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1) In ∆ABC ∑ ha

hbhc

≤
R

2r2
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Proof.

We prove the following lemma:

Lemma.
2) In ∆ABC∑ ha

hbhc

=
s4 + s2(2r2 − 8Rr) + r2(4R + r)2

8s2r2R

Proof.

Using ha =
2S

a
, we obtain:∑ ha

hbhc
=
∑ 2S

a
2S
b ·

2S
c

=
1

2S

∑ bc

a
=

s4 + s2(2r2 − 8Rr) + r2(4R+ r)2

8s2r2R
,

which follows from:∑ bc

a
=

s4 + s2(2r2 − 8Rr) + r2(4R+ r)2

4srR
�

Back to the main problem:

Using the Lemma the inequality can be written:

s4 + s2(2r2 − 8Rr) + r2(4R+ r2)

8s2r2R
≤ R

2r2
⇔ s2(4R2+8Rr−2r2−s2) ≥ r2(4R+r)2

which follows from Gerretsen’s inequality 16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2.

It remains to prove that:

(16Rr − 5r2)(4R2 + 8Rr − 2r2 − 4R2 − 4Rr − 3r2) ≥ r2(4R+ r)2 ⇔
⇔ 4R2 − 9Rr + 2r2 ≥ 0⇔ (R− 2r)(R− r) ≥ 0

obviously form Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.
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Remark.

Let’s emphasise an inequality having an opposite sense.

3) In ∆ABC: ∑ ha

hbhc

≥
1

r
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Proof.

Using the Lemma we can write:

s4 + s2(2r2 − 8Rr) + r2(4Rr + r)2

8s2r2R
≥ 1

r
⇔ s2(s2 + 2r2 − 16Rr) + r2(4R+ r)2 ≥ 0

We distinguish the following cases:

Case 1). If (s2 + 2r2 − 16Rr) ≥ 0, the inequality is obvious.

Case 2). If (s2 + 2r2 − 16Rr) < 0, the inequality can be rewritten:

r2(4R+ r)2 ≥ s2(16Rr − 2r2 − s2), which follows from Blundon-Gerretsen’s

inequality: 16Rr − 5r2 ≤ s2 ≤ R(4R+ r)2

2(2R− r)

It remains to prove that:

r2(4R+r)2 ≥ R(4R+ r)2

2(2R− r)
(16Rr−2r2−16Rr+5r2)⇔ R ≥ 2r (Euler’s inequality).

Equality holds if and only if the triangle is equilateral.

�

Remark.

The double inequality can be written:

4) In ∆ABC:
1

r
≤
∑ ha

hbhc

≤
R

2r2

Proof.

See inequalities 1) and 3).

Equality holds if and only if the triangle is equilateral.

�

Remark.

If we replace
ha

hbhc
with

ra
rbrc

we propose:

5) In ∆ABC:
2

r

(
1 −

r

R

)
≤
∑ ra

rbrc
≤

1

r

(R
r

− 1
)
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Proof.
We prove the following lemma:

Lemma.
6) In ∆ABC: ∑ ra

rbrc
=

1

r

[(4R + r

s

)2
− 2

]
Proof.

Using ra =
S

s− a
, using:∑ ra

rbrc
=
∑ S

s−a
S

s−b ·
S

s−c

=
1

S

∑ (s− b)(s− c)

s− a
=

1

rs
· (4R+ r)2 − 2s2

s
=

1

r

[(4R+ r

s

)2
−2
]

which follows from:∑ (s− b)(s− c)

s− a
=

(4R+ r)2 − 2s2

s
Back to the main problem.

�

Using the Lemma the inequality can be written:
2

r

(
1− r

R

)
≤ 1

r

[(4R+ r

s

)2
− 2
]
≤ 1

r

(R
r
− 1
)
, which follows from

Blundon-Gerretsen’s inequality:
r(4R+ r)2

R+ r
≤ s2 ≤ R(4R+ r)2

2(2R− r)

Equality holds if and only if the triangle is equilateral.

�

Remark.

Between the sums
∑ ha

hbhc
and

∑ ra
rbrc

the following relationship holds:

7) In ∆ABC: ∑ ha

hbhc

≥
(2r

R

)2∑ ra

rbrc
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Proof.

Using the identities 2) and 6) the inequality can be written:

s4 + s2(2r2 − 8Rr) + r2(4R+ r)2

8s2r2R
≥
(2r
R

)2
· (4R+ r)2 − 2s2

rs2
⇔

⇔ s2[Rs2 + 2r(32r2 +Rr − 4R2)] ≥ r2(4R+ r)2(32r −R),

which follows from Gerretsen’s inequality s2 ≥ 16Rr − 5r2.

It remains to prove that:

(16Rr − 5r2)[R(16Rr − 5r2) + 2r(32r2 +Rr − 4R2)] ≥ r2(4R+ r)2(32r −R)⇔
⇔ 9R3 − 37R2r + 49Rr2 − 22r3 ≥ 0⇔ (R− 2r)(9R2 − 19Rr + 11r2) ≥ 0

obviously from Euler’s inequality R ≥ 2r.

Equality holds if and only if the triangle is equilateral.
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[8] Daniel Sitaru, George Apostolopoulos, The Olympic Mathematical Marathon. Cartea
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