t ≥ 2.

The equality holds for an equilateral triangle.

�
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INEQUALITY IN TRIANGLE - 242

MARIN CHIRCIU

Prove that in any triangle:

R

r
≥

ra

rb + rc
+

rb

rc + ra
+

rc

ra + rb
+

1

2

Proposed by Adil Abdulallayev - Baku - Azerbaidian,
Marian Ursarescu - Romania

Proof.

Using ra =
S

p− a
we obtain

∑ ra
rb + rc

=
∑ (p− b)(p− c)

a(p− a)
=

(4R+ r)3 − p2(8R− r)

4p2R

We write the inequality
R

r
≥ (4R+ r)3 − p2(8R− r)

4p2R
+
1

2
⇔ p2(4R2+6Rr−r2) ≥ r(4R+r)3,

which follows from Gerretsen’s inequality p2 ≥ 16Rr−5r2. It remains to prove that

⇔ (16Rr − 5r2)(4R2 + 6Rr − r2) ≥ r(4R+ r)3 ⇔ 14R2 − 29Rr + 2r2 ≥ 0⇔
(R− 2r)(14R− r) ≥ 0, obviously from Euler’s inequality: R ≥ 2r.

The equality holds for an equilateral triangle

�

Remark
The inequality can be devoloped

Prove that in any triangle:

R

r
≥ n

( ra

rb + rc
+

rb

rc + ra
+

rc

ra + rb

)
+

4 − 3n

2
, where 0 ≤ n ≤ 1.

Proposed by Marin Chirciu - Romania

Proof.

Using ra =
S

p− a
we obtain

∑ ra
rb + rc

=
∑ (p− b)(p− c)

a(p− a)
=

(4R+ r)3 − p2(8R− r)

4p2R

We write the inequality:

R

r
≥ n· (4R+ r)3 − p2(8R− r)

4p2R
+
4− 3n

2
⇔ p2(4R2+14nRr−8Rr−nr2) ≥ nr(4R+r)3

which follows from Gerretsen’s inequality p2 ≥ 16Rr − 5r2.

It remains to prove that:

⇔ (16Rr − 5r2)(4R2 + 14nRr − 8Rr − nr2) ≥ nr(4R+ r)3

⇔ (32− 32n)R3 + (88n− 74)R2r + (20− 49n)Rr2 + 2nr2 ≥ 0⇔
⇔ (R− 2r)[(32− 32n)R2 + (24n− 10)Rr − nr2] ≥ 0,

obviously from Euler’s inequality: R ≥ 2r and the condition from the hypothesis 0 ≤ n ≤ 1
1
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The equality holds for an equilateral triangle.

�

Remark

For n = 1 we obtain INEQUALITY IN TRIANGLE - 242.
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PROBLEM 175 - TRIANGLE MARATHON 101 - 200

MARIN CHIRCIU

1. In ∆ABC ∑ 1

sin4 A
2

≥
(12r)4∑

a4
.

Proposed by George Apostolopoulos - Messolonghi - Greece

Remark
Inequality 1 can be strengthened:

2. In ∆ABC ∑ 1

sin4 A
2

≥
(72Rr)2∑

a4
.

Proposed by Marin Chirciu - Romania

Proof.

In order to prove this inequality we will first present two additional results.

Lemma 1
3. In ABC ∑ 1

sin4 A
2

=
p4 + p2(2r2 − 16Rr) + 32R2r2 + r4

r4

Proof.∑ 1

sin4 A
2

=
∑ b2c2

(p− b)2(p− c)2
=

∑
b2c2(p− a)2∏
(p− a)2

=
p6 + p4(2r2 − 16Rr) + p2(32R2r2 + r4)

p2r4

=
p4 + p2(2r2 − 16Rr) + 32R2r2 + r4

r4
.

�

Lamma 2
4. In ∆ABC ∑ 1

sin4 A
2

≥
12R2

r2
.

Proof.
Using Lemma 1 the inequality to prove can be written:

p4 + p2(2r2 − 16Rr) + 32R2r2 + r4

r4
≥ 12R2

r2
⇔ p4+p2(2r2−16Rr)+32R2r2+r4 ≥ 12R2r2

⇔ p2(p2 + 2r2 − 16Rr) + 20R2r2 + r4 ≥ 0.

We distinguish the following cases:

Case 1. If p2 + 2r2 − 16Rr ≥ 0, the inequality is obvious.
1
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Case 2. If p2 + 2r2 − 16Rr < 0, the inequality can be rewritten:

p2(16Rr − 2r2 − p2) ≤ 20R2r2 + r4, which follows form Gerretsen’s inequality:

16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

(4R2+4Rr+3r2)(16Rr−2r2−16Rr+5r2) ≤ 20R2r2+r4 ⇔ 3(4R2+4Rr+3r2) ≤ 20R2+r2

⇔ 2R2−3Rr−2r2 ≥ 0⇔ (R−2r)(2R+r) ≥ 0, which is obvious from Euler’s inequality: R ≥ 2r.

The equality holds for an equilateral triangle.

�

Let’s pass to solving inequality 2.

In ∆ABC ∑ 1

sin4 A
2

≥
(72Rr)2∑

a4
.

Inequality 2. is equivalent with:∑
a4·
∑ 1

sin4 A
2 ≥ (72Rr)2

, which follows from using the known identity in triangle

∑
a4 = 2

[
p4−2p2(4Rr+3r2)+r2(4R+r)2

]
and the inequality

∑ 1

sin4 A
2 ≥

12R2

r2

which we’ve proved in Lemma 2.

It is enough to prove that:

2
[
p4 − 2p2(4Rr + 3r2) + r2(4R+ r)2

]
· 12R

2

r2
≥ (72Rr)2 ⇔

p4−2p2(4Rr+3r2)+r2(4R+r)2 ≥ 216r4 ⇔ p2(p2−8Rr−6r2)+r2(4R+r)2 ≥ 216r4

which follows from Gerretsen’s inequality p2 ≥ 16Rr−5r2 and the remark that p2−8Rr−6r2 > 0.

It remains to prove that:

(16Rr − 5r2)(16Rr − 5r2 − 8Rr − 6r2) + r2(4R+ r)2 ≥ 216r4 ⇔
(16Rr − 5r2)(8Rr − 11r2) + r2(4R+ r)2 ≥ 216r4 ⇔

(16R− 5r)(8R− 11r) + (4R+ r)2 ≥ 216r2 ⇔ 9R2 − 13Rr − 10r2 ≥ 0⇔
⇔ (R− 2r)(9R+ 5r) ≥ 0, obvious from Euler’s inequality: R ≥ 2r.

The inequality holds for an equilateral triangle.

Remark

Inequality 2. is stronger than inequality 1.:

�

5. In ∆ABC ∑ 1

sin4 A
2

≥
(72Rr)2∑

a4
≥

(12r)4∑
a4

Proof.

See inequality 2. and Euler’s inequality R ≥ 2r.

The inequality holds for an equilateral triangle.

�
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6. If a, b, c > 0 and ab + bc + ca = 3 prove that∑ a3 + b3

a2 + ab + b2
≥ 2

Proposed by Nguyen Viet Hung - Hanoi - Vietnam

Remark
The inequality can be developed:

If a, b, c > 0 and ab + bc + ca = 3 prove that∑ a3 + b3

a2 + nab + b2
≥

6

n + 2
, where n ≥ 0.

Proposed by Marin Chirciu - Romania

Proof.

We have
a2 − ab+ b2

a2 + nab+ b2
≥ 1

n+ 2
⇔ (n+1)(a−b)2 ≥ 0, obvious, with equality for a = b.

We obtain
∑ (a+ b)(a2 − ab+ b2)

a2 + nab+ b2
≥
∑

(a+b)· 1

n+ 2
=

2
∑

a

n+ 2
≥ 6

n+ 2
, wherefrom the last inequality

is equivalent with
∑

a ≥ 3⇔ (
∑

a)2 ≥ 9, which is true from

(a+ b+ c)2 ≥ 3(ab+ bc+ ca) = 9.

The equality holds if and only if a = b = c = 1.

�

Remark

For n = 1 we obtain Problem 171 from TRIANGLE MARATHON 101 -200,

proposed by Nguyen Viet Hung - Hanoi - Vietnam

7. In ∆ABC ∑ b4 + c4

tan2 B
2

+ tan2 C
2

≥ 48S2.

Proposed by George Apostolopoulos - Messolonghi - Greece

Remark
The inequality can be developed:

In ∆ABC ∑ b4 + nc4

tan2 B
2

+ n tan2 C
2

≥ 48S2, where n ≥ 0.

Proposed by Marin Chirciu - Romania

Proof.

We have a2 ≥ 4(p−b)(p−c)⇔ a2 ≥ (a+b−c)(a+c−b)⇔ a2 ≥ a2−(b−c)2 ⇔ (b−c)2 ≥ 0

We obtain:

b4+nc4 ≥ 16(p−a)2(p−c)2+n ·16(p−a)2(p−b)2 = 16(p−a)2
[
(p−c)2+n(p−b)2

]
;

tan2
B

2
+n tan2

C

2
=

(p− a)(p− c)

p(p− b)
+n· (p− a)(p− b)

p(p− c)
=

p− a

p(p− b)(p− c)

[
(p−c)2+n(p−b)2

]
It follows
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b4 + nc4

tan2 B
2 + n tan2 C

2

≥ 16(p− a)2[(p− c)2 + n(p− b)2]
p−a

p(p−b)(p−c) [(p− c)2 + n(p− b)2]
= 16p(p−a)(p−b)(p−c) = 16S2

We deduce that
∑ b4 + nc4

tan2 B
2 + n tan2 C

2

≥
∑

16S2 = 48S2.

The equality holds for an equilateral triangle.

�

Remark

For n = 1 we obtain Problem 137 from TRIANGLE MARATHON 101 - 200,

proposed by George Apostolopoulos - Messolonghi - Greece.
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PROBLEM 135 - TRIANGLE MARATHON 101 - 200

MARIN CHIRCIU

1. In ∆ABC

a
√
b + b

√
c + c

√
a ≤ 3R

√
2p

Proposed by Daniel Sitaru - Romania

Remark
2. In ∆ABC

a
√
b + b

√
c + c

√
a ≤ 2(R + r)

√
2p

Proposed by Marin Chirciu - Romania

Proof.

Using the CBS inequality, we have:(∑
a
√
b

)2

=

(∑√
a
√
ab

)2

≤
∑

a ·
∑

ab = 2p · (p2 + r2 + 4Rr)

Gerretsen︷︸︸︷
≤

≤ 2p · (4R2 + 4Rr + 3r2 + r2 + 4Rr) =

= 2p · 4(R+ r)2, wherefrom
∑

a
√
b ≤ 2(R+ r)

√
2p

The equality holds if and only if the triangle is equilateral.

�

Remark

We can write the double inequality:

3. In ∆ABC

a
√
b + b

√
c + c

√
a ≤ 2(R + r)

√
2p ≤ 3R

√
2p

Proof.

Taking into account Euler’s inequality we obtain 2(R+ r)
√
2p ≤ 3R

√
2p.

The equality holds if and only if the triangle is equilateral.

�

Remark.

In the same note we can propose:

4. In ∆ABC

a
√
b + c + b

√
c + a + c

√
a + b ≤ 4(R + r)

√
p ≤ 6R

√
p

1
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Proof.
Using CBS inequality we have:(∑

a
√
b+ c

)2

=

(∑√
a
√
a(b+ c)

)2∑
a·
∑

2bc = 4p·(p2+r2+4Rr)

Gerretsen︷︸︸︷
≤

4p·(4R2+4Rr+3r2+r2+4Rr) = 4p·4(R+r)2, wherefrom
∑

a
√
b+ c ≤ 4(R+r)

√
p.

Taking into account Euler’s inequality we obtain 4(R+ r)
√
p ≤ 6R

√
p.

The equality holds if and only if the triangle is equilateral.

�

Remark

The inequality can be strengthened

5. In ∆ABC

a
√
b + nc+b

√
c + na+c

√
a + nb ≤ 2(R+r)

√
2(n + 1)p ≤ 3R

√
2(n + 1)p, where n ≥ 0.

Proposed by Marin Chirciu - Romania

Proof.
Using CBS inequality we have:(∑

a
√
b+ nc

)2

=

(∑√
a
√
a(b+ nc)

)2

≤
∑

a·
∑

(n+1)bc = 2(n+1)p·(p2+r2+4Rr)

Gerretsen︷︸︸︷
≤

= 2(n+ 1)p · (4R2 + 4Rr + 3r2 + r2 + 4Rr) = 2(n+ 1)p · 4(R+ r)2, wherefrom∑
a
√
b+ nc ≤ 2(R+ r)

√
2(n+ 1)p.

Taking into account Euler’s inequality we obtain 2(R+r)
√

2(n+ 1)p ≤ 3R
√
2(n+ 1)p.

�

Remark

For n = 0 in 5. we obtain 3., and for n = 1 in 5. we obtain 4.
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PROBLEM 175 - TRIANGLE MARATHON 101 - 200

MARIN CHIRCIU

1. In ∆ABC ∑ 1

sin4 A
2

≥
(12r)4∑

a4
.

Proposed by George Apostolopoulos - Messolonghi - Greece

Remark

Inequality 1. can be strengthened:

2. In ∆ABC ∑ 1

sin4 A
2

≥
(72Rr)2∑

a4
.

Proposed by Marin Chirciu - Romania

Proof.

In order to prove this inequality we will first present two additional results.

Lemma 1
3. In ∆ABC∑ 1

sin4 A
2

=
p4 + p2(2r2 − 16Rr) + 32R2r2 + r4

r4
.

Proof.∑ 1

sin4 A
2

=
∑ b2c2

(p− b)2(p− c)2
=

∑
b2c2(p− a)2∏
(p− a)2

=
p6 + p4(2r2 − 16Rr) + p2(32R2r2 + r4)

p2r4

=
p4 + p2(2r2 − 16Rr) + 32R2r2 + r4

r4
.

�

Lemma 2
4. In ∆ABC ∑ 1

sin4 A
2

≥
12R2

r2
.

Proof.

Using Lemma 1 the inequality we have to prove can be written:

p4 + p2(2r2 − 16Rr) + 32R2r2 + r4

r4
≥ 12R2

r2
⇔ p4+p2(2r2−16Rr)+32R2r2+r4 ≥ 12R2r2

⇔ p2(p2 + 2r2 − 16Rr) + 20R2r2 + r4 ≥ 0
1
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We distinguish the cases:

Case 1. If p2 + 2r2 − 16Rr ≥ 0, the inequality is obvious.

Case 2. If p2 + 2r2 − 16Rr < 0, the inequality can be rewritten:

p2(16Rr − 2r2 − p2) ≤ 20R2r2 + r4, which follows from Gerretsen’s inequality:

16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2. It remains to prove that:

(4R2+4Rr+3r2)(16Rr−2r2−16Rr+5r2) ≤ 20R2r2+r4 ⇔ 3(4R2+4Rr+3r2) ≤ 20R2+r2

⇔ 2R2−3Rr−2r2 ≥ 0⇔ (R−2r)(2R+r) ≥ 0, obvious from Euler’s inequality: R ≥ 2r.

The equality holds for an equilateral triangle.

�

Let’s pass to solving inequality 2.

In ∆ABC ∑ 1

sin4 A
2

≥
(72Rr)2∑

a4
.

Inequality 2. is equivalent with:∑
a4·
∑ 1

sin4 A
2

≥ (72Rr)2, which follows from using the known identity in triangle.

∑
a4 = 2[p4−2p2(4Rr+3r2)+r2(4R+r)2] and the inequality

∑ 1

sin4 A
2

≥ 12R2

r2

which we have proved it in Lemma 2.

It is enough to prove that:

2[p4 − 2p2(4Rr + 3r2) + r2(4R+ r)2] · 12R
2

r2
≥ (72Rr)2 ⇔

p4−2p2(4Rr+3r2)+r2(4R+r)2 ≥ 216r4 ⇔ p2(p2−8Rr−6r2)+r2(4R+r)2 ≥ 216r4,

which follows from Gerretsen’s inequality p2 ≥ 16Rr−5r2 and the remark that p2−8Rr−6r2 > 0.

It remains to prove that:

(16Rr − 5r2)(16Rr − 5r2 − 8Rr − 6r2) + r2(4R+ r)2 ≥ 216r4 ⇔
(16Rr − 5r2)(8Rr − 11r2) + r2(4R+ r)2 ≥ 216r4 ⇔

(16R− 5r)(8R− 11r) + (4R+ r)2 ≥ 216r2 ⇔ 9R2 − 13Rr − 10r2 ≥ 0⇔
⇔ (R− 2r)(9R+ 5r) ≥ 0, obvious from Euler’s inequality: R ≥ 2r.

The equality holds for an equilateral triangle.

�

Remark
Inequality 2. is stronger than inequality 1.:

5. In ∆ABC ∑ 1

sin4 A
2

≥
(72Rr)2∑

a4
≥

(12r)4∑
a4

.

Proof.
See inequality 2. and Euler’s inequality R ≥ 2r.

The equality holds for an equilateral triangle.

�
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PROBLEM 127 - TRIANGLE MARATHON 101 - 200

MARIN CHIRCIU

1. In ∆ABC

tan
A

2
+ tan

B

2
+ tan

C

2
≤

R

2r

√
2R

r
− 1

Proposed by George Apostolopoulos - Messolonghi - Greece

Proof.

Using the known identity in triangle
∑

tan
A

2
=

4R+ r

p
we write the inequality:

4R+ r

p
≤ R

2r

√
2R

r
− 1⇔

(4R+ r

p

)2
≤
(R

2r

)2(2R
r
−1
)
⇔ p2R2(2R−r) ≥ 4r3(4R+r)2

which follows from Gerretsen’s inequality p2 ≥ 16Rr−5r2. It remains to prove that:

⇔ (16R−5r2)·R2(2R−r) ≥ 4r3(4R+r)2 ⇔ 34R4−26R3r−59R2r2−32Rr3−4r4 ≥ 0⇔
⇔ (R−2r)(32R3+38Rr2+17Rr2+2r3) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

�

Remark
The inequality can be developed:

2. In ∆ABC

tan
A

2
+ tan

B

2
+ tan

C

2
≤ R

r

√
n · R

r
− 2n+

3

4
, where n ≥ 0.

Proposed by Marin Chirciu - Romania

Proof.

Using the known identity in triangle
∑

tan
A

2
=

4R+ r

p
we write the inequality:

4R+ r

p
≤ R

r

√
n · R

r
− 2n+

3

4
⇔
(4R+ r

p

)2
≤
(R
r

)2(
n · R

r
− 2n+

3

4

)
⇔

⇔ p2R2
[
4nR+(3−8n)r

]
≥ 4r3(4R+r)2, which follows from Gerretsen’s inequality:

p2 ≥ 16Rr − 5r2. It remains to prove that:

⇔ (16Rr − 5r2) ·R2
[
4nR+ (3− 8n)r

]
≥ 4r3(4R+ r)2

⇔ 64nR4 + (48− 148n)R3r + (40n− 79)R2r2 − 32Rr3 − 4R4 ≥ 0⇔

⇔ (R− 2r)
[
64nR3 + (48− 20n)Rr2 + 17Rr2 + 2r3

]
≥ 0

obviously from Euler’s inequality R ≥ 2r.
1
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The equality holds if and only if the triangle is equilateral.

�

Remark

For n =
1

2
in inequality 2. we obtain inequality 1., meaning Problem 127

from TRIANGLE MARATHON 101-200

proposed by George Apostolopoulos - Messolonghi - Greece.

Remark
We can write the double inequality:

3. In ∆ABC

√
3 ≤ tan

A

2
+ tan

B

2
+ tan

C

2
≤ R

r

√
n · R

r
− 2n+

3

4
, where n ≥ 0.

Proof.

The first inequality follows from the identity
∑

tan
A

2
=

4R+ r

p
and Doucet’s inequality

4R+ r ≥ p
√
3, the second inequality is 2.

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�

Remark
We can propose inequalities in the same format:

4. In ∆ABC

1 ≤ tan2 A

2
+ tan2 B

2
+ tan2 C

2
≤
(R

2r

)2
Proof.

The first inequality follows from the identity
∑

tan2
A

2
=

(4R+ r)2 − 2p2

p2

and from Doucet’s inequality: (4R+ r)2 ≥ 3p2.

The second inequality, taking into account the above identity, can be written:

(4R+ r)2 − 2p2

p2
≤
(R

2r

)2
⇔ 4r2(4R+r)2−8r2p2 ≥ p2R2 ⇔ p2(R2+8r2) ≥ 4r2(4R+r)2,

Which follows from Gerretsen’s inequality: p2 ≥ 16Rr−5r2. It remains to prove that:

(16Rr − 5r2)(R2 + 8r2) ≥ 4r2(4R+ r)2 ⇔ 16R3 − 69R2r + 96Rr2 − 44r3 ≥ 0⇔
(r − 2r)(16R2 − 37Rr + 22r2) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�

5. In ∆ABC:
3r

p
≤ tan3 A

2
+ tan3 B

2
+ tan3 C

2
≤

3R

2p

[(3R

2r

)2
− 8

]
.



WWW.SSMRMH.RO 3

Proposed by Marin Chirciu - Romania

Proof.
First we prove the following identity:

Lemma
6. In ∆ABC ∑

tan3 A

2
=

(4R + r)3 − 12p2R

p3

Proof.

We use the identity (x+ y + z)3 = x3 + y3 + z3 + 3(x+ y)(y + z)(z + x)

we put x = tan
A

2
, y = tan

B

2
, z = tan

C

2
and then we take into account that

x+ y + z =
∑

tan
A

2
=

4R+ r

p
,

(x+ y)(y + z)(z + x) =
∏(

tan
B

2
+ tan

C

2

)
=

4R

p
.

Let’s pass to solving the double inequality 5.:

We write the first inequality:

(4R+ r)3 − 12p2R

p3
≥ 3r

p
, which follows from Doucet’s inequality: (4R+r)2 ≥ 3p2.

We obtain
(4R+ r)3 − 12p2R

p3
≥ (4R+ r) · 3p2 − 12p2R

p3
=

3r

p
We write the second inequality:

(4R+ r)3 − 12p2R

p3
≤ 3R

2p

[(3R
2r

)2
−8

]
⇔ 8r2(4R+r)3−96p2Rr2 ≤ 3p2R(9R2−32r2)⇔

27p2R2 ≥ 8r2(4R+r)3, which follows from Gerretsen’s inequality: p2 ≥ 16Rr−5r2.

It remains to prove that:

27(16Rr−5r2)R2 ≥ 8r2(4R+r)3 ⇔ 432R4−647R3r−384R2r2−96Rr3−8r4 ≥ 0⇔
(R−2r)(432R3+217R2r+50Rr2+4r3) ≥ 0, obviously from Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�

�
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PROBLEM 125 - TRIANGLE MARATHON 101 - 200

MARIN CHIRCIU

1. In ∆ABC
a2 + b2 + c2

l2a + l2b + l2c
≥

8r

3R

Proposed by George Apostolopoulos – Messolonghi – Greece

Proof.

Using the known identity in triangle
∑

a2 = 2(p2− r2−4Rr) and the remarkable

inequality
∑

l2a ≤ p2, which follows from la ≤
√
p(p− a), we obtain

a2 + b2 + c2

l2a + l2b + l2c
≥ 2(p2 − r2 − 4Rr)

p2
≥ 8r

3R
, where the last inequality is equivalent with:

3R(p2−r2−4Rr) ≥ p2r ⇔ p2(3R−4r) ≥ 3R(r2+4Rr), true from Gerretsen’s inequality

p2 ≥ 16Rr − 5r2. It remains to prove that:

(16Rr−5r2)(3R−4r) ≥ 3R(r2+4Rr)⇔ 18R2−41Rr+10r2 ≥ 0⇔ (R−2r)(18R−5r) ≥ 0,

obviously from Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

�

Remark
The inequality can be strengthened:

2. In ∆ABC
a2 + b2 + c2

l2a + l2b + l2c
≥

18Rr

p2
.

Proof.

Using the known identity in triangle
∑

a2 = 2(p2−r2−4Rr), and the remarkable

inequality
∑

l2a ≤ p2, which follows from la ≤
√
p(p− a), we obtain

a2 + b2 + c2

l2a + l2b + l2c
≥ 2(p2 − r2 − 4Rr)

p2
≥ 18Rr

p2
,

where the last inequality is equivalent with: p2 ≥ r2 + 13Rr, true from Gerretsen’s

inequality p2 ≥ 16Rr − 5r2.

It remains to prove that:

16Rr − 5r2 ≥ r2 + 13Rr ⇔ 3Rr ≥ 6r2 ⇔ R ≥ 2r, (Euler’s inequality).

The equality holds if and only if the triangle is equilateral.

�
1
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Remark

Inequality 2. is stronger then inequality 1.:

3. In ∆ABC
a2 + b2 + c2

l2a + l2b + l2c
≥

18Rr

p2
≥

8r

3R

Proof.

See inequality 2. and Mitrinović’s inequality: p2 ≤ 27R2

4
.

The equality holds if and only if the triangle is equilateral.

�

Remark

Also, inequality 2. can be strengthened:

4. In ∆ABC
a2 + b2 + c2

l2a + l2b + l2c
≥

4

3
.

Proof.

Using the known identity known in triangle
∑

a2 = 2(p2 − r2 − 4Rr) and the

remarkable inequality
∑

l2a ≤ p2, which follows from la ≤
√
p(p− a), we obtain

a2 + b2 + c2

l2a + l2b + l2c
≥ 2(p2 − r2 − 4Rr)

p2
≥ 4

3
, where the last inequality is equivalent with:

3(p2 − r2 − 4Rr) ≥ 2p2 ⇔ p2 ≥ 3r2 + 12Rr,

true from Gerretsen’s inequality p2 ≥ 16Rr − 5r2.

It remains to prove that:

16Rr − 5r2 ≥ 3r2 + 12Rr ⇔ 4Rr ≥ 8r2 ⇔ R ≥ 2r, (Euler’s inequality).

The equality holds if and only if the triangle is equilateral.

�

Remark

Inequality 4. is stronger than inequality 2.:

5. In ∆ABC
a2 + b2 + c2

l2a + l2b + l2c
≥

4

3
≥

18Rr

p2
.

Proposed by Marin Chirciu - Romania

Proof.

See inequality 4. and inequality: 2p2 ≥ 27Rr, true from Gerretsen’s inequality

p2 ≥ 16Rr−5r2. It remains to prove that: 2(16Rr−5r2) ≥ 27Rr ⇔ 5Rr ≥ 10r2 ⇔ R ≥ 2r.

Equality holds if and only if the triangle is equilateral.

�
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We can write the triple inequality:

6. In ∆ABC
a2 + b2 + c2

l2a + l2b + l2c
≥

4

3
≥

18Rr

p2
≥

8r

3R

Proof.
See inequality 5. and inequality 3.

Equality holds if and only if the triangle is equilateral.

�
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INEQUALITY IN TRIANGLE 295

MARIN CHIRCIU

1. Prove that in any triangle ABC∑ 1

(IIa)2
+
∑ 1

(IbIc)2
≤

1

4r2

Proposed by Daniel Sitaru - Romania

Proof.

Using the formulas IIa = 4R sin
A

2
, IbIc = 4R cos

A

2
and the known identities in triangle:

∑ 1

sin2 A
2

=
p2 + r2 − 8Rr

r2
,
∑ 1

cos2 A
2

=
p2 + (4R+ r)2

p2
, we obtain:

∑ 1

(IIa)2
=

p2 + r2 − 8Rr

16R2r2
and

∑ 1

(IbIc)2
=

p2 + (4R+ r)2

16R2p2
.

We write the inequality:

p2 + r2 − 8Rr

16R2r2
+

p2 + (4R+ r)2

16R2p2
≤ 1

4r2
⇔ p2(4R2+8Rr− 2r2− p2) ≥ r2(4R+ r)2,

which follows from Gerretsen’s inequality 16Rr − 5r2 ≤ p2 ≤ 4R2 + 4Rr + 3r2.

It remains to prove that:

(16Rr − 5r2)(4R2 + 8Rr − 2r2 − 4R2 − 4Rr − 3r2) ≥ r2(4R+ r)2 ⇔

⇔ (16R−5r)(4R−5r) ≥ (4R+r)2 ⇔ 4R2−9Rr+2r2 ≥ 0⇔ (R−2r)(4R−r) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

�

Remark.

It can also be shown an inequality having an opposite sense for the above sum:

2. Prove that in any triangle ABC∑ 1

(IIa)2
+
∑ 1

(IbIc)2
≥

1

R2

Proposed by Marin Chirciu - Romania
1



2 MARIN CHIRCIU

Proof.

Using the above identities
∑ 1

(IIa)2
=

p2 + r2 − 8Rr

16R2r2
and

∑ 1

(IbIc)2
=

p2 + (4R+ r)2

16R2p2
,

We obtain:∑ 1

(IIa)2
=

p2 + r2 − 8Rr

16R2r2
≥ 16Rr − 5r2 + r2 − 8Rr

16R2r2
=

8Rr − 4r2

16R2r2
=

=
2R− r

4R2r
≥ 3r

4R2r
=

3

4R2
,

where the first inequality follows from Gerretsen’s inequality p2 ≥ 16Rr − 5r2,

and the second from Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

We’ve obtained the helpful result:

Lemma 1.
Prove that in any triangle ABC∑ 1

(IIa)2
≥

3

4R2
.

Then
∑ 1

(IbIc)2
=

p2 + (4R+ r)2

16R2p2
≥ p2 + 3p2

16R2p2
=

1

4R2
,

which follows from Doucet’s inequality: (4R+ r)2 ≥ 3p2.

The equality holds if and only if the triangle is equilateral.

We’ve obtained the following helpful result:

Lemma 2.
Prove that in any triangle ABC∑ 1

(IbIc)2
≥

1

4R2
.

Adding the inequality obtained from Lemma 1 and Lemma 2 we obtain conclusion 2.

�

Remark.
Finally it can be written the double inequality:

Prove that in any triangle ABC

1

R2
≤
∑ 1

(IIa)2
+
∑ 1

(IbIc)2
≤

1

4r2
.

Proof.
See 1 and 2.

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�
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134 INEQUALITY IN TRIANGLE

MATH ADVENTURES ON CUTTHEKNOT MATH 101-150

MARIN CHIRCIU

1. Prove that in any acute triangle the following relationship holds

a2

tanB + tanC
+

b2

tanC + tanA
+

c2

tanA + tanB
≤ pR.

Proposed by Daniel Sitaru - Romania

Proof.

We have∑ a2

tanB + tanC
=
∑ a2

sin(B+C)
cosB cosC

=
∑ a2 cosB cosC

sinA
=
∑ a2 cosB cosC

a
2R

=

= 2R
∑

a cosB cosC = 2R · pr
R

= 2pr

Euler︷︸︸︷
≤ pR.

From the above proof it follows that the relationship holds for any non-right angled
triangle.

The equality holds if and only if the triangle is equilateral.

�

Remark.
In the same way we can propose the following:
2. Prove that in any triangle the following relationship holds:

a2

cotB + cotC
+

b2

cotC + cotA
+

c2

cotA + cotB
≤ 3pR

Proposed by Marin Chirciu - Romania

Proof.

We have
∑ a2

cotB + cotC
=
∑ a2

sin(B+C)
sinB sinC

=
∑ a2 sinB sinC

sinA
=
∑ a2 · a

2R ·
b
2R

a
2R

=

=
1

2R

∑
abc =

1

2R
· 3abc = 1

2R
· 12pRr = 6pr

Euler︷︸︸︷
≤ 3pR.

The equality holds if and only if the triangle is equilateral.

�
1
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Remark.
Adding the two inequalities we obtain:
3. Prove that in any triangle the following relationship holds:∑ a2 cos(B − C)

sinA
≤ 4pR.

Proposed by Daniel Sitaru - Romania and Marin Chirciu - Romania

Proof 1.

We have
a2

tanB + tanC
+

a2

cotB + cotC
=

a2 cosB cosC

sinA
+
a2 sinB sinC

sinA
=

a2 cos(B − C)

sinA
.

Then
∑ a2

tanB + tanC
= 2S and

∑ a2

cotB + cotC
= 6S.

It follows
∑ a2 cos(B − C)

sinA
= 8S.

We write the inequality 8S ≤ 4pR⇔ 8pr ≤ 4pR⇔ 2r ≤ R (Euler’s Inequality).

The equality holds if and only if the triangle is equilateral.

�

Proof 2.

We have
∑ a2 cos(B − C)

sinA
=
∑ a2 cos(B − C)

a
2R

= 2R
∑

cos(B−C) = 2R·4pr
R

=

= 8pr ≤ 4pR.

From the above proof it follows that the inequality from 3. is true in any triangle.

�
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PROBLEM 120

RMM TRIANGLE MARATHON

101-200

MARIN CHIRCIU

1. In ∆ABC
1

ra − r
+

1

rb − r
+

1

rc − r
≥

7

R
−

2

r

Proposed by Mehmet Şahin - Ankara - Turkey

Remark.
Inequality 1 can be developed:

2. In ∆ABC
1

ra − r
+

1

rb − r
+

1

rc − r
≥
α

R
−
β

r
, where α− 2β = 3 and β ≥ −2.

Proposed by Marin Chirciu - Romania

Proof.

Using the forumulas ra =
S

p− a
and r =

S

p
we obtain∑ 1

ra − r
=

1

r

∑ p− a
a

=
1

r
· p

2 + r2 − 8Rr

4Rr
=
p2 + r2 − 8Rr

4Rr2
.

The inequality can be written

p2 + r2 − 8Rr

4Rr2
≥ α

R
− β

r
⇔ p2 + r2 − 8Rr ≥ 4r(αr − βR), which follows from

Gerretsen’s inequality p2 ≥ 16Rr − 5r2. It remains to prove that:

16Rr − 5r2 + r2 − 8Rr ≥ 4r(αr − βR)⇔ (β + 2)R ≥ (α+ 1)r ⇔ R ≥ 2r,

because α− 2β = 3 and β ≥ −2.
The equality holds if and only if the triangle is equilateral.

For α = 7 and β = 2 we obtain inequality 1, namely Problem 120 from RMM
Triangle Marathon 101-200, proposed by Mehmet Şahin - Ankara - Turkey.

�

Remark.
Inequality 1 can be strengthened:

3. In ∆ABC
1

ra − r
+

1

rb − r
+

1

rc − r
≥

9

4R− 2r
.

Proposed by George Apostolopoulos - Messolonghi - Greece
1



2 MARIN CHIRCIU

Proof.

Using the proven inequality at 2:
∑ 1

ra − r
=
p2 + r2 − 8Rr

4Rr2
, inequality can be written:

p2 + r2 − 8Rr

4Rr2
≥ 9

4R− 2r
, which follows from Gerretsen’s inequality p2 ≥ 16Rr−5r2.

It remains to prove that:
16Rr − 5r2 + r2 − 8Rr

4Rr2
≥ 9

4R− 2r
⇔ 2R− r

Rr
≥ 9

4R− 2r
⇔

⇔ 8r2−17Rr+2r2 ≥ 0⇔ (R−2r)(8R−r) ≥ 0, obviously from Euler’s inequality: R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

�

Remark.
Inequality 3. is stronger then inequality 1.:

4. In ∆ABC
1

ra − r
+

1

rb − r
+

1

rc − r
≥

9

4R− 2r
≥

7

R
−

2

r
.

Proof.

The first inequality is 3., and the second inequality is equivalent with:

9

4R− 2r
≥ 7r − 2R

Rr
⇔ 8R2 − 23Rr + 14r2 ≥ 0⇔ (R− 2r)(8R− 7r) ≥ 0,

obviously from Euler’s inequality: R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

�

Remark.
Inequality 3. can be developed:

5. In ∆ABC
1

ra − r
+

1

rb − r
+

1

rc − r
≥

1

xR− yr
, where 2x− y =

2

3
and x ≥ 0.

Proposed by Marin Chirciu - Romania

Proof.

Using the proven identity at 2.:
∑ 1

ra − r
=
p2 + r2 − 8Rr

4Rr2
, the inequality can be written:

p2 + r2 − 8Rr

4Rr2
≥ 1

xR− yr
, which follows from Gerretsen’s inequality p2 ≥ 16Rr−5r2 and

the observation that xR− yr > 0, for 2x− y =
2

3
and x ≥ 0.

It remains to prove that:
16Rr − 5r2 + r2 − 8Rr

4Rr2
≥ 1

xR− yr
⇔ 2R− r

Rr
≥ 1

xR− yr
⇔

⇔ (2R−r)(xR−yr) ≥ Rr ⇔ 2xR2−(x+2y+1)Rr+yr2 ≥ 0⇔ (R−2r)(4xR−yr) ≥ 0,

obviously from Euler’s inequality: R ≥ 2r and 2x− y =
2

3
, x ≥ 0.

The equality holds if and only if the triangle is equilateral.
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For x = 4
9 and y = 2

3 we obtain inequality 3. proposed by
George Apostolopoulos - Messolonghi - Greece

�

Remark.

Inequality 5. is stronger than inequality 2.:

6. In ∆ABC

1

ra − r
+

1

rb − r
+

1

rc − r
≥

1

xR− yr
≥
α

R
−
β

r
,

where 2x− y =
2

3
, x ≥ 0 and α− 2β = 3, β ≥ 0.

Proof.

First inequality is 5., and the second inequality is equivalent with:

1

xR− yr
≥ α

R
−β
r
⇔ Rr ≥ (xR−yr)(αr−βR)⇔ βxR2+(1−αx−βy)Rr+αyr2 ≥ 0⇔

⇔ (R−2r)(2βxR−αyr) ≥ 0, obviously from Euler’s inequality: R ≥ 2r and 2x−y =
2

3
,

x ≥ 0, and α− 2β = 3, β ≥ 0, which lead to (2x− y)(α− 2β) = 2, wherefrom

−αy − 4βx = 2(1− αx− βy), thus motivating the last inequality.

The equality holds if and only if the triangle is equilateral.

For x =
4

9
, y =

2

3
, α = 7 and β = 2 its obtained the double inequality 4.

�

Remark.

We can propose inequalities with sums having the form
∑ an

ra − r
, where n = 1, 2, 3, 4, 5.

7. In ∆ABC

3
√

3 ≤
∑ a

ra − r
≤ 3
√

3 ·
R

2r

Proof.

Using the formulas ra =
S

p− a
and r =

S

p
we obtain

∑ a

ra − r
=

1

r

∑
(p−a) = p

r
.

The double inequality follows from Mitrinović’s inequalities: 3
√
3·r ≤ p ≤ 3

√
3

2
·R.

The equality holds if and only if the triangle is equilateral.

�

8. In ∆ABC

18r ≤
∑ a2

ra − r
≤ 9R.



4 MARIN CHIRCIU

Proof.

Using the formulas ra =
S

p− a
and r =

S

p
we obtain∑ a2

ra − r
=

1

r

∑
a(p− a) = 1

r
· 2r(4R+ r) = 2(4R+ r).

The double inequality follows from Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�

9. In ∆ABC

12pr ≤
∑ a3

ra − r
≤ 6pR.

Proof.

Using the formulas ra =
S

p− a
and r =

S

p
we obtain∑ a3

ra − r
=

1

r

∑
a2(p− a) = 1

r
· 4pr(R+ r) = 4p(R+ r).

The double inequality follows from Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�

10. In ∆ABC

(6r)3 ≤
∑ a4

ra − r
≤ (3R)3.

Proof.

Using the formulas ra =
S

p− a
and r =

S

p
we obtain∑ a4

ra − r
=

1

r
·
∑

a3(p−a) = 1

r
·2r
[
p2(2R+3r)−r(4R+r)2

]
= 2p2(2R+3r)−2r(4R+r)2.

The first inequality follows from the above identity, Gerretsen’s inequality:

p2 ≥ 16Rr − 5r2 and Euler’s inequality: R ≥ 2r.

We obtain 2p2(2R+ 3r)− 2r(4R+ r)2 ≥ 2(16Rr − 5r2)(2R+ 3r)− 2r(4R+ r)2 =

= 4r(8R2 + 15Rr − 8r2) ≥ 4r · 54r2 = 216r3 = (6r)3.

For the second inequality we use the above identity, Gerretsen’s inequality:

p2 ≤ 4R2 + 4Rr + 3r2 and Euler’s inequality: R ≥ 2r.

We obtain 2p2(2R+3r)−2r(4R+r)2 ≤ 2(4R2+4Rr+3r2)(2R+3r)−2r(4R+r)2 =

= 16R3 + 8R2r + 20Rr2 + 16r3 ≤ 16R3 + 4R3 + 5R3 + 2R3 = 27R3 = (3R)3.

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�
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11. In ∆ABC

18p · (2r)3 ≤
∑ a5

ra − r
≤ 18p ·R3.

Proposed by Marin Chirciu - Romania

Proof.

Using the formulas ra =
S

p− a
and r =

S

r
we obtain∑ a5

ra − r
=

1

r
·
∑

a4(p− a) = 1

r
· 4pr

[
p2(R+ 2r)− r(12R2 + 11Rr + 2r2)

]
=

= 4p
[
p2(R+ 2r)− r(12R2 + 11Rr + 2r2)

]
.

The first inequality follows from the above identity, Gerretsen’s inequality:

p2 ≥ 16Rr − 5r2 and Euler’s inequality: R ≥ 2r.

We obtain

4p
[
p2(R+2r)−r(12R2+11Rr+2r2)

]
≥ 4pr

[
(16Rr−5r2)(R+2r)−r(12R2+11Rr+2r2)

]
= 16pr(R2+4Rr−3r2) ≥ 16pr ·(4r2+8r2−3r2) = 16pr ·9r2 = 144pr3 = 18p·(2r)3.

= 4r(8R2 + 15Rr − 8r2) ≥ 4r · 54r2 = 216r3 = (6r)3.

For the second inequality we use the above identity, Gerretsen’s inequality:
p2 ≤ 4R2 + 4Rr + 3r2 and Euler’s inequality: R ≥ 2r.

We obtain

4p
[
p2(R+2r)−r(12R2+11Rr+2r2)

]
≤ 4p

[
(4R2+4Rr+3r2)(R+2r)−r(12R2+11Rr+2r2)

]
=

= 16p(R3 + r3) ≤ 16p·
(
R3 +

R3

8

)
= 18p ·R3

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�

Remark.

We can propose inequalities with sums having the form
∑ an(b+ c)

ra − r
, where n = 1, 2, 3, 4.

12. In ∆ABC

(6r)2 ≤ r
∑ a(b+ c)

ra − r
≤ (3R)2.

Proof.

Using the formulas ra =
S

p− a
and r =

S

p
we obtain∑ a(b+ c)

ra − r
=

1

r

∑
(b+ c)(p− a) = 1

r
· 2(p2 − r2 − 4Rr) =

2(p2 − r2 − 4Rr)

r
.

The first inequality follows from the above identity, Gerretsen’s inequality:

p2 ≥ 16Rr − 5r2 and Euler’s inequality: R ≥ 2r.

We obtain

r
∑ a(b+ c)

ra − r
= r·2(p

2 − r2 − 4Rr)

r
= 2(p2−r2−4Rr) ≥ 2(16Rr−5r2−r2−4Rr) =
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= 12r(2R− r) ≥ 12R · 3r = (6r)2.

For the second inequality we use the above identity, Gerretsen’s inequality:
p2 ≤ 4R2 + 4Rr + 3r2 and Euler’s inequality: R ≥ 2r.

We obtain

r
∑ a(b+ c)

ra − r
= r·2(p

2 − r2 − 4Rr)

r
= 2(p2−r2−4Rr) ≥ 2(4R2+4Rr+3r2−r2−4Rr) =

= 8R2 + 4r2 ≤ 9R2 = (3R)2.

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�

13. In ∆ABC

36
√

3 ·Rr ≤
∑ a2(b+ c)

ra − r
≤ 18

√
3 ·R2.

Proof.

Using the formulas ra =
S

p− a
and r =

S

p
we obtain∑ a2(b+ c)

ra − r
=

1

r

∑
a(b+ c)(p− a) = 1

r
· 12pRr = 12pR.

The double inequality follows from Mitrinović’s inequalities: 3
√
3·r ≤ p ≤ 3

√
3

2
·R.

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�

14. In ∆ABC

(6r)4 ≤ 3
∑ a3(b+ c)

ra − r
≤ (3R)4.

Proof.

Using the formulas ra =
S

p− a
and r =

S

p
we obtain∑ a3(b+ c)

ra − r
=

1

r

∑
a2(b+ c)(p− a) = 1

r
·
[
2p2(2Rr + r2) + 2r2(4R+ r)2

]
=

=
2p2(2Rr + r2) + 2r2(4R+ r)2

r
.

The first inequality follows from the above identity, Gerretsen’s inequality:

p2 ≥ 16Rr − 5r2 and Euler’s inequality: R ≥ 2r.

We obtain

3
∑ a3(b+ c)

ra − r
= 3·2p

2(2Rr + r2) + 2r2(4R+ r)2

r
≥ 3·2(16Rr − 5r2)(2Rr + r2) + 2r2(4R+ r)2

r

= 3·4r2(24R2+7Rr−2r2) ≥ 12r2(24·4r2+7r·2r−2r2) = 12r2·108r2 = 1296r4 = (6r)4.

For the second inequality we use the above identity, Gerretsen’s inequality:
p2 ≤ 4R2 + 4Rr + 3r2 and Euler’s inequality: R ≥ 2r.
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We obtain

3
∑ a3(b+ c)

ra − r
= 3·2p

2(2Rr + r2) + 2r2(4R+ r)2

r
≤ 3·2(4R

2 + 4Rr + 3r2)(2Rr + r2) + 2r2(4R+ r)2

r

= 3·r(16R3+56R2r+36Rr2+8r3) ≤ 3r(16R3+28R3+9R3+R3) ≤ 3R

2
·54R3 = 81R4 = (3R)4

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�

15. In ∆ABC

p(12r)3 ≤ 6
∑ a4(b+ c)

ra − r
≤ p(6R)3.

Proposed by Marin Chirciu - Romania

Proof.

Using the formulas ra =
S

p− a
and r =

S

p
we obtain∑ a4(b+ c)

ra − r
=

1

r

∑
a3(b+c)(p−a) = 1

r
·
[
4p3(Rr+r2)+4p(−4R2r2+3Rr3+r4)

]
=

= 4p3(R+ r) + 4p(−4R2r + 3Rr2 + r3).

The first inequality follows from the above identity, Gerretsen’s inequality:

p2 ≥ 16Rr − 5r2 and Euler’s inequality: R ≥ 2r.

We obtain

6
∑ a4(b+ c)

ra − r
= 6
[
4p3(R+r)+4p(−4R2r+3Rr2+r3)

]
= 24p

[
p2(R+r)−4R2r+3Rr2+r3

]
≥ 24p

[
(16Rr − 5r2)(R+ r)− 4R2r + 3Rr2 + r3

]
= 48pr(12R2 + 14Rr − 4r2) ≥

≥ 48pr(24r2 + 14r2 − 2r2) = 48pr · 36r2 = 1728pr3 = p(12r)3.

For the second inequality we use the above identity, Gerretsen’s inequality:
p2 ≤ 4R2 + 4Rr + 3r2 and Euler’s inequality: R ≥ 2r.

We obtain

6
∑ a4(b+ c)

ra − r
= 6
[
4p3(R+r)+4p(−4R2r+3Rr2+r3)

]
= 24p

[
p2(R+r)−4R2r+3Rr2+r3

]
≤

≤ 24p
[
(4R2+4Rr+3r2)(R+r)−4R2r+3Rr2+r3

]
= 12p·(8R3+8R2r+20Rr2+8r3) ≤

≤ 12p(8R3 + 4R3 + 5R3 +R3) = 12p · 18R3 = 216pR3 = p(6R)3.

The equality holds if and only if the triangle is equilateral.

We’ve obtained a refinement of Euler’s inequality.

�
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1. In acute-angled ∆ABC

2

(
cot

A

2
+ cot

B

2
+ cot

C

2

)
+ tanA tanB tanC ≥ 9

√
3.

Proposed by Daniel Sitaru - Romania

Proof.

Using the known identities in triangle
∑

cot
A

2
=

p

r
and

∏
tanA =

2pr

p2 − (2R+ r)2
,

the inequality we have to prove can be written: 2 · p
r
+

2pr

p2 − (2R+ r)2
≥ 9
√
3.

Using Mitrinović’s inequality p ≥ 3
√
3 · r we have

p

r
≥ 3
√
3 and pr ≥ 3

√
3 · r2

it’s enough to prove that

2r2

p2 − (2R+ r)2
≥ 1⇔ p2 ≤ 4R2 + 4Rr + 3r2 (Gerretsen’s inequality).

The inequality holds if and only if the triangle is equilateral.

�

Remark.
The inequality can be developed:

2. In acute-angled ∆ABC

n

(
cot

A

2
+cot

B

2
+cot

C

2

)
+ tanA tanB tanC ≥ (n+1)·3

√
3, where n ≥ 0.

Proof.

We use the known inequalities in triangle
∑

cot
A

2
=

p

r
and

∏
tanA =

2pr

p2 − (2R+ r)2
.

We have

(i)
∑

cot
A

2
≥ 3
√
3⇔ p

r
≥ 3
√
3⇔ p ≥ 3

√
3 · r (Mitrinović’s inequality);

(ii)∏
tanA ≥ 3

√
3⇔ 2pr

p2 − (2R+ r)2
≥ 3
√
3, which follows from pr ≥ 3

√
3 · r2 and

1
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2r2

p2 − (2R+ r)2
≥ 1⇔ p2 ≤ 4R2 + 4Rr + 3r2 (Gerretsen’s inequality).

From (i), (ii) and n ≥ 0 the conclusion is obtained.

The inequality holds if and only if the triangle is equilateral.

�

3. In acute-angled ∆ABC

n

(
cot

A

2
+cot

B

2
+cot

C

2

)
+k tanA tanB tanC ≥ (n+k)·3

√
3, where n ≥ 0, k ≥ 0.

Proof.

We use the known identities in triangle
∑

cot
A

2
=

p

r
and

∏
tanA =

2pr

p2 − (2R+ r)2
.

We have

(i)
∑

cot
A

2
≥ 3
√
3⇔ p

r
≥ 3
√
3⇔ p ≥ 3

√
3 · r (Mitrinović’s inequality);

(ii)∏
tanA ≥ 3

√
3⇔ 2pr

p2 − (2R+ r)2
≥ 3
√
3, which follows from pr ≥ 3

√
3 · r2 and

2r2

p2 − (2R+ r)2
≥ 1⇔ p2 ≤ 4R2 + 4Rr + 3r2 (Gerretsen’s inequality)

From (i), (ii) and n ≥ 0, k ≥ 0 the conclusion is obtained.

The inequality holds if and only if the triangle is equilateral or n = k = 0.

�
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1. In ∆ABC
1

AI2
+

1

BI2
+

1

CI2
≥

3

2Rr
.

Proposed by Rovsen Pirguliev - Sumgait - Azerbaidian

Proof.

We have AI =
r

sin A
2

. We obtain
∑ 1

AI2
=
∑ sin2 A

2

r2
=

1

r2

∑
sin2

A

2
=

=
1

r2
· 2R− r

2R
=

2R− r

2Rr2
.

The inequality we have to prove can be written
2R− r

2Rr2
≥ 3

2Rr
⇔ R ≥ 2r (Euler’s inequality).

The equality holds if and only if the triangle is equilateral.

�

Remark.
The inequality can be strengthened:

2. In ∆ABC
1

AI2
+

1

BI2
+

1

CI2
≥

3

4r2
.

Proposed by Marin Chirciu - Romania

Proof.

We use the identity
∑ 1

AI2
=

2R− r

2Rr2
, the inequality can be written

2R− r

2Rr2
≥ 3

4r2
⇔ R ≥ 2r, obviously from Euler’s inequality.

The equality holds if and only if the triangle is equilateral.

�

Remark.
Inequality 2. is stronger than inequality 1.

3. In ∆ABC
1

AI2
+

1

BI2
+

1

CI2
≥

3

4r2
≥

3

2Rr
.

1
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Proof.

See inequality 2 and Euler’s inequality.

The equality holds if and only if the triangle is equilateral.

�

Remark.

The following inequality holds:

4. In ∆ABC
1

AI2
+

1

BI2
+

1

CI2
≥

3

4r2
≥

3

2Rr
≥

81

4p2
≥

3

R2
.

Proof.

The first inequality is 2, the second follows from Euler’s inequality, the third is
equivalent with 2p2 ≥ 27Rr , which follows from Gerretsen’s inequality

p2 ≥ 16Rr − 5r2 and Euler’s inequality R ≥ 2r and the forth is Mitrinović’s

ineuality p2 ≤ 27R2

4 .

�

Now, let’s find an inequality having an opposite sense.

5. In ∆ABC
1

AI2
+

1

BI2
+

1

CI2
≤

3R

8r3
.

Proof.

Using the identity
∑ 1

AI2
=

2R− r

2Rr2
, the inequality can be written

2R− r

2Rr2
≤ 3R

8r3
⇔ 4r(2R−r) ≤ 3R2 ⇔ 3R2−8Rr+4r2 ≥ 0⇔ (R−2r)(3R−2r) ≥ 0,

obviously from Euler’s inequality R ≥ 2r.

The equality holds if and only if the triangle is equilateral.

�

The following double inequality can be written:

6. In ∆ABC
3

4r2
≤

1

AI2
+

1

BI2
+

1

CI2
≤

3R

8r3
.

Proposed by Marin Chirciu - Romania

Proof.

See inequalities 2 and 5.

The equality holds if and only if the triangle is equilateral.

�
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