Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

83 IDENTITY IN TRIANGLE ROMANIAN MATHEMATICAL MAGAZINE
 2018

MARIN CHIRCIU

1) In $\triangle A B C$:

$$
\sum \frac{h_{a}+h_{b}}{r_{a}+r_{b}}=2\left(1+\frac{r}{R}\right)
$$

Proposed by Bogdan Fustei - Romania
Proof.

$$
\begin{gathered}
\text { Using } h_{a}=\frac{2 S}{a} \text { and } r_{a}=\frac{S}{s-a} \text { we obtain: } \\
\sum \frac{h_{a}+h_{b}}{r_{a}+r_{b}}=\sum \frac{\frac{2 S}{a}+\frac{2 S}{b}}{\frac{S}{s-a}+\frac{S}{s-b}}=\frac{2}{a b c} \sum(a+b)(s-a)(s-b)=2\left(1+\frac{r}{R}\right)
\end{gathered}
$$

which follows from: $a b c=4 s r R$ and $\sum(a+b)(s-a)(s-b)=4 s r(R+r)$

Remark.

Let's emphasises a double inequality with the above sum:
2) In $\triangle A B C$

$$
\frac{6 r}{R} \leq \sum \frac{h_{a}+h_{b}}{r_{a}+r_{b}} \leq 3
$$

Proof.

$$
\begin{gathered}
\text { Using identity 1) the inequality can be written: } \frac{6 r}{R} \leq 2\left(1+\frac{r}{R}\right) \leq 3, \\
\text { which follows from Euler's inequality } R \geq 2 r . \\
\text { Equality holds if and only if the triangle is equilateral. }
\end{gathered}
$$

Remark.
Reversing the fraction from the above sum we propose:
3) In $\triangle A B C$:

$$
3 \leq \sum \frac{r_{b}+r_{c}}{h_{b}+h_{c}} \leq \frac{3 R}{2 r}
$$

Proposed by Marin Chirciu - Romania

Proof.
We prove the following lemma:

Lemma.

4) In $\triangle A B C$:

$$
\sum \frac{r_{b}+r_{c}}{h_{b}+h_{c}}=\frac{R}{r} \cdot \frac{s^{2}+5 r^{2}+8 R r}{s^{2}+r^{2}+2 R r}
$$

Proof.
Using $h_{a}=\frac{2 S}{a}$ and $r_{a}=\frac{S}{s-a}$ we obtain:
$\sum \frac{r_{b}+r_{c}}{h_{b}+h_{c}}=\sum \frac{\frac{S}{s-b}+\frac{S}{s-c}}{\frac{2 S}{b}+\frac{2 S}{c}}=\frac{a b c}{2} \sum \frac{1}{(b+c)(s-b)(s-c)}=\frac{R}{r} \cdot \frac{s^{2}+5 r^{2}+8 R r}{s^{2}+r^{2}+2 R r}$
which follows from: $a b c=4 s r R$ and $\sum \frac{1}{(b+c)(s-b)(s-c)}=\frac{s^{2}+5 r^{2}+8 R r}{2 r^{2} s\left(s^{2}+r^{2}+2 R r\right)}$

Let's get back to the main problem.
The left side inequality:
Using the Lemma, the left side inequality can be written:

$$
\frac{R}{r} \cdot \frac{s^{2}+5 r^{2}+8 R r}{s^{2}+r^{2}+2 R r} \geq 3 \Leftrightarrow s^{2}(R-3 r)+r\left(8 R^{2}-R r-3 r^{2}\right) \geq 0
$$

We distinguish the following cases:
Case 1). If $(R-3 r) \geq 0$, the inequality is obvious.
Case 2). If $(R-3 r)<0$, we rewrite the inequality: $r\left(8 R^{2}-R r-3 r^{2}\right) \geq s^{2}(3 r-R)$, which follows from Gerretsen's inequality: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.

It remains to prove that:

$$
\begin{gathered}
r\left(8 R^{2}-R r-3 r^{2}\right) \geq\left(4 R^{2}+4 R r+3 r^{2}\right)(3 r-R) \Leftrightarrow 2 R^{3}-5 R r^{2}-6 r^{3} \geq 0 \\
\Leftrightarrow(R-2 r)\left(2 R^{2}+4 R r+3 r^{2}\right) \geq 0, \text { obviously from Euler's inequality } R \geq 2 r .
\end{gathered}
$$

Equality holds if and only if the triangle is equilateral.
The right hand inequality:
Using Lemma the right hand inequality can be written:

$$
\frac{R}{r} \cdot \frac{s^{2}+5 r^{2}+8 R r}{s^{2}+r^{2}+2 R r} \leq \frac{3 R}{2 r} \Leftrightarrow s^{2} \leq 12 R r+3 r^{2}
$$

which follows from Gerretsen's inequality: $s^{2} \geq 16 R r-5 r$.
It remains to prove that:
$16 R r-5 r^{2} \geq 12 R r+3 r^{2} \Leftrightarrow R \geq 2 r$ (Euler's inequality).
Equality holds if and only if the triangle is equilateral.

Remark.

Between the sums $\sum \frac{h_{b}+h_{c}}{r_{b}+r_{c}}$ and $\sum \frac{r_{b}+r_{c}}{h_{b}+h_{c}}$ the relationship can be written:

5) In $\triangle A B C$:

$$
\sum \frac{h_{b}+h_{c}}{r_{b}+r_{c}} \leq \sum \frac{r_{b}+r_{c}}{h_{b}+h_{c}}
$$

Proof.
Using the sums $\sum \frac{h_{b}+h_{c}}{r_{b}+r_{c}}=2\left(1+\frac{r}{R}\right)$ and $\sum \frac{r_{b}+r_{c}}{h_{b}+h_{c}}=\frac{R}{r} \cdot \frac{s^{2}+5 r^{2}+8 R r}{s^{2}+r^{2}+2 R r}$

$$
\text { we write the inequality: } 2\left(1+\frac{r}{R}\right) \leq \frac{R}{r} \cdot \frac{s^{2}+5 r^{2}+8 R r}{s^{2}+r^{2}+2 R r} \Leftrightarrow
$$

$$
\Leftrightarrow s^{2}\left(R^{2}-2 R r-2 r^{2}\right)+r\left(8 R^{3}+R^{2} r-6 R r^{2}-2 r^{3}\right) \geq 0
$$

We distinguish the following cases:
Case 1) If $\left(R^{2}-2 R r-2 r^{2}\right) \geq 0$, the inequality is obviously.
Case 2). If $\left(R^{2}-2 R r-2 r^{2}\right)<0$, inequality can be written:
$r\left(8 R^{3}+R^{2} r-6 R r^{2}-2 r^{3}\right) \geq s^{2}\left(2 r^{2}+2 R r-r^{2}\right)$,
which follows from Gerretsen's inequality: $s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$.
It remains to prove that:

$$
\begin{aligned}
& r\left(8 R^{3}+R^{2} r-6 R r^{2}-2 r^{2}\right) \geq\left(4 R^{2}+4 R r+3 r^{2}\right)\left(2 r^{2}+2 R r-R^{2}\right) \Leftrightarrow \\
& \Leftrightarrow R^{4}+R^{3} r-3 R^{2} r^{2}-5 R r^{3}-2 r^{4} \geq 0 \Leftrightarrow(R-2 r)(R+r)^{3} \geq 0
\end{aligned}
$$

obviously from Euler's inequality $R \geq 2 r$.
Equality holds if and only if the triangle is equilateral.

Remark.

The sequence of inequalities can be written:
6) In $\triangle A B C$:

$$
\frac{6 r}{R} \leq \sum \frac{h_{a}+h_{b}}{r_{a}+r_{b}} \leq 3 \leq \sum \frac{r_{b}+r_{c}}{h_{b}+h_{c}} \leq \frac{3 R}{2 r}
$$

Proposed by Marin Chirciu - Romania
Proof.
See inequalities 2) and 3).
Equality holds if and only if the triangle is equilateral.

References

[1] Mihály Bencze, Daniel Sitaru, Marian Ursărescu, Olympic Mathematical Energy. Studis Publishing House, Iaşi, 2018.
[2] Daniel Sitaru, Algebraic Phenomenon. Paralela 45 Publishing House, Piteşti, 2017, ISBN 978-973-47-2523-6
[3] Daniel Sitaru, Murray Klamkin's Duality Principle for Triangle Inequalities. The Pentagon Journal-Volume 75 NO 2, Spring 2016.
[4] Daniel Sitaru, Claudia Nănuţi, Generating Inequalities using Schweitzer's Theorem. CRUX MATHEMATICORUM, Volume 42, NO. 1, January 2016.
[5] Daniel Sitaru, Claudia Nănuţi, A "probabilistic" method for proving inequalities. CRUX MATHEMATICORUM, Volume 43, NO. 7, September 2017.
[6] Daniel Sitaru, Mihály Bencze, 699 Olympic Mathematical Challenges. Studis Publishing House, Iaşi, 2017.
[7] Daniel Sitaru, Analytical Phenomenon. Cartea Românească Publishing House, Piteşti, 2018.
[8] Daniel Sitaru, George Apostolopoulos, The Olympic Mathematical Marathon. Cartea Românească Publishing House, Piteşti, 2018.
[9] Daniel Sitaru, Contest Problems. Cartea Românească Publishing House, Piteşti, 2018.
[10] Mihály Bencze, Daniel Sitaru, Quantum Mathematical Power. Studis Publishing House, Iaşi, 2018.
[11] Daniel Sitaru, A Class of Inequalities in triangles with Cevians. The Pentagon Journal, Volume 77 NO. 2, Fall 2017
[12] Romanian Mathematical Magazine - Interactive Journal, www.ssmrmh.ro
Mathematics Department, "Theodor Costescu" National Economic College, Drobeta Turnu - Severin, ROMANIA.

Email address: dansitaru63@yahoo.com

