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Proof.
We prove the following lemma:
Lemma.
2) In AABC
Z ho  s*4s*(2r? —8Rr) 4+ r?*(4R+r)?
hyhe 8s2r2R
Proof.

25
Using hy = —, we obtain:
a

Z ha Z % 1 Z be  s*+s%(2r —8Rr) +r?(4R +1)?
hohe % . % 28 a 8s2r2R ’
which follows from:
be  s*+s2(2r* —8Rr) +r2(4R +1)?
Z a 4srR

Back to the main problem:

Using the Lemma the inequality can be written:

st 4+ s2(2r?2 — 8Rr) + r2(4R +r?) R 2 o 5 o 9 9
S22R < 52 8 (4R*+8Rr—2r“—s°) > r*(4R+r)

which follows from Gerretsen’s inequality 16Rr — 5r% < s* < AR? + 4Rr + 3r2.
It remains to prove that:
(16 Rr — 5r)(4R* + 8Rr — 2r* —4R* — 4Rr — 3r*) > r*(4R +r)* &
SAR? —9Rr +2r* >0 (R—2r)(R—7) >0

obviously form Euler’s inequality R > 2r.

Equality holds if and only if the triangle is equilateral.
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Remark.

Let’s emphasise an inequality having an opposite sense.

3) In AABC:
hg 1

Zhbhc 2 r
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Proof.
Using the Lemma we can write:

4 222_ 24 2 1
S s@rT Z8R) + AR AT L 22 02 16Rr) 4 12(4R 4 1)2 > 0
8s2r2R r

We distinguish the following cases:
Case 1). If (s> + 2r* — 16Rr) > 0, the inequality is obvious.
Case 2). If (s> 4+ 2r? — 16Rr) < 0, the inequality can be rewritten:
r2(4R +1)? > s*(16Rr — 2r® — s%), which follows from Blundon-Gerretsen’s

R(4R +r)?
2(2R—)

It remains to prove that:

inequality: 16Rr — 5r? < §% <

4 2
r?(4R+7)* > Im(lfiRr—Qrz—lGRr—‘—&“z) < R > 2r (Euler’s inequality).
—-r
Equality holds if and only if the triangle is equilateral.
O
Remark.
The double inequality can be written:
4) In AABC:
1 h, R
< Z <
r hyh, — 272
Proof.
See inequalities 1) and 3).
Equality holds if and only if the triangle is equilateral.
|
Remark.
h . Ta
If we replace with we propose:
hbhc TpTe
5) In AABC:
2 a 1/R
(I L
T R TpTe r\r
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Proof.
We prove the following lemma:
Lemma.
6) In AABC:
Z Ta _1[<4R+T’)2 2}
TeTe T s
Proof.

Using rq = , USING:
s—a

Ta a1 (s—b)(s—c) 1 (4R+7)?—2s> 1r/4R+1)\>2
ZTb?"c_Z(S .(S‘_gz 5—a T s s _;[( s >_2}
which follows from:

Z (s—b)(s—c) (4R+7)?—2s°
s—a N S
Back to the main problem.

O
Using the Lemma the inequality can be written:
2 1r/4 2 1
7<1 — i) < - [( R+T> — 2} < 7(5 — 1), which follows from
r R r s r\r
4 2 4 2
Blundon-Gerretsen’s inequality: % <s2< m
Equality holds if and only if the triangle is equilateral.
O

Remark.

h(l a . . .
Between the sums g N and E ! the following relationship holds:
blle

h TTe
7) In AABC:
h, 27\ 2 a
Y 2(R) X
hbhc R TpTc
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Proof.

Using the identities 2) and 6) the inequality can be written:
st 4+ s2(2r? — 8Rr) + r2(4R +1r)? >(2l)2 (4R +1)% — 25° o
8s212R “\R rs?
& s?[Rs® 4+ 2r(32r% + Rr — 4R?)] > r*(4R + 7)?(32r — R),

which follows from Gerretsen’s inequality s> > 16Rr — 5r2.

It remains to prove that:

(16Rr — 5r?)[R(16 Rr — 5r2) 4 2r(32r% + Rr — 4R?)] > r*(4R 4+ r)?(32r — R) <
& 9R® — 3TR?*r +49Rr? — 2213 > 0 < (R — 2r)(9R? — 19Rr +117%) > 0
obviously from Fuler’s inequality R > 2r.

Equality holds if and only if the triangle is equilateral.
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