Romanian Mathematical Magazine

Web: http://www.ssmrmh.ro

The Author: This article is published with open access.

83 IDENTITY IN TRIANGLE ROMANIAN MATHEMATICAL MAGAZINE 2018

MARIN CHIRCIU

1) In $\triangle ABC$:

$$\sum \frac{h_a + h_b}{r_a + r_b} = 2 \Big(1 + \frac{r}{R} \Big)$$

Proposed by Bogdan Fustei - Romania

Proof.

Using
$$h_a = \frac{2S}{a}$$
 and $r_a = \frac{S}{s-a}$ we obtain:

$$\sum \frac{h_a + h_b}{r_a + r_b} = \sum \frac{\frac{2S}{a} + \frac{2S}{b}}{\frac{S}{s-a} + \frac{S}{s-b}} = \frac{2}{abc} \sum (a+b)(s-a)(s-b) = 2\left(1 + \frac{r}{R}\right)$$

which follows from: abc = 4srR and $\sum (a+b)(s-a)(s-b) = 4sr(R+r)$

Remark.

Let's emphasises a double inequality with the above sum:

2) In $\triangle ABC$

$$\frac{6r}{R} \leq \sum \frac{h_a + h_b}{r_a + r_b} \leq 3$$

Proof.

Using identity 1) the inequality can be written: $\frac{6r}{R} \le 2\left(1 + \frac{r}{R}\right) \le 3$,

which follows from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

Remark.

Reversing the fraction from the above sum we propose:

3) In $\triangle ABC$:

$$3 \leq \sum \frac{r_b + r_c}{h_b + h_c} \leq \frac{3R}{2r}$$

Proposed by Marin Chirciu - Romania

Proof.

We prove the following lemma:

Lemma.

4) In $\triangle ABC$:

$$\sum \frac{r_b + r_c}{h_b + h_c} = \frac{R}{r} \cdot \frac{s^2 + 5r^2 + 8Rr}{s^2 + r^2 + 2Rr}$$

Proof.

Using
$$h_a = \frac{2S}{a}$$
 and $r_a = \frac{S}{s-a}$ we obtain:
$$\sum \frac{r_b + r_c}{h_b + h_c} = \sum \frac{\frac{S}{s-b} + \frac{S}{s-c}}{\frac{2S}{b} + \frac{2S}{c}} = \frac{abc}{2} \sum \frac{1}{(b+c)(s-b)(s-c)} = \frac{R}{r} \cdot \frac{s^2 + 5r^2 + 8Rr}{s^2 + r^2 + 2Rr}$$
 which follows from: $abc = 4srR$ and $\sum \frac{1}{(b+c)(s-b)(s-c)} = \frac{s^2 + 5r^2 + 8Rr}{2r^2s(s^2 + r^2 + 2Rr)}$

Let's get back to the main problem.

The left side inequality:

Using the **Lemma**, the left side inequality can be written:

$$\frac{R}{r} \cdot \frac{s^2 + 5r^2 + 8Rr}{s^2 + r^2 + 2Rr} \ge 3 \Leftrightarrow s^2(R - 3r) + r(8R^2 - Rr - 3r^2) \ge 0$$

We distinguish the following cases:

Case 1). If $(R-3r) \ge 0$, the inequality is obvious.

Case 2). If (R-3r) < 0, we rewrite the inequality: $r(8R^2 - Rr - 3r^2) \ge s^2(3r - R)$, which follows from Gerretsen's inequality: $s^2 \le 4R^2 + 4Rr + 3r^2$.

It remains to prove that:

$$r(8R^2 - Rr - 3r^2) \ge (4R^2 + 4Rr + 3r^2)(3r - R) \Leftrightarrow 2R^3 - 5Rr^2 - 6r^3 \ge 0$$

 $\Leftrightarrow (R - 2r)(2R^2 + 4Rr + 3r^2) \ge 0$, obviously from Euler's inequality $R \ge 2r$.

Equality holds if and only if the triangle is equilateral.

The right hand inequality:

Using **Lemma** the right hand inequality can be written:

$$\frac{R}{r} \cdot \frac{s^2 + 5r^2 + 8Rr}{s^2 + r^2 + 2Rr} \le \frac{3R}{2r} \Leftrightarrow s^2 \le 12Rr + 3r^2,$$

which follows from Gerretsen's inequality: $s^2 \ge 16Rr - 5r$.

It remains to prove that:

$$16Rr - 5r^2 \ge 12Rr + 3r^2 \Leftrightarrow R \ge 2r$$
 (Euler's inequality).

Equality holds if and only if the triangle is equilateral.

Remark.

Between the sums $\sum \frac{h_b + h_c}{r_b + r_c}$ and $\sum \frac{r_b + r_c}{h_b + h_c}$ the relationship can be written:

5) In $\triangle ABC$:

$$\sum \frac{h_b + h_c}{r_b + r_c} \le \sum \frac{r_b + r_c}{h_b + h_c}$$

Proof.

Using the sums
$$\sum \frac{h_b + h_c}{r_b + r_c} = 2\left(1 + \frac{r}{R}\right)$$
 and $\sum \frac{r_b + r_c}{h_b + h_c} = \frac{R}{r} \cdot \frac{s^2 + 5r^2 + 8Rr}{s^2 + r^2 + 2Rr}$

we write the inequality:
$$2\left(1+\frac{r}{R}\right) \le \frac{R}{r} \cdot \frac{s^2+5r^2+8Rr}{s^2+r^2+2Rr} \Leftrightarrow$$

$$\Leftrightarrow s^{2}(R^{2} - 2Rr - 2r^{2}) + r(8R^{3} + R^{2}r - 6Rr^{2} - 2r^{3}) \ge 0$$

We distinguish the following cases:

Case 1) If
$$(R^2 - 2Rr - 2r^2) \ge 0$$
, the inequality is obviously.

Case 2). If
$$(R^2 - 2Rr - 2r^2) < 0$$
, inequality can be written:

$$r(8R^3 + R^2r - 6Rr^2 - 2r^3) \ge s^2(2r^2 + 2Rr - r^2),$$

which follows from Gerretsen's inequality: $s^2 \le 4R^2 + 4Rr + 3r^2$.

It remains to prove that:

$$r(8R^{3} + R^{2}r - 6Rr^{2} - 2r^{2}) \ge (4R^{2} + 4Rr + 3r^{2})(2r^{2} + 2Rr - R^{2}) \Leftrightarrow$$
$$\Leftrightarrow R^{4} + R^{3}r - 3R^{2}r^{2} - 5Rr^{3} - 2r^{4} \ge 0 \Leftrightarrow (R - 2r)(R + r)^{3} \ge 0$$

obviously from Euler's inequality $R \geq 2r$.

Equality holds if and only if the triangle is equilateral.

Remark.

The sequence of inequalities can be written:

6) In $\triangle ABC$:

$$\frac{6r}{R} \le \sum \frac{h_a + h_b}{r_a + r_b} \le 3 \le \sum \frac{r_b + r_c}{h_b + h_c} \le \frac{3R}{2r}$$

Proposed by Marin Chirciu - Romania

Proof.

See inequalities 2) and 3).

Equality holds if and only if the triangle is equilateral.

References

- [1] Mihály Bencze, Daniel Sitaru, Marian Ursărescu, Olympic Mathematical Energy. Studis Publishing House, Iași, 2018.
- [2] Daniel Sitaru, Algebraic Phenomenon. Paralela 45 Publishing House, Piteşti, 2017, ISBN 978-973-47-2523-6
- [3] Daniel Sitaru, Murray Klamkin's Duality Principle for Triangle Inequalities. The Pentagon Journal-Volume 75 NO 2, Spring 2016.
- [4] Daniel Sitaru, Claudia Nănuți, Generating Inequalities using Schweitzer's Theorem. CRUX MATHEMATICORUM, Volume 42, NO. 1, January 2016.
- [5] Daniel Sitaru, Claudia Nănuți, A "probabilistic" method for proving inequalities. CRUX MATHEMATICORUM, Volume 43, NO. 7, September 2017.
- [6] Daniel Sitaru, Mihály Bencze, 699 Olympic Mathematical Challenges. Studis Publishing House, Iași, 2017.
- [7] Daniel Sitaru, Analytical Phenomenon. Cartea Românească Publishing House, Pitești, 2018.
- [8] Daniel Sitaru, George Apostolopoulos, *The Olympic Mathematical Marathon*. Cartea Românească Publishing House, Piteşti, 2018.
- [9] Daniel Sitaru, Contest Problems. Cartea Românească Publishing House, Pitești, 2018.
- [10] Mihály Bencze, Daniel Sitaru, Quantum Mathematical Power. Studis Publishing House, Iaşi, 2018.
- [11] Daniel Sitaru, A Class of Inequalities in triangles with Cevians. The Pentagon Journal, Volume 77 NO. 2, Fall 2017
- [12] Romanian Mathematical Magazine Interactive Journal, www.ssmrmh.ro

Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, ROMANIA.

Email address: dansitaru63@yahoo.com